

Web Coding & Development All-
in-One For Dummies®
To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Web Coding
and Development All-in-One For Dummies Cheat
Sheet” in the Search box.

Table of Contents
Cover
Title Page
Copyright
Introduction

About This Book

Foolish Assumptions

Icons Used in This Book

Beyond the Book

Book 1: Getting Ready to Code for the Web
Chapter 1: How Web Coding and Development Work

The Nuts and Bolts of Web Coding and Development

Understanding the Front End: HTML and CSS

Understanding the Back End: PHP and MySQL

How It All Fits Together: JavaScript

How Dynamic Web Pages Work

What Is a Web App?

http://www.dummies.com/

Understanding the Difference between Web Coding and Web
Development

Chapter 2: Setting Up Your Web Development Home
What Is a Local Web Development Environment?

Do You Need a Local Web Development Environment?

Setting Up the XAMPP for Windows Development Environment

Setting Up the XAMPP for OS X Development Environment

Choosing Your Text Editor

Chapter 3: Finding and Setting Up a Web Host
Understanding Web Hosting Providers

A Buyer’s Guide to Web Hosting

Finding a Web Host

Finding Your Way around Your New Web Home

Book 2: Coding the Front End, Part 1: HTML and CSS
Chapter 1: Structuring the Page with HTML

Getting the Hang of HTML

Understanding Tag Attributes

Learning the Fundamental Structure of a Web Page

Some Notes on Structure versus Style

Applying the Basic Text Tags

Creating Links

Building Bulleted and Numbered Lists

Inserting Special Characters

Inserting Images

Carving Up the Page

Commenting Your HTML Code

Chapter 2: Styling the Page with CSS
Figuring Out Cascading Style Sheets

Getting the Hang of CSS Rules and Declarations

Adding Styles to a Page

Styling Page Text

Working with Colors

Getting to Know the Web Page Family

Using CSS Selectors

Revisiting the Cascade

Chapter 3: Sizing and Positioning Page Elements
Learning about the CSS Box Model

Styling Sizes

Adding Padding

Building Borders

Making Margins

Getting a Grip on Page Flow

Floating Elements

Positioning Elements

Chapter 4: Creating the Page Layout
What Is Page Layout?

Making Flexible Layouts with Flexbox

Shaping the Overall Page Layout with CSS Grid

Book 3: Coding the Front End, Part 2: JavaScript
Chapter 1: An Overview of JavaScript

JavaScript: Controlling the Machine

What Is a Programming Language?

Is JavaScript Hard to Learn?

What You Can Do with JavaScript

What You Can’t Do with JavaScript

What You Need to Get Started

Basic Script Construction

A Quick Introduction to the Console

Dealing with a Couple of Exceptional Cases

Adding Comments to Your Code

Creating External JavaScript Files

Chapter 2: Understanding Variables
Understanding Variables

Naming Variables: Rules and Best Practices

Understanding Literal Data Types

JavaScript Reserved Words

JavaScript Keywords

Chapter 3: Building Expressions
Understanding Expression Structure

Building Numeric Expressions

Building String Expressions

Building Comparison Expressions

Building Logical Expressions

Understanding Operator Precedence

Chapter 4: Controlling the Flow of JavaScript
Making True/False Decisions with if Statements

Branching with if…else Statements

Making Multiple Decisions

Understanding Code Looping

Using while Loops

Using for Loops

Using do…while Loops

Controlling Loop Execution

Avoiding Infinite Loops

Chapter 5: Harnessing the Power of Functions
What Is a Function?

The Structure of a Function

Where Do You Put a Function?

Calling a Function

Passing Values to Functions

Returning a Value from a Function

Getting Your Head around Anonymous Functions

Moving to Arrow Functions

Running Functions in the Future

Understanding Variable Scope

Using Recursive Functions

Chapter 6: Playing with the Document Object Model
Working with Objects

Getting to Know the Document Object Model

Specifying Elements

Traversing the DOM

Manipulating Elements

Modifying CSS with JavaScript

Tweaking HTML Attributes with JavaScript

Chapter 7: Building Reactive Pages with Events
What’s an Event?

Understanding the Event Types

Listening for an Event

Getting Data about the Event

Preventing the Default Event Action

Example: The DOMContentLoaded Event

Example: The dblclick Event

Chapter 8: Working with Arrays
What Is an Array?

Declaring an Array

Populating an Array with Data

How Do I Iterate Thee? Let Me Count the Ways

Creating Multidimensional Arrays

Manipulating Arrays

Chapter 9: Manipulating Strings, Dates, and
Numbers

Manipulating Text with the String Object

Dealing with Dates and Times

Working with Numbers: The Math Object

Chapter 10: Storing User Data in the Browser
Understanding Web Storage

Introducing JSON

Adding Data to Web Storage

Getting Data from Web Storage

Removing Data from Web Storage

Chapter 11: More JavaScript Goodies
Expanding Arrays and Objects with the Spread Operator

Condensing Arrays with the Rest Parameter

Exporting and Importing Code

Book 4: Coding the Back End: PHP and MySQL
Chapter 1: Learning PHP Coding Basics

Understanding How PHP Scripts Work

Outputting Text and Tags

Working with PHP Arrays

Controlling the Flow of Your PHP Code

Working with PHP Functions

Working with PHP Objects

Chapter 2: Building and Querying MySQL Databases
What Is MySQL?

Introducing phpMyAdmin

Creating a MySQL Database and Its Tables

Querying MySQL Data

Chapter 3: Using PHP to Access MySQL Data
Understanding the Role of PHP and MySQL in Your Web App

Using PHP to Access MySQL Data

Creating and Running Insert, Update, and Delete Queries

Separating Your MySQL Login Credentials

Book 5: Debugging Your Code
Chapter 1: Debugging CSS Code

Displaying the Web Development Tools

Inspecting an Element

Editing a Property Value

Disabling a Declaration

Adding an Inline Declaration to an Element

Adding an Element Declaration to the Inspector Stylesheet

Adding a Class to an Element

Simulating a Pseudo-Class State

Chapter 2: Debugging JavaScript Code
Understanding JavaScript’s Error Types

Getting to Know Your Debugging Tools

Debugging with the Console Window

Pausing Your Code

Stepping Through Your Code

Monitoring Script Values

More Debugging Strategies

The 10 Most Common JavaScript Errors

The 10 Most Common JavaScript Error Messages

Chapter 3: Debugging PHP Code
Configuring php.ini for Debugging

Accessing the PHP Error Log

Outputting Variable Values

Book 6: Coding Dynamic and Static Web Pages
Chapter 1: Fetching Data with PHP, JavaScript, and
JSON

Getting Your Head Around Asynchronous Operations

Getting Remote Data Asynchronously with the Fetch API

Returning Fetch API Data as JSON Text

Chapter 2: Building and Processing Web Forms
What Is a Web Form?

Understanding How Web Forms Work

Building an HTML Web Form

Looking at the HTMLFormElement Object

Taking a Peek at the HTMLInputElement Object

Programming Text Fields

Coding Check Boxes

Dealing with Radio Buttons

Programming Selection Lists

Handling and Triggering Form Events

Creating Keyboard Shortcuts for Form Controls

Submitting the Form

Chapter 3: Validating Form Data
Validating Form Data in the Browser

Validating Form Data on the Server

Regular Expressions Reference

Chapter 4: Coding Static Web Pages
Static? Dynamic? What Am I Even Talking About?

Building Your Own Static Site Generator

Using GitHub to Store Your Static Site Files

Forging Your HTML Template File

Using PHP to Generate the Static Pages

Deploying Your Static Website

Book 7: Building Web Apps
Chapter 1 Planning a Web App

What Is a Web App?

Planning Your Web App: The Basics

Chapter 2: Making a Web App Responsive
Defining a Responsive Layout

Going with the Flow: Fluid Layouts

Querying Your Way to Responsiveness: Adaptive Layouts

Working with Images Responsively

Exploring the Principles of Mobile-First Development

Chapter 3: Making a Web App Accessible
Why You Need to Make Your Apps Accessible

Understanding Web Accessibility

Making Your App Structure Accessible

Making Text Accessible

Making Media Accessible

Buffing Up Your App Accessibility Semantics

Making Your Apps Keyboard-Friendly

Ensuring Sufficient Color Contrast

Validating the Accessibility of an App

Chapter 4: Securing a Web App
Web App Security: Nutshell Version

Understanding the Dangers

Sanitizing Incoming Data

Escaping Outgoing Data

Securing File Uploads

Securing Passwords

Setting Up a Secure Directory Structure

Understanding PHP Sessions

Creating a Back-End Initialization File

Index
About the Author
Advertisement Page
Connect with Dummies
End User License Agreement

List of Tables
Book 2 Chapter 2

TABLE 2-1 Some Common CSS Text Properties

TABLE 2-2 Some CSS Measurement Units

TABLE 2-3 Some Common Pseudo-Classes

TABLE 2-4 Some Common Pseudo-Elements

TABLE 2-5 Declaration Type/Origin Type Weight Hierarchy

Book 2 Chapter 3
TABLE 3-1 The padding Shorthand Property

TABLE 3-2 The margin Shorthand Property

Book 3 Chapter 2
TABLE 2-1 Common JavaScript Escape Sequences

TABLE 2-2 JavaScript’s Reserved Words

TABLE 2-3 JavaScript and HTML Keywords

Book 3 Chapter 3
TABLE 3-1 JavaScript Arithmetic Operators

TABLE 3-2 JavaScript Arithmetic Assignment Operators

TABLE 3-3 JavaScript Comparison Operators

TABLE 3-4 JavaScript Logical Operators

TABLE 3-5 Truth Table for the AND (&&) Operator

TABLE 3-6 Truth Table for the OR (||) Operator

TABLE 3-7 Truth Table for the NOT (!) Operator

TABLE 3-8 JavaScript Order of Precedence for Operators

Book 3 Chapter 6
TABLE 6-1 Useful Properties of the document Object

Book 3 Chapter 9
TABLE 9-1 String Object Methods for Searching for Substrings

TABLE 9-2 String Object Methods for Extracting Substrings

TABLE 9-3 Arguments Associated with the Date Object

TABLE 9-4 Date Object Methods That Extract Date Values

TABLE 9-5 Date Object Methods That Set Date Values

TABLE 9-6 The Properties of the Math Object

TABLE 9-7 Some Methods of the Math Object

Book 4 Chapter 2
TABLE 2-1 Comparison Operators for Criteria Expressions

TABLE 2-2 The LIKE Operator for Criteria Expressions

TABLE 2-3 Logical Operators for Criteria Expressions

Book 6 Chapter 3
TABLE 3-1 The Most Useful Regular Expression Symbols

Book 7 Chapter 2
TABLE 2-1 CSS Viewport Measurement Units

TABLE 2-2 New CSS Viewport Measurement Units

TABLE 2-3 CSS Container Query Measurement Units

Book 7 Chapter 3
TABLE 3-1 Landmark ARIA Roles

TABLE 3-2 Section Structure Roles without HTML Equivalents

TABLE 3-3 Section Structure Roles with HTML Equivalents

TABLE 3-4 Widget Roles without HTML Equivalents

TABLE 3-5 Widget Roles with HTML Equivalents

List of Illustrations
Book 1 Chapter 1

FIGURE 1-1: One way to get to a web page is to type the URL in the
browser’s ad...

FIGURE 1-2: The browser extracts the prefix, domain, and the server
address fro...

FIGURE 1-3: The browser asks the web server for the web page.

FIGURE 1-4: The server uses the page request to get the account,
directory, and...

FIGURE 1-5: The web server sends the requested web page file to the
browser.

FIGURE 1-6: The web browser scours the page file to see if it needs
anything el...

FIGURE 1-7: The web browser goes back to the server to ask for the other
data n...

FIGURE 1-8: The web server sends the browser the rest of the requested
files.

FIGURE 1-9: At long last, the web browser displays the web page.

FIGURE 1-10: Text-only web pages are dishwater-dull.

FIGURE 1-11: Adding paragraph tags to the text separates the text into
three pa...

FIGURE 1-12: With the judicious use of a few CSS properties, you can
greatly im...

Book 1 Chapter 2

FIGURE 2-1: Use this Setup Wizard dialog box to deselect the check box
beside a...

FIGURE 2-2: To install XAMPP, use a subfolder in the main C:\ folder (such
as C...

FIGURE 2-3: If the Windows Security dialog box shows up, be sure to
allow Apach...

FIGURE 2-4: You use the XAMPP Control Panel to control and configure
apps such ...

FIGURE 2-5: The http://localhost/dashboard/ address gives you access
to a few X...

FIGURE 2-6: In the Setup wizard dialog, deselect the check box beside
XAMPP Dev...

FIGURE 2-7: You use the XAMPP control panel to control and configure
services s...

FIGURE 2-8: The http://localhost/dashboard/ address gives you access
to a few X...

FIGURE 2-9: Line numbers, such as the ones shown here down the left
side of the...

Book 2 Chapter 1
FIGURE 1-1: The sample sentence as it appears in a web browser.

FIGURE 1-2: The sentence revised to italicize the word awesome.

FIGURE 1-3: For the <a> tag, the href attribute specifies the link dest...

FIGURE 1-4: The text you insert into the <title> tag shows up in the br...

FIGURE 1-5: Text you add to the page body appears in the browser's
content wind...

FIGURE 1-6: The web browser renders emphasized text using italics.

FIGURE 1-7: The browser renders important text using bold.

FIGURE 1-8: The browser usually combines nested tags, such as the bold,
italic ...

FIGURE 1-9: The six HTML heading tags.

FIGURE 1-10: The web browser renders <blockquote> text indented
slighte...

FIGURE 1-11: How the link appears in the web browser.

FIGURE 1-12: A typical bulleted list.

FIGURE 1-13: When the web browser renders the ordered list, it’s kind
enough to...

FIGURE 1-14: A web page with an image thrown in.

FIGURE 1-15: An abstract view of HTML5’s semantic page structure tags.

FIGURE 1-16: A page header with a logo, title, and horizontal rule.

FIGURE 1-17: The <nav> section usually appears just after the
<header>...

FIGURE 1-18: The browser renders each <div> element on a new line.

FIGURE 1-19: Using makes the container flow with the
surrounding...

Book 2 Chapter 2
FIGURE 2-1: An <h1> heading that appears with the web browser’s
default...

FIGURE 2-2: The same text from Figure 2-1, now with added styles.

FIGURE 2-3: Only the top <h1> tag has the inline style, so only its tex...

FIGURE 2-4: An internal style sheet that applies different border styles to
the...

FIGURE 2-5: Generic fonts are implemented by all web browsers and
come in five ...

FIGURE 2-6: These sentences demonstrate font-weight values from 100
(top) to 90...

FIGURE 2-7: The left, center, right, and justify alignment options in
action (f...

FIGURE 2-8: Go to the Web Dev Workshop to access a full list of the CSS
color k...

FIGURE 2-9: The structure of a semantic HTML web page.

Book 2 Chapter 3
FIGURE 3-1: The components of the CSS box model.

FIGURE 3-2: The CSS box model applied to a page element.

FIGURE 3-3: Without padding (top), your text can look uncomfortably
crowded by ...

FIGURE 3-4: The nav element (with the border) has a .5rem top border.

FIGURE 3-5: The header element with a bottom margin added (with the
border) has...

FIGURE 3-6: The web browser renders the block-level elements as a stack
of boxe...

FIGURE 3-7: As usual, the browser displays the block-level elements as a
stack ...

FIGURE 3-8: When the logo gets floated left, the rest of the content flows
arou...

FIGURE 3-9: When the image is floated left, the footer wraps around it and
ends...

FIGURE 3-10: Adding clear: left to the footer element causes the footer
to clea...

FIGURE 3-11: An <article> tag containing a <section> tag and an...

FIGURE 3-12: With its content floated, the <article> element collapses ...

FIGURE 3-13: With the self-clear class added to the <article> tag, the

FIGURE 3-14: The middle image uses relative positioning to shift from the
left,...

FIGURE 3-15: The img element uses absolute positioning to send it to the
top ri...

FIGURE 3-16: A page with the header element fixed to the top of the
screen. Whe...

FIGURE 3-17: A page with an h2 element stuck (temporarily) to the top of
the sc...

Book 2 Chapter 4
FIGURE 4-1: If you let the browser lay out the elements, you get the default
st...

FIGURE 4-2: With their parent as a flex container, the child elements
become fl...

FIGURE 4-3: How the justify-content values align flex items when the
primary ax...

FIGURE 4-4: How the align-items values align flex items when the
secondary axis...

FIGURE 4-5: To center an item, set the container’s justify-content and
align-it...

FIGURE 4-6: Using Flexbox, you can modify flex container properties for
nicely ...

FIGURE 4-7: By default, all flex items have a flex-grow value of 0, which
often...

FIGURE 4-8: With flex-grow: 1, an item grows until the container has no
more em...

FIGURE 4-9: When items 1, 2, and 3 are styled with flex-grow: 1, the
items grow...

FIGURE 4-10: Items 1 and 3 get 25 percent of the container's empty
space, where...

FIGURE 4-11: By default, the browser shrinks the items equally along the
primar...

FIGURE 4-12: Styling item 1 with flex-shrink: .5 shrinks it less than the
other...

FIGURE 4-13: Styling item 1 with flex-shrink: 2 shrinks the item more
than the ...

FIGURE 4-14: Styling item 1 with flex-shrink: 0 doesn't shrink the item.

FIGURE 4-15: A classic page layout, Flexbox-style.

FIGURE 4-16: A basic grid created by setting just three properties: display,
gr...

FIGURE 4-17: Some grid items assigned to different columns and rows in
the grid...

FIGURE 4-18: The classic page layout, Grid-style.

Book 3 Chapter 1
FIGURE 1-1: This alert message appears when you open the HTML file
containing t...

FIGURE 1-2: When you open the file, the text displays the date and time
the fil...

FIGURE 1-3: A message displayed in the Chrome web browser’s console.

FIGURE 1-4: JavaScript turned off in Google Chrome.

FIGURE 1-5: JavaScript turned off in Firefox.

FIGURE 1-6: This page uses an external JavaScript file to display a footer
mess...

Book 3 Chapter 2
FIGURE 2-1: When you use a variable in a statement, the browser
substitutes the...

FIGURE 2-2: Using the \n escape sequence enables you to format text so
that it ...

Book 3 Chapter 3
FIGURE 3-1: Concatenating instead of adding the preTipTotal and
tipAmount value...

FIGURE 3-2: Calculating preTipTotal and tipAmount separately fixes the
problem.

FIGURE 3-3: The expression booksRead == weeksPassed returns true.

FIGURE 3-4: The expression kumquatsInStock < kumquatsSold returns
false.

FIGURE 3-5: The result of our first stab at calculating the pre-tax cost of an
...

FIGURE 3-6: The revised script calculates the pre-tax cost correctly.

Book 3 Chapter 4
FIGURE 4-1: Set up your while expression so that the prompting stops
when the u...

FIGURE 4-2: This script uses the current value of the counter variable to
custo...

FIGURE 4-3: The decrementing value of the rank variable is used to create
a rev...

FIGURE 4-4: If you guess wrong, the script lets you know if your guess
was too ...

Book 3 Chapter 5
FIGURE 5-1: An example of calling a function when the <script> tag is p...

FIGURE 5-2: An example of calling a function after the page has loaded.

FIGURE 5-3: An example of calling a function in response to an event.

FIGURE 5-4: The output includes the return value of the custom function
calcula...

FIGURE 5-5: Attempting to display the myMessage variable outside of the if
bloc...

FIGURE 5-6: Trying to use the myMessage variable in function B generates
an err...

FIGURE 5-7: When you declare a global variable, you can access its value
both i...

FIGURE 5-8: Using recursion to calculate a profit sharing value.

Book 3 Chapter 6
FIGURE 6-1: This script displays the document.location property in a
console me...

FIGURE 6-2: The web page code as a hierarchy.

FIGURE 6-3: The output of the script that iterates over the div elements.

FIGURE 6-4: The value of the bodyChildren variable displayed in the
console.

FIGURE 6-5: The value of the bodyChildElements variable displayed in the
consol...

FIGURE 6-6: This code uses the add() method to add the class named my-
class to ...

Book 3 Chapter 7
FIGURE 7-1: The click event callback function adds some HTML and text
to the di...

FIGURE 7-2: Type a key in the input box, and the keydown event callback
functio...

FIGURE 7-3: You can use e.preventDefault() to stop the browser from
navigating ...

FIGURE 7-4: The output of the DOMContentLoaded event handler.

Book 3 Chapter 8
FIGURE 8-1: The console messages displayed with each iteration using
forEach().

FIGURE 8-2: The final result (false, in this case) of the every() method.

FIGURE 8-3: The final result (true, in this case) of the some() method.

FIGURE 8-4: The map() method creates a new array by applying an
operation to ea...

FIGURE 8-5: The reduce() method iterates an array's values down to a
single val...

FIGURE 8-6: Concatenating array1 and array2 produces array3 with the
values sho...

FIGURE 8-7: Joining the arrays with a space, null string (""), and default
comm...

FIGURE 8-8: Use the reverse() method to reverse the order of elements in
an arr...

FIGURE 8-9: The slice() method creates a new array from a subset of
another arr...

FIGURE 8-10: Using sort() and a function to sort items numerically from
highest...

FIGURE 8-11: The splice() method can delete, replace, and insert array
elements...

Book 3 Chapter 9
FIGURE 9-1: The indexOf() and lastIndexOf() methods search for
substrings withi...

FIGURE 9-2: Some examples of the slice() method in action.

FIGURE 9-3: Some examples of the split() method.

FIGURE 9-4: Some examples of the substr() method.

FIGURE 9-5: Some examples of the substring() method.

FIGURE 9-6: The results of the script.

FIGURE 9-7: The script displays the day of the week for a given year,
month, an...

Book 3 Chapter 10
FIGURE 10-1: The JavaScript object converted to a JSON string.

FIGURE 10-2: The JSON string converted to a JavaScript object.

FIGURE 10-3: Viewing local storage data in the web browser’s
development tools.

Book 3 Chapter 11
FIGURE 11-1: The copied array remains the same after the original array
was cha...

FIGURE 11-2: The concatenated array.

FIGURE 11-3: The resulting array displayed in the console.

FIGURE 11-4: The original object remains the same after changing the
copied obj...

FIGURE 11-5: The merged object.

FIGURE 11-6: Yep: “step on no pets” is a palindrome.

FIGURE 11-7: Creating a DOM element with any number of class names.

Book 4 Chapter 1
FIGURE 1-1: The output of PHP's echo command.

FIGURE 1-2: You can also embed PHP output within an HTML file.

FIGURE 1-3: In PHP, you use the dot (.) operator to concatenate two
strings.

FIGURE 1-4: When you output tags and text using PHP, the strings run
together i...

FIGURE 1-5: With newlines added to the output strings, the web page
source code...

FIGURE 1-6: The really long string output to the web browser. Note that the
val...

Book 4 Chapter 2
FIGURE 2-1: In MySQL databases, tables store the raw data.

FIGURE 2-2: You use MySQL queries to extract a subset of the data from
one or m...

FIGURE 2-3: From the XAMPP Dashboard, click phpMyAdmin to open the
phpMyAdmin w...

FIGURE 2-4: Importing a CSV file creates the CSV_DB database.

FIGURE 2-5: The orders table includes a column named order_id.

FIGURE 2-6: The order_details table also includes a column named
order_id.

FIGURE 2-7: The order_details and orders tables joined on the common
column nam...

Book 4 Chapter 3
FIGURE 3-1: An example of an error number and message generated by
the MySQLi o...

FIGURE 3-2: The output of the PHP script.

FIGURE 3-3: The output of the script, which lays out the query data in an
HTML ...

Book 5 Chapter 1
FIGURE 1-1: The web page that I’ll debug.

FIGURE 1-2: Choose where the development tools pane appears in the
browser wind...

FIGURE 1-3: Inspecting the img element.

FIGURE 1-4: A line through a declaration tells you it has been overridden
by an...

FIGURE 1-5: The browser displays a warning icon and a crossed-out
declaration f...

FIGURE 1-6: The browser displays an element’s box model as a series of
concentr...

FIGURE 1-7: The img element's box model tells us that it has no margin or
paddi...

FIGURE 1-8: The Computed tab shows the selected element’s computed
styles.

FIGURE 1-9: Hovering the mouse pointer over a rule adds check boxes
beside each...

FIGURE 1-10: You can add new declarations to an element.

FIGURE 1-11: You can add new rules to the inspector stylesheet.

FIGURE 1-12: You can add a class to the element.

FIGURE 1-13: You can simulate pseudo-class states such as :active and
:hover.

Book 5 Chapter 2
FIGURE 2-1: The Firefox Console window displaying data about a typical
syntax e...

FIGURE 2-2: The Chrome Console window displaying data about a typical
runtime e...

FIGURE 2-3: The HTML viewer, such as Chrome’s Elements tab, enables
you to insp...

FIGURE 2-4: In break mode, the web browser displays its debugging tool
and high...

FIGURE 2-5: In the browser’s debugging tool, click a line number to set a
break...

FIGURE 2-6: In break mode, hover the mouse pointer over a variable
name to disp...

FIGURE 2-7: In break mode, Chrome’s Scope section shows the current
values of t...

FIGURE 2-8: You can define a watch expression for your code.

Book 5 Chapter 3
FIGURE 3-1: Examine the Loaded Configuration File setting to determine
the loca...

FIGURE 3-2: A typical PHP error message, showing the error, file path and
name,...

FIGURE 3-3: The php.ini file will tell you the location of your PHP error
log.

FIGURE 3-4: The error shown earlier in Figure 3-2 was also recorded in
the PHP ...

FIGURE 3-5: Adding an echo statement outputs the expression to the
browser wind...

FIGURE 3-6: Using print_r() to output the keys and values of an array.

FIGURE 3-7: Using var_dump() to output information about some
variables.

Book 6 Chapter 1
FIGURE 1-1: The result of the asynchronous operation.

FIGURE 1-2: The result of the chained asynchronous operations.

FIGURE 1-3: The result of three chained asynchronous operations, two
successes ...

FIGURE 1-4: The PHP script response displayed in the Console window.

FIGURE 1-5: Using JavaScript’s fetch() method to load the contents of an
HTML f...

FIGURE 1-6: Using the fetch() method to load the output of a PHP script
into a ...

FIGURE 1-7: A warning message displayed by the getInventoryTotal()
function.

FIGURE 1-8: The asynchronous function loops through the JSON array,
appending e...

Book 6 Chapter 2
FIGURE 2-1: A typical web form.

FIGURE 2-2: The various text input types you can use in your forms.

FIGURE 2-3: The script converts the input element's default text to all-
lowerca...

FIGURE 2-4: An example form submission.

Book 6 Chapter 3
FIGURE 3-1: Add the required attribute to a form field to ensure that the
field...

FIGURE 3-2: Use the minlength or maxlength attribute (or both) to restrict a
fi...

FIGURE 3-3: Use the min or max attribute (or both) to accept values within a
sp...

FIGURE 3-4: Modern browsers automatically validate email fields.

FIGURE 3-5: The CSS rules add a green check mark to valid fields, and
the red t...

FIGURE 3-6: Some example validation error messages returned from the
server scr...

Book 6 Chapter 4
FIGURE 4-1: Select only the Repo check box to make your life easier.

FIGURE 4-2: GitHub displays your new personal access token just once.

FIGURE 4-3: GitHub checks to make sure you haven’t already used the
name for an...

FIGURE 4-4: The repo home page includes the all-important address of the
reposi...

FIGURE 4-5: In the Connect to GitHub dialog box, use the Token tab to
paste you...

FIGURE 4-6: The output of the static site generator.

FIGURE 4-7: Select your repo’s main branch for the deployment.

FIGURE 4-8: Refresh the page to see the address of your repo's Pages
deployment...

Book 7 Chapter 1
FIGURE 1-1: The workflow for the FootPower! app.

FIGURE 1-2: A sketch of the home page for the FootPower! app.

Book 7 Chapter 2
FIGURE 2-1: When a web app has a fixed width, users with small screens
must scr...

FIGURE 2-2: When a web app has no maximum width, the lines of text can
become t...

FIGURE 2-3: The web app as it appears in a desktop browser viewport.

FIGURE 2-4: In a smaller viewport, the main element becomes a single
column (le...

FIGURE 2-5: The grid layout as it appears in a desktop browser viewport.

FIGURE 2-6: The grid layout as it appears in a tablet viewport.

FIGURE 2-7: The grid layout as it appears in a smartphone viewport.

FIGURE 2-8: The header logo appears in a tablet-sized viewport.

FIGURE 2-9: On a smartphone-sized viewport, the media query expression
is true,...

FIGURE 2-10: A product card in its default layout.

FIGURE 2-11: The product card layout when the parent element is less
than 25rem

FIGURE 2-12: The product card layout when the parent element is
between 25rem a...

FIGURE 2-13: Choosing either a light or a dark color scheme in macOS.

FIGURE 2-14: With the tag’s sizes and srcset attributes on the jo...

Book 7 Chapter 3

FIGURE 3-1: Light text on a light background (left) and dark text on a dark
bac...

FIGURE 3-2: Use the WebAIM Contrast Checker to find out the contrast
ratio betw...

FIGURE 3-3: The Web Accessibility Evaluation Tool will let you know if
your app...

Book 7 Chapter 4
FIGURE 4-1: When this form is submitted, the JavaScript code in the text
area g...

FIGURE 4-2: When this form is submitted, the Output area shows the
filtered for...

FIGURE 4-3: If the user submits a non-numeric value, the PHP script
returns a m...

FIGURE 4-4: A database query rendered safe by using prepared
statements.

FIGURE 4-5: An example of a hashed password.

Web Coding & Development All-in-One For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2024 by John Wiley &
Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo,
Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and may
not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE
THE PUBLISHER AND AUTHORS HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS WORK, THEY MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://dummies.com/

SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR
THIS WORK. THE FACT THAT AN ORGANIZATION, WEBSITE,
OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE
ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT
WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. NEITHER THE PUBLISHER NOR AUTHORS SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES.

For general information on our other products and services, please
contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical
support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-
on-demand. Some material included with standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2023951076

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com/
http://www.wiley.com/

ISBN 978-1-394-19702-6 (pbk); ISBN 978-1-394-19704-0 (ebk); ISBN
978-1-394-19703-3 (ebk)

Introduction
When the web first came to the attention of the world’s non-geeks back
in the mid-1990s, the vastness and variety of its treasures were a wonder
to behold. However, it didn’t take long before a few courageous and
intrepid souls dug a little deeper into this phenomenon and discovered
something truly phenomenal: They could make web pages, too!

Why was that so amazing? Well, think back to (or, if you’re not old
enough, imagine) those old days and consider, in particular, what it
meant to create what we now call content. Consider television shows,
radio programs, magazines, newspapers, books, and the other media of
the time. The one thing they all had in common was that their creation
was a decidedly uncommon thing. It required a team of professionals, a
massive distribution system, and a lot of money. In short, it wasn’t
something that your average Okie from Muskogee would have any hope
of duplicating.

The web appeared to change all that because learning HTML was within
the grasp of all of us who could feed ourselves, it had a built-in massive
distribution system (the internet, natch), and it required little or no
money. For the first time in history, content was democratized and was
no longer defined as the sole province of governments and mega-
corporations.

Then reality set in.

People soon realized that merely building a website wasn’t enough to
attract “eyeballs,” as the marketers say. A site had to have interesting,
useful, or fun content, or people would stay away in droves. Not only
that, but this good content had to be combined with a solid site design,
which meant that web designers needed a thorough knowledge of HTML
and CSS.

But, alas, eventually even all that was not enough. To make their
websites dynamic and interesting, to make their sites easy to navigate,
and to give their sites those extra bells and whistles that surfers had

come to expect, people needed something more than content, HTML,
and CSS.

That missing link was code.

What we’ve all learned the hard way over the past few years is that you
simply can’t put together a world-class website unless you have some
coding prowess in your site design toolkit. You need to know how to
program your way out of the basic problems that afflict most sites; how
to use scripting to go beyond the inherent limitations of HTML and CSS;
and how to use code to send and receive data from a web server. And it
isn’t enough just to copy the generic scripts available on the web and
paste them into your pages. Most of those scripts are poorly written, and
they invariably need some customization to work properly on your site.

About This Book
In this book, I give you a complete education on web coding and
development. You learn how to set up the tools you need, how to use
HTML and CSS to design and build your site, how to use JavaScript to
program your pages, and how to use PHP and MySQL to program your
web server. I show you that these technologies aren’t hard to learn, and
that even the greenest rookie programmers can learn how to put together
web pages that will amaze their family and friends (and themselves).

If you’re looking for lots of programming history, computer science
theory, and long-winded explanations of concepts, you won’t find them
here. My philosophy throughout this book comes from Linus Torvalds,
the creator of the Linux operating system: “Talk is cheap. Show me the
code.” I explain what needs to be explained and then I move on without
further ado (or, most of the time, without any ado at all) to examples and
scripts that do more to illuminate a concept that any verbose
explanations I could muster (and believe me, I can muster verbosity with
the best of them).

How you approach this book depends on your current level of web
coding expertise (or lack thereof):

If you’re just starting out, begin at the beginning with Book 1 and
work at your own pace sequentially through to Books 2 and 3. This
approach will give you all the knowledge you need to pick and
choose what you want to learn throughout the rest of the book.
If you know HTML and CSS, you can probably get away with taking
a fast look at Book 2 and then settling in with Book 3 and beyond.
If you’ve done some JavaScript coding, I suggest working quickly
through the material in Book 3, and then digging into the first two
chapters of Book 5 to bring your debugging skills up to snuff. You’ll
then be ready to branch out and explore the rest of the book as you
see fit.
If you’re a relatively experienced JavaScript programmer, use Books
3 and 5 as a refresher, and then tackle Book 4 to learn how to code
the back end. I have a few tricks in there that you might find
interesting. After that, feel free to consider the rest of the book as a
kind of coding smorgasbord that you can sample as your web
development taste buds dictate.

As I began updating this edition of the book, the world was awash in
posts and talk and endless speculation about artificial intelligence, to the
point where it seemed we’d soon be welcoming our new AI overlords.
That’s not likely to happen anytime soon, but AI is here to stay and has
already established itself as a significant part of many people’s workaday
routines.

I’ve been as enamored of ChatGPT and its ilk as the biggest AI boosters.
I use AI for entertainment and curiosity, but I don’t use it for work. That
is to say, not one word of the text, code, or examples used in this book
has been generated by AI. Everything you read here is, for good or ill,
the product of my warped-from-birth brain.

Foolish Assumptions
This book is not a primer on the internet or using the World Wide Web.
It's a coding and development book, pure and simple, where I assume the

following:

You know how to operate a basic text editor and how to get around
the operating system and file system on your computer.
You have an internet connection.
You know how to use your web browser.

Yep, that’s it.

If you’ve never done a stitch of computer programming before, even if
you’re not quite sure what programming really is, don’t worry about it
for a second because I had you in mind when I wrote this book. For too
many years, programming has been the property of hackers and other
technowizards. That made some sense because the programming
languages they were using — with bizarre names such as C++ and Perl
— were exceedingly difficult to learn and even harder to master.

This book’s main coding technologies — HTML, CSS, JavaScript, PHP,
and MySQL — are different. They’re nowhere near as hard to learn as
those for-nerds-only languages. I honestly believe that anyone can
become a savvy and successful web coder, and this book is, I hope, the
proof of that assertion. If you just follow along, examine my code
carefully (particularly in the first few chapters), and practice what you
learn, you will master web coding and development.

What if you’ve done some programming in the past? For example, you
might have dipped a toe or two in the JavaScript waters already, or you
might have dabbled with HTML and CSS. Will this book be too basic
for you? No, not at all. In this book, I provide you with a ton of truly
useful examples that you can customize and incorporate into your own
site. The book’s first few chapters start slowly to avoid scaring off those
new to this programming business. But once you get past the basics, I
introduce you to lots of great techniques and tricks that will take your
web coding skills to a higher level.

Icons Used in This Book

 This icon points out juicy tidbits that are likely to be repeatedly
useful to you — so please don’t forget them.

 Think of these icons as the fodder of advice columns. They offer
(I hope) wise advice or a bit more information about a topic under
discussion.

 Look out! In this book, you see this icon when I’m trying to help
you avoid mistakes that can cost you time, money, or
embarrassment.

 When you see this icon, you’ve come across material that isn’t
critical to understand but will satisfy the curious. Think “inquiring
minds want to know” when you see this icon.

Beyond the Book
Some extra content for this book is available on the web. Go online to
find the following:

The examples used in the book: You can find these on my website:
https://paulmcfedries.com/books/web-coding-dev-aio-fd-2e/

Alternatively, the examples are also available via the book’s GitHub
repository:

https://github.com/paulmcfe/web-coding-and-dev-fd-2e

https://paulmcfedries.com/books/web-coding-dev-aio-fd-2e/
https://github.com/paulmcfe/web-coding-and-dev-fd-2e

The examples are organized by book and then by chapter within each
book. For each example, you can view the code, copy it to your
computer’s clipboard, and run the code in the browser.
The WebDev Workshop: To view a few web coding tools and
tutorials, as well as try your own code and see instant results, fire up
the following site:

https://webdevworkshop.io

You won’t break anything, so feel free to use the site to run some
experiments and play around with HTML, CSS, and JavaScript.

https://webdevworkshop.io/

Book 1
Getting Ready to Code for the

Web
Contents at a Glance

Chapter 1: How Web Coding and Development Work
The Nuts and Bolts of Web Coding and Development

Understanding the Front End: HTML and CSS

Understanding the Back End: PHP and MySQL

How It All Fits Together: JavaScript

How Dynamic Web Pages Work

What Is a Web App?

Understanding the Difference between Web Coding and Web Development

Chapter 2: Setting Up Your Web Development Home
What Is a Local Web Development Environment?

Do You Need a Local Web Development Environment?

Setting Up the XAMPP for Windows Development Environment

Setting Up the XAMPP for OS X Development Environment

Choosing Your Text Editor

Chapter 3: Finding and Setting Up a Web Host
Understanding Web Hosting Providers

A Buyer’s Guide to Web Hosting

Finding a Web Host

Finding Your Way around Your New Web Home

Chapter 1
How Web Coding and

Development Work
IN THIS CHAPTER

 Learning how the web works
 Understanding the front-end technologies of HTML and CSS
 Understanding the back-end technologies of MySQL and PHP
 Figuring out how JavaScript fits into all of this
 Learning about dynamic web pages, web apps, and mobile web

apps

More than mere consumers of technology, we are makers, adapting
technology to our needs and integrating it into our lives.

— DALE DOUGHERTY
The 1950s were a hobbyist’s paradise with magazines such as Mechanix
Illustrated and Popular Science showing the do-it-yourselfer how to
build a go-kart for the kids and how to soup up a lawnmower with an
actual motor! Seventy years later, we’re now firmly entrenched in the
age of do-it-yourself tech, where folks indulge their inner geek to engage
in various forms of digital tinkering and hacking. The personification of
this high-tech hobbyist renaissance is the maker, a modern artisan who
lives to create things rather than merely consume them. Today’s makers
exhibit a wide range of talents, but the skill most sought-after not only
by would-be makers themselves but by the people who hire them is web
coding and development.

Have you ever visited a website and thought, “Hey, I can do better than
that!”? Have you found yourself growing tired of merely reading text
and viewing images that someone else has put on the web? Is there

something creative in you — stories, images, expertise, opinions — that
you want to share with the world? If you answered a resounding “Yes!”
to any of these questions, congratulations: You have everything you need
to get started with web coding and development. You have, in short, the
makings of a maker.

The Nuts and Bolts of Web Coding
and Development

If, as the King said very gravely in Lewis Carroll’s Alice in Wonderland,
it’s best to “begin at the beginning,” you’ve come to the right place. My
goal here is to get you off on the right foot by showing you what web
coding and web development are.

How the web works
Before you can understand web coding and development, you need to
take a step back and understand a bit about how the web itself works. In
particular, you need to know what happens behind the scenes when you
click a link or type a web page address into your browser. Fortunately,
you don’t need to be a network engineer to understand this stuff, because
I can explain the basics without much in the way of jargon. Here’s a
high-level (and not at all serious) blow-by-blow account of what
happens:

1. You tell the web browser the web page you want to visit.
You do that either by clicking a link to the page or by typing the
location — known as the uniform resource locator or URL (usually
pronounced “you-are-ell,” but also sometimes “earl”) — into the
browser’s address bar (see Figure 1-1).

FIGURE 1-1: One way to get to a web page is to type the URL in the browser’s
address bar.

2. The browser decodes the URL.
Decoding the URL means two things. First, the browser sees what
type of resource you’re requesting by checking the prefix of the
URL; this is usually http:// or https://, both of which indicate
that the resource is a web page. Second, it gets the URL's domain
name — the something.com or whatever.org part — and asks the
domain name system (DNS) to translate this into a unique location
— called the IP (Internet Protocol) address — for the web server that
hosts the page (see Figure 1-2).

FIGURE 1-2: The browser extracts the prefix, domain, and the server address from
the URL.

3. The browser contacts the web server and requests the web page.
With the web server's unique IP address in hand, the web browser
sets up a communications channel with the server and then uses that
channel to send along a request for the web page (see Figure 1-3).

FIGURE 1-3: The browser asks the web server for the web page.

4. The web server decodes the page request.
Decoding the page request involves a number of steps. First, if the
web server is shared between multiple user accounts, the server
begins by locating the user account that owns the requested page.
The server then uses the page address to find the directory that holds
the page and the file in which the page code is stored (see Figure 1-
4).

FIGURE 1-4: The server uses the page request to get the account, directory, and
filename.

5. The web server sends the web page file to the web browser (see
Figure 1-5).

FIGURE 1-5: The web server sends the requested web page file to the browser.

6. The web browser decodes the web page file.
Decoding the page file means looking for text to display, instructions
on how to display that text, and other resources required by the page,
such as images and fonts (see Figure 1-6).

FIGURE 1-6: The web browser scours the page file to see if it needs anything else
from the server.

7. If the web page requires more resources, the web browser asks
the server to pass along those resources (see Figure 1-7).

8. For each of the requested resources, the web server locates the
associated file and sends it to the browser (see Figure 1-8).

9. The web browser gathers all the text, images, and other
resources and displays the page in all its digital splendor in the
browser’s content window (see Figure 1-9).

FIGURE 1-7: The web browser goes back to the server to ask for the other data needed to
display the web page.

FIGURE 1-8: The web server sends the browser the rest of the requested files.

FIGURE 1-9: At long last, the web browser displays the web page.

How the web works, take two
Another way to look at this process is to think of the web as a giant mall
or shopping center, where each website is a storefront in that mall. When
you request a web page from a particular site, the browser takes you into
that site’s store and asks the clerk for the web page. The clerk goes into
the back of the store, locates the page, and hands it to the browser. The
browser checks the page and asks for any other needed files, which the
clerk retrieves from the back. This process is repeated until the browser
has everything it needs, and it then puts all the page pieces together for
you, right there in the front of the store.

This metaphor might seem a bit silly, but it serves to introduce yet
another metaphor, which itself illustrates one of the most important
concepts in web development. In the same way that our website store
has a front and a back, so, too, is web development separated into a front
end and a back end:

Front end: That part of the web page that the web browser displays
in the browser window. That is, the front end is the page stuff you

see and interact with.
Back end: That part of the web page that resides on the web server.
That is, the back end is the page stuff that the server gathers based on
the requests it receives from the browser.

As a consumer of web pages, you only ever deal with the front end, and
even then you only passively engage with the page by reading its
content, looking at its images, or clicking its links or buttons.

However, as a maker of web pages — that is, as a web developer —
your job entails dealing with both the front end and the back end.
Moreover, that job includes coding what others see on the front end,
coding how the server gathers its data on the back end, and coding the
intermediate tasks that tie the two together.

Understanding the Front End:
HTML and CSS

As I mention in the preceding section, the front end of the web
development process involves what users see and interact with in the
web browser window. It’s the job of the web developer to take a page
design — which you might come up with yourself but is more often
something cooked up by a creative type who specializes in web design
— and make it web-ready. Getting a design ready for the web means
translating the design into the code required for the browser to display
the page somewhat faithfully. (I added the hedge word somewhat there
because it’s not always easy to take a design that looks great in
Photoshop or Illustrator and make it look just as good on the web.
However, with the techniques you learn in this book, you’ll almost
always be able to come pretty close.)

You need code to create the front end of a web page because without it
your page will be quite dull. For example, consider the following text
(found in bk01ch01/example01.html in this book’s example files):

There once was a boy named Flibbertigibbet. No, his parents most certainly

did not give him that name when he was born. That would have been cruel, and

they were really quite nice people. They actually named him Filbert. Yes,

they named him after a nut. They were nice people, but they were also silly

people who often didn't think things through.

One day, when Filbert was about a year old, his mother was bouncing him on

her knee when, mid-dandle, he smiled and said "Momma!" Oh, his mother was

overjoyed that not only had Filbert said his first word but that word had

been "Momma." She called her husband over and Filbert looked right at him and

said "Dadda!" Amazing! They began pointing at him and repeating "Filbert!,

Filbert!" to get him to say his own name. After a while, Filbert creased his

brow as though concentrating ever so seriously, and then said

"Flibbertigibbet!"

Their jaws dropped. How could a boy so young know such a word? Ah, therein

lies a tale. Unbeknownst to his parents, Filbert's maternal grandmother had

been secretly whispering "You're my little Flibbertigibbet" in her grandson's

ear over and over since the day he was born. By the time he was a year old,

the boy didn't know many things, but there was one thing he knew with

unshakeable conviction: His name was Flibbertigibbet!

If you plop that text onto the web, you get the result shown in Figure 1-
10. As you can see, the text is very plain, and the browser didn’t even
bother to include the paragraph breaks.

FIGURE 1-10: Text-only web pages are dishwater-dull.

So, if you can’t just throw naked text onto the web, what’s a would-be
web developer to do? Ah, that’s where you start earning your web scout
merit badges by adding code that tells the browser how you want the text
displayed. That code comes in two flavors: structure and formatting.

Adding structure: HTML
The first thing you usually do to code a web page is give it some
structure. This means breaking up the text into paragraphs, adding
special sections such as a header and footer, organizing text into bulleted

or numbered lists, dividing the page into columns, and much more. The
web coding technology that governs these and other web page structures
is called (deep breath) Hypertext Markup Language, or HTML, for short.

HTML is a collection of special symbols called tags that you sprinkle
strategically throughout the page. For example, if you want to tell the
web browser that a particular chunk of text is a separate paragraph, you
place the <p> tag (the p here is short for paragraph) before the text and
the </p> tag after the text.

In the code that follows (check out bk01ch01/example02.html), I've
added these paragraph tags to the plain text that I show earlier. As shown
in Figure 1-11, the web browser displays the text as three separate
paragraphs, no questions asked.

<p>

There once was a boy named Flibbertigibbet. No, his parents most certainly

did not give him that name when he was born. That would have been cruel, and

they were really quite nice people. They actually named him Filbert. Yes,

they named him after a nut. They were nice people, but they were also silly

people who often didn't think things through.

</p>

<p>

One day, when Filbert was about a year old, his mother was bouncing him on

her knee when, mid-dandle, he smiled and said "Momma!" Oh, his mother was

overjoyed that not only had Filbert said his first word but that word had

been "Momma." She called her husband over and Filbert looked right at him and

said "Dadda!" Amazing! They began pointing at him and repeating "Filbert!,

Filbert!" to get him to say his own name. After a while, Filbert creased his

brow as though concentrating ever so seriously, and then said

"Flibbertigibbet!"

</p>

<p>

Their jaws dropped. How could a boy so young know such a word? Ah, therein

lies a tale. Unbeknownst to his parents, Filbert's maternal grandmother had

been secretly whispering "You're my little Flibbertigibbet" in her grandson's

ear over and over since the day he was born. By the time he was a year old,

the boy didn't know many things, but there was one thing he knew with

unshakeable conviction: His name was Flibbertigibbet!

</p>

FIGURE 1-11: Adding paragraph tags to the text separates the text into three paragraphs.

 HTML is one of the fundamental topics of web development,
and you learn all about it in Book 2, Chapter 1.

Adding style: CSS
HTML takes care of the structure of the page, but if you want to change
the formatting of the page, you need to turn to a second front-end
technology: cascading style sheets, known almost universally as just
CSS. With CSS in hand, you can play around with the page colors and
fonts, you can add margins and borders around things, and you can mess
with the position and size of page elements.

CSS consists of a large number of properties that enable you to
customize many aspects of the page to make it look the way you want.
For example, the width property lets you specify how wide a page
element should be; the font-family property enables you to specify a
typeface for an element; and the font-size property lets you dictate the
type size of an element’s text. Here's some CSS code that applies all
three of these properties to every p element (that is, every <p> tag) that
appears in a page (note that px is short for pixels):

p {

 width: 700px;

 font-family: sans-serif;

 font-size: 24px;

}

When used with the sample text from the previous two sections, you get
the much nicer-looking text shown in Figure 1-12. (Also check out

bk01ch01/example03.html.)

FIGURE 1-12: With the judicious use of a few CSS properties, you can greatly improve the
look of a page.

 CSS is a cornerstone of web development. You learn much more
about it in Book 2, Chapters 2, 3, and 4.

 You learn quite a bit of CSS in this book, but if you really want
to dive deep into this crucial web development technology, see my
book HTML, CSS & JavaScript All-in-One For Dummies (2023).

Understanding the Back End: PHP
and MySQL

Many web pages are all about the front end. That is, they consist of
nothing but text that has been structured by HTML tags and styled by
CSS properties, plus a few extra files such as images and fonts. Sure, all
these files are transferred from the web server to the browser, but that’s
the extent of the back end’s involvement.

These simple pages are ideal when you have content that doesn’t change
very often, if ever. With these so-called static pages, you plop in your
text, add some HTML and CSS, perhaps point to an image or two, and
you’re done. Static pages are awesome, by the way, which is why I talk
about them in some detail in Book 6.

But another class of page has content that changes frequently. The
content could be posts added once or twice a day, or sports or weather
updates added once or twice an hour. With these so-called dynamic
pages, you might have some text, HTML, CSS, and other content that’s
static, but you almost certainly don’t want to be updating the changing
content by hand.

Rather than making constant manual changes to such pages, you can
convince the back end to do it for you. You do that by taking advantage
of two popular back-end technologies: MySQL and PHP.

Storing data on the server: MySQL
MySQL is a relational database management system that runs on the
server. You use it to store the data you want to use as the source for some
(or perhaps even all) of the data you want to display on your web page.
Using a tool called Structured Query Language (SQL, pronounced “ess-
kew-ell,” or sometimes “sequel”), you can specify which subset of your
data you want to use.

 If phrases such as “relational database management system” and
“Structured Query Language” have you furrowing your brow, don’t
sweat it: I explain all in Book 4, Chapter 2.

Accessing data on the server: PHP
PHP is a programming language used on the server. It’s a very powerful
and full-featured language, but for the purposes of this book, you use
PHP mostly to interact with MySQL databases. You can use PHP to
extract from MySQL the subset of data you want to display, manipulate

that data into a form that’s readable by the front end, and then send the
data to the browser.

 You learn about the PHP language in Book 4, Chapter 1, and
you learn how to use PHP to access MySQL data in Book 4,
Chapter 3.

How It All Fits Together: JavaScript
Okay, so now you have a front end consisting of HTML structure and
CSS styling, and a back end consisting of MySQL data and PHP code.
How do these two seemingly disparate worlds meet to create a full web
page experience?

In the website-as-store metaphor that I introduce earlier in this chapter, I
use the image of a store clerk taking an order from the web browser and
then going into the back of the store to fulfill that order. That clerk is the
obvious link between the front end and the back end, so what technology
does that clerk represent? That would be JavaScript.

JavaScript is the secret sauce that brings the front end and the back end
together to create the vast majority of the web pages you see today.
JavaScript is a programming language and is the default language used
for coding websites today. JavaScript is, first and foremost, a front-end
web development language. That is, JavaScript runs inside the web
browser and has access to everything on the page: the text, the images,
the HTML tags, the CSS properties, and more. Having access to all the
page stuff means that you can use code to manipulate, modify, and even
add and delete web page elements.

But although JavaScript runs in the browser, it’s also capable of reaching
out to the server to access back-end stuff. For example, with JavaScript
you can send data to the server to store that data in a MySQL database.
Similarly, with JavaScript you can request data from the server and then
use code to display that data on the web page.

 JavaScript is very powerful, very useful, and very cool, so Book
3 takes 11 full chapters to help you learn it well. Also, you learn
how JavaScript acts as a bridge between the front end and the back
end in Book 6, Chapter 1.

How Dynamic Web Pages Work
It’s one thing to know about HTML and CSS and PHP and all the rest,
but it’s quite another to actually do something useful with these
technologies. That, really, is the goal of this book, and to that end the
book spends several chapters covering how to create wonderful things
called dynamic web pages. A dynamic web page is one that includes
content that, rather than being hard-wired into the page, is generated on-
the-fly from the web server. This means the page content can change
based on a request by the user, by data being added to or modified on the
server, or in response to some event, such as the clicking of a button or
link.

It likely sounds a bit like voodoo to you now, so perhaps a bit more
detail is in order. For example, suppose you want to use a web page to
display some data that resides on the server. Here’s a general look at the
steps involved in that process:

1. JavaScript determines the data that it needs from the server.
JavaScript has various ways it can do this, such as extracting the
information from the URL, reading an item the user has selected
from a list, or responding to a click from the user.

2. JavaScript sends a request for that data to the server.
In most cases, and certainly in every case you see in this book,
JavaScript sends this request by calling a PHP script on the server.

3. The PHP script receives the request and passes it along to
MySQL.

The PHP script uses the information obtained from JavaScript to
create an SQL command that MySQL can understand.

4. MySQL uses the SQL command to extract the required
information from the database and then return that data to the
PHP script.

5. The PHP script manipulates the returned MySQL data into a
form that JavaScript can use.
JavaScript can’t read raw MySQL data, so one of PHP’s most
important tasks is to convert that data into a format called JavaScript
Object Notation (JSON, for short, and pronounced like the name
“Jason”), which JavaScript is on friendly terms with (see Book 6,
Chapter 1 for more about this process).

6. PHP sends the JSON data back to JavaScript.
7. JavaScript displays the data on the web page.

One of the joys of JavaScript is that you get tremendous control over
how you display the data to the user. Through existing HTML and
CSS, and by manipulating these and other web page elements using
JavaScript, you can show your data in the best possible light.

 To expand on these steps and learn how to create your own
dynamic web pages, check out the first three chapters in Book 6.

What Is a Web App?
You no doubt have a bunch of apps residing on your smartphone. If you
use Windows on your PC, you have the pre-installed apps such as Mail
and Calendar and possibly one or more apps downloaded from the
Windows Store. If the Mac is more your style, you’re probably quite
familiar with apps such as Music and Messages, and you might have
installed a few others from the App Store. We live in a world full of apps

that, in the context of your phone or computer, are software programs
dedicated to a single topic or task.

So what then is a web app? It’s very similar to an app on a device or PC.
That is, it’s a website, built using web technologies such as HTML, CSS,
and JavaScript, that has two main characteristics:

The web app is focused on a single topic or task.
The web app offers some sort of interface that enables the user to
operate the app in one or more ways.

In short, a web app is a website that looks and acts like an app on a
device or a computer. (Gmail is an example of a web app.) This is
opposed to a regular website, which usually tackles several topics or
tasks and has an interface that for the most part only enables users to
navigate the site.

 To get the scoop on building your very own web apps, head over
to the four chapters in Book 7.

Understanding the Difference
between Web Coding and Web
Development

After all this talk of HTML, CSS, MySQL, and JavaScript, after the
bird’s-eye view of static sites, dynamic sites, and web apps, you might
be wondering when the heck I’m going to answer the most pressing
question: What in the name of Sir Tim Berners-Lee (inventor of the
web) is the difference between web coding and web development?

I’m glad you asked! Some people would probably answer that question
by saying there’s no real difference because web coding and web

development are two ways of referring to the same thing: creating web
pages using programming tools.

Hey, it’s a free country, but to my mind I think there’s a useful
distinction to be made between web coding and web development:

Web coding is the pure programming part of creating a web page,
particularly using JavaScript on the front end and PHP on the back
end.
Web development is the complete web page creation package, from
building a page with HTML tags, to formatting the page with CSS,
to storing data on the back end with MySQL, to accessing that data
with PHP, to bridging the front and back ends using JavaScript.

However you look at the two terms, this book teaches you everything
you need to know to become both a web coder and a web developer.

Chapter 2
Setting Up Your Web
Development Home

IN THIS CHAPTER
 Understanding the need for a web development environment
 Gathering the tools you need for a local development setup
 Installing a local web development environment on a Windows

PC
 Installing a local web development environment on a Mac
 Learning what to look for in a good text editor

He is happiest, be he king or peasant, who finds peace in his home.

— JOHANN WOLFGANG VON GOETHE
One of the truly amazing things about web development is that, with just
a few exceptions — such as images, media files, and server databases —
all you ever work with are basic text files. But surely all the structure
you add with HTML tags requires some obscure and complex file type?
No way, José: It’s text all the way down. What about all that formatting
stuff associated with CSS? Nope: nothing but text. PHP and JavaScript?
Text and, again, text.

What this text-only landscape means is that you don’t need any
highfalutin, high-priced software to develop for the web. A humble text
editor is all you require to dip a toe or two in the web coding waters.

But what if you want to get more than your feet wet in web coding?
What if you want to dive in, swim around, perhaps do a little snorkeling?
Ah, then you need to take things up a notch or three and set up a proper
web development environment on your computer. Doing so will give

you everything you need to build, test, and refine your web development
projects. In this chapter, you get your web coding adventure off to a
rousing start by exploring how to set up a complete web development
environment on your Windows PC or Mac.

What Is a Local Web Development
Environment?

In programming circles, an integrated development environment (IDE) is
a collection of software programs that make it easy and efficient to write
code. Most development environments are tailored to a particular
programming language and come with tools for editing, testing, and
compiling code (that is, converting the code to its final form as an
application).

In the web coding game, we don’t have IDEs, per se, but we do have a
similar beast called a local web development environment, which is also
a collection of software. It usually includes the following:

A web server
A relational database management system (RDBMS) to run on the
web server
A server-side programming language
An interface for controlling (starting, stopping, and so on) the web
server
An interface for accessing and manipulating the RDBMS

The key point to grok here is that this is a “local” web development
environment, which means it gets installed on your PC or Mac. This
enables you to build and test your web development projects right on
your computer. You don’t need a web hosting service or even an internet
connection. Everything runs conveniently on your computer, so you can
concentrate on coding and leave the deployment of the site until you’re
ready.

Do You Need a Local Web
Development Environment?

Okay, if it’s possible to use a simple text editor to develop web pages,
why not do just that? After all, every Windows PC and Mac in existence
comes with a pre-installed text editor, and lots of free third-party text
editors are ripe for downloading, so why bother installing the software
for a local web development environment?

To be perfectly honest, I’m not going to stand here and tell you that a
local web development setup is a must. Certainly, if all you’re doing for
now is getting started with a few static web pages built using HTML,
CSS, and JavaScript, you don’t yet need access to the back end.
Similarly, if you are building websites and web apps for your own use
and already have a web host that gives you access to MySQL and PHP,
you can definitely get away with using just your trusty text editor.

However, two major exceptions pretty much require you to build your
web stuff locally:

You’re building a website or app for someone else and you don’t
have access to their web server.
You’re building a new version of an existing website or app, which
means you don’t want to mess with the production code while
tinkering (and therefore making mistakes) with the new code.

That said, there’s also something undeniably cool about having a big-
time web server purring away in your computer's background. So, even
if you don’t think you’ll need a full-blown web development
environment in the short term, think about installing one anyway, if only
so you can say you’re “running Apache 2.4 locally” at your next cocktail
party.

Setting Up the XAMPP for Windows
Development Environment

If you’re running Windows, I highly recommend the web development
environment XAMPP for Windows, which in its most recent version (at
least as I write this in late-2023) requires Windows Vista or later.
XAMPP for Windows is loaded with dozens of features, but for our
needs the following are the most important:

Apache: An open-source web server that runs about half of all the
websites on Earth
MariaDB: An open-source server database that is fully compatible
with MySQL (discussed in Book 1, Chapter 1)
PHP: The server-side programming language that I talk about briefly
in Book 1, Chapter 1
phpMyAdmin: An interface that enables you to access and
manipulate MariaDB databases

So, all this high-end software requires big bucks, right? Nope. XAMPP
for Windows is free.

To get started, head to the Apache Friends website at
www.apachefriends.org and download XAMPP for Windows. Be sure
to get the most recent version.

Installing XAMPP for Windows
Once the download is complete, follow these steps to install XAMPP for
Windows:

1. Open the Downloads folder and then launch the installation file
that you downloaded.
The download is an executable file, so you can double-click it to get
the installation off the ground.

https://www.apachefriends.org/

2. Enter your User Account Control (UAC) credentials to allow the
install.
If you’re the administrator of your PC, click Yes. Otherwise, you
need to enter the username and password of the PC’s administrator
account.

3. When XAMPP displays a warning about installing with UAC
activated, click OK.
This oddly worded warning means that if you install XAMPP in the
default folder (usually C:\Program Files), it might have problems
running normally because UAC imposes restrictions on that folder.
You can ignore this because, in Step 6, I show you how to install
XAMPP in a different folder that doesn't suffer from this problem.

4. When the XAMPP Setup Wizard appears, click Next.
5. In the Select Components dialog box, shown in Figure 2-1,

deselect the check box beside any component you don’t want
installed, and then click Next.
For a basic install, you only need Apache, MySQL, PHP, and
phpMyAdmin. If your PC is running low on disk space, consider not
installing the other components. If you’re rich in disk space, go
ahead and install everything because, hey, after all of this you might
be inspired to learn Perl (which is another server-side programming
language).

FIGURE 2-1: Use this Setup Wizard dialog box to deselect the check box beside
any component you don’t want installed.

6. In the Installation Folder dialog box, type the location where you
want XAMPP installed, then click Next.
Be sure to avoid the folders C:\Program Files and C:\Program
Files (x86), for the reason I describe in Step 3. Most folks create a
xampp folder in C:\ and install everything there (as shown in Figure
2-2).

FIGURE 2-2: To install XAMPP, use a subfolder in the main C:\ folder (such as
C:\xampp).

7. When the Setup Wizard asks what language you want to use,
choose a language and then click Next.

8. Click Next to begin the installation.
9. If you encounter a Windows Security dialog box, click Show

More. Select the Private Networks check box and deselect the
Public Networks check box, as shown in Figure 2-3, and then
click Allow.

 However, just because you select the Private Networks check
box, it doesn’t mean that people on your network can access (much
less mess with) your local web server. XAMPP for Windows is
configured out of the box to be accessible only from the computer on
which it’s installed.

FIGURE 2-3: If the Windows Security dialog box shows up, be sure to allow
Apache to communicate on your private network but not on any public networks.

10. When the install is complete, deselect the Do You Want to Start
the Control Panel Now check box.
I talk about the correct way to start the Control Panel in the next
section.

11. Click Finish.

Running the XAMPP for Windows Control Panel

The XAMPP Control Panel enables you to start, stop, and configure the
XAMPP apps, particularly the Apache web server and the MySQL
database system. For best results, you should start the program with
administrator privileges, which you can do by following these steps:

1. Click Start.
2. In the All Apps list, find and open the XAMPP folder.

Depending on your version of Windows, you might have to click All
Apps to get to the All Apps list.

3. Right-click XAMPP Control Panel, click More, and then click
Run as Administrator.
Depending on your version of Windows, you might not have to click
More to get to the Run as Administrator command.
The User Account Control dialog appears.

4. If you’re the administrator of your PC, click Yes. Otherwise, you
need to enter the username and password of the PC’s
administrator account.
The XAMPP Control Panel appears, as shown in Figure 2-4.

FIGURE 2-4: You use the XAMPP Control Panel to control and configure apps such as
Apache and MySQL.

To start an app, click the corresponding Start button. That button name
changes to Stop, meaning you can later stop the service by clicking its
Stop button.

 You’ll always want the Apache and MySQL apps running, so
you can save a bit of time by having the XAMPP Control Panel
launch these two apps automatically when you open the program.
Click the Config button near the upper-right corner of the XAMPP
Control Panel window, select the Apache and MySQL check boxes,
and then click Save.

 If when you start an app you run into a Windows Security Alert
dialog box similar to the one shown earlier in Figure 2-3, click

Show More, select the Private Networks check box, deselect the
Public Networks check box, and then click Allow Access.

Accessing your local web server
With XAMPP for Windows installed and Apache up and running,
congratulations are in order: You have a web server running on your PC!
That’s great, but how do you access your shiny, new web server? There
are two ways, depending on what you want to do:

Add files and folders to the web server: Place the files and folders
in the htdocs subfolder of your main XAMPP install folder. For
example, if you installed XAMPP to C:\xampp, your web server's
root folder will be C:\xampp\htdocs.

View the files and folders on the server: Open your favorite web
browser and navigate to the http://localhost address (or to
127.0.0.1, which gets you to the same place). If you have the
XAMPP Control Panel open, you can also click the Apache app's
Admin button.

By default, your local website is configured to automatically redirect
http://localhost to http://localhost/dashboard/, shown in Figure
2-5, which gives you access to several XAMPP tools.

You can use the following links, which appear in the page header:

Apache Friends: Returns you to the main Dashboard page.
FAQs: Displays a list of XAMPP frequently asked questions.
How-To Guides: Displays a list of links to step-by-step guides for a
number of XAMPP for Windows tasks.
PHPInfo: Displays a for-geeks-only page of information about the
version of PHP that you have installed.

FIGURE 2-5: The http://localhost/dashboard/ address gives you access to a few
XAMPP tools.

phpMyAdmin: Opens the phpMyAdmin tool, which lets you create
and manipulate MariaDB/MySQL databases. You can open
phpMyAdmin also by navigating directly to
http://localhost/phpmyadmin/, or in the XAMPP Control Panel,
by clicking the MySQL app's Admin button. However you get there,
just be sure to have the MySQL app running before you open
phpMyAdmin.

Setting Up the XAMPP for OS X
Development Environment

If you’ll be doing your web work on a Mac, I recommend the web
development environment XAMPP for OS X (yep, the name uses OS X
instead of macOS), which in its most recent version (at least as I write
this in mid-2023) requires OS X Snow Leopard (10.6) or later. XAMPP
for OS X is packed with programs and features, but you’ll probably only
concern yourself with the following:

Apache: An open-source web server that runs about half of all the
websites on Earth

MariaDB: An open-source server database fully compatible with
MySQL (discussed in Book 1, Chapter 1)
PHP: The server-side programming language that I mention in Book
1, Chapter 1
phpMyAdmin: An interface that enables you to access and work
with MariaDB databases

The best news of all is XAMPP for OS X is completely free. Nice! To
get the show on the road, surf to the Apache Friends website at
www.apachefriends.org, and then download the most recent version of
XAMPP for OS X.

Installing XAMPP for OS X
Once you've downloaded XAMPP for OS X, follow these steps to install
it:

1. In Finder, double-click the installation file that you downloaded
to open the XAMPP installer window.

2. Double-click the XAMPP icon.
3. If macOS displays a warning that “the developer cannot be

verified,” you need to do the following to get back on track:
a. Click Cancel.
b. Open System Settings and click Privacy & Security.
c. Click the Open Anyway button.
d. Enter your Mac administrator credentials, and then click the

Modify Settings button.
e. In Finder, double-click the XAMPP icon you downloaded

earlier to restart the installer.
f. When macOS warns you once again that “the developer

cannot be verified,” say “It’s cool, bro” and click Open.
4. Enter your macOS administrator password and then click OK.
5. When the XAMPP Setup Wizard appears, click Next.

https://www.apachefriends.org/

6. In the Select Components dialog, deselect the XAMPP Developer
Files check box, as shown in Figure 2-6, and then click Next.
The developer files might sound like they’re right up your alley, but
they’re for people who want to add to or modify the code for
XAMPP itself.

7. In the Installation Directory dialog, click Next.
8. Click Next to launch the installation.
9. If macOS asks whether you want the application “httpd” (that

would be the Apache web server) to accept incoming network
connections, be sure to click Allow.
Otherwise, your web server won’t work.

FIGURE 2-6: In the Setup wizard dialog, deselect the check box beside XAMPP
Developer Files.

10. When the install is complete, click Finish.

If you want to head right into XAMPP Manager, leave the Launch
XAMPP check box selected.

 What about the security of your local web server? Fortunately,
that’s not an issue because people on your network can’t access
your web server. XAMPP is configured by default to be accessible
only from the Mac on which it’s installed.

Running XAMPP Application Manager
XAMPP Application Manager enables you to start, stop, and configure
the XAMPP servers, particularly the Apache web server and the MySQL
database system. To launch XAMPP Application Manager, you have two
choices:

If you still have the final Setup wizard dialog onscreen, leave the
Launch XAMPP check box selected and click Finish.
In Finder, open the Applications folder, open the XAMPP folder, and
then double-click Manager-OSX.

XAMPP Application Manager appears. To work with the XAMPP
servers, click the Manage Servers tab, shown in Figure 2-7.

FIGURE 2-7: You use the XAMPP control panel to control and configure services such as
Apache and MySQL.

In the Manage Servers tab, you can perform the following actions:

Start a server. Click the server and then click Start.
Start all the servers. Click Start All.
Restart a server. Click the server and then click Restart.
Restart all the servers. Click Restart All.
Stop a server. Click the server and then click Stop.
Stop all the servers. Click Stop All.

Accessing your local web server
With XAMPP for OS X installed and Apache up and running, it’s time
for high-fives all around because you have a web server running on your
Mac! That’s awesome, but how do you access your web server? There
are two ways, depending on what you want to do:

Add files and folders to the web server: Place the files and folders
in the htdocs subfolder of your main XAMPP install folder. To get
there, open Applications, open XAMPP, and then double-click
htdocs. Alternatively, if you have XAMPP Application Manager
open, you can click the Welcome tab, click Open Application Folder,
and then open htdocs.

View the files and folders on the server: Open your favorite web
browser and navigate to the http://localhost address (or to
http://127.0.0.1, which gets you to the same place). Alternatively,
if you have XAMPP Application Manager running, you can click the
Welcome tab and then click Go To Application.

FIGURE 2-8: The http://localhost/dashboard/ address gives you access to a few XAMPP
for OS X features.

By default, your local website is configured to automatically redirect
http://localhost to http://localhost/dashboard/, shown in Figure
2-8, which gives you access to several XAMPP tools.

You can use the following links in the page header:

Apache Friends: Returns you to the main Dashboard page.
FAQs: Displays a list of XAMPP frequently asked questions.
How-To Guides: Displays a list of links to step-by-step guides for a
number of XAMPP for OS X tasks.

PHPInfo: Displays a for-geeks-only page of information about the
version of PHP that you have installed.
phpMyAdmin: Opens the phpMyAdmin tool, which lets you create
and manipulate MariaDB/MySQL databases. You can also open
phpMyAdmin by navigating directly to
http://localhost/phpmyadmin/. Either way, make sure you have
the MySQL Database server running before you open phpMyAdmin.

Choosing Your Text Editor
I mention at the beginning of this chapter that all you need to develop
web pages is a text editor. However, saying that all you need to code is a
text editor is like saying that all you need to live is food: It's certainly
true, but more than a little short on specifics. After all, to a large extent,
the quality of your life depends on the food you eat. If you survive on
nothing but bread and water, well, surviving is all you're doing. What
you really need is a balanced diet that supplies all the nutrients your
body needs. And pie.

The bread-and-water version of a text editor is the barebones program
that came with your computer: Notepad if you run Windows, or TextEdit
if you have a Mac. You can survive as a web developer using these
programs, but that’s not living, if you ask me. You need the editing
equivalent of vitamins and minerals (and, yes, pie) if you want to
flourish as a web coder. These nutrients are the features and tools that
are crucial to being an efficient and organized developer:

Syntax highlighting:Syntax refers to the arrangement of characters
and symbols that create correct programming code, and syntax
highlighting is an editing feature that color-codes certain syntax
elements for easier reading. For example, while regular text might
appear black, all HTML tags might be shown in blue and CSS
properties might appear red. The best text editors let you choose the
syntax colors, either by offering prefab themes or by letting you
apply custom colors.

Line numbers: It might seem like a small thing, but having a text
editor that numbers each line, as shown in Figure 2-9, can be a major
timesaver. When the web browser alerts you to an error in your code
(refer to Book 5, Chapter 2), it gives you an error message and,
crucially, the line number of the error. This enables you to quickly
locate the culprit and (fingers crossed) fix the problem pronto.
Code previews: A good text editor will let you view a preview of
how your code will look in a web browser. The preview might
appear in the same window as your code or in a separate window,
and it should update automatically as you modify and save your
code.
Code completion: When you start typing something, this handy
feature displays a list of possible code items that complete your
typing. You can then select the one you want and press Tab or Enter
to add it to your code without having to type the whole thing.
Spell checking: You always want to put your best web foot forward,
which in part means posting pages that don’t contain typos or
misspellings. A good text editor has a built-in spell checker that will
catch your gaffes before you put your pages on the web.

FIGURE 2-9: Line numbers, such as the ones shown here down the left side of the
window, are a crucial text editor feature.

Text processing: The best text editors offer a selection of text
processing features, such as automatic indentation of code blocks,
converting tabs to spaces and vice versa, shifting chunks of code
right or left, removing unneeded spaces at the end of lines, and
hiding blocks of code.

The good news is that there’s no shortage of text editors that support all
these features and many more. That’s also the bad news because it
means you have a huge range of programs to choose from. To help you
get started, here, in alphabetical order, are a few editors to take for test
drives:

Brackets (https://brackets.io/): Available for Windows and
Mac. Also free!

https://brackets.io/

Notepad++ (https://notepad-plus-plus.org/): Available for
Windows only. Another freebie.
Nova (https://nova.app): Available for Mac only. $99, but a free
trial is available.
Sublime Text (www.sublimetext.com): Available for both Windows
and Mac. $99, but a free trial is available.
Visual Studio Code (https://code.visualstudio.com/):
Available for Windows and Mac. Why, yes, this one is free, as well.

https://notepad-plus-plus.org/
https://nova.app/
http://www.sublimetext.com/
https://code.visualstudio.com/

Chapter 3
Finding and Setting Up a Web

Host
IN THIS CHAPTER

 Understanding web hosting providers
 Examining the various choices for hosting your site
 Choosing the host that’s right for you
 Getting comfortable with your new web home
 Getting your site files to your web host

You will end up with better software by releasing as early as practically
possible, and then spending the rest of your time iterating rapidly based
on real-world feedback. So trust me on this one: Even if version 1 sucks,
ship it anyway.

— JEFF ATTWOOD
You build your web pages from the comfort of your Mac or PC, and if
you have a local development environment running (as I describe in
Book 1, Chapter 2), you can even use your computer to preview how
your web pages appear before you put them online.

That’s fine and dandy, but I think you’ll agree that the whole point of
building a web page is to, you know, put it on the web! First, you need to
subject your code to the wilds of the wider web to make sure it works
out there. Even if it seems to be running like a champ on your local
server, you can’t give it the seal of approval until you’ve proven that it
runs champlike on a remote server. Second, once your code is ready, the
only way the public can appreciate your handiwork is for you to get it
out where they can access it.

Whether you’re testing or shipping your code, you need somewhere to
put it, and that’s what this chapter is about. Here you explore the wide
and sometimes wacky world of web hosts. You delve into what they
offer, investigate ways to choose a good one, and then take a tour of your
web home away from home.

Understanding Web Hosting
Providers

A common question posed by web development newcomers is “Where
the heck do I put my web page when it’s done?” If you’ve asked that
question, you’re doing okay because it means you’re clued in to
something crucial: Just because you’ve created a web page and you have
an internet connection doesn’t mean your site is automatically part of the
web.

After all, people on the web have no way of getting to your computer.
Even if you’re working with a local web development environment
(which I discuss in Book 1, Chapter 2), you’re working in splendid
isolation because no one either on your network or on the internet can
access that environment.

In other words, your computer isn’t set up to hand out documents (such
as web pages) to remote visitors who ask for them. Computers that can
do this are called servers (because they serve stuff out to the web), and
computers that specialize in distributing web pages are called web
servers. So, your web page isn’t on the web until you store it on a remote
web server. Because this computer is, in effect, playing host to your
pages, such machines are also called web hosts. Companies that run
these web hosts are called web hosting providers.

Now, just how do you go about finding a web host? Well, the answer to
that depends on a bunch of factors, including the type of site you have,
how you get connected to the internet in the first place, and how much
money (if any) you’re willing to fork out for the privilege. In the end,
you have three choices:

Your existing internet provider
A free hosting provider
A commercial hosting provider

 In the rest of this chapter, I assume that you want a web host that
enables you not only to store HTML, CSS, and JavaScript files but
also to work with MySQL data and PHP scripts on the server. If
you’ll be creating a static site that doesn’t require a full-fledged
server, you should consider some excellent (and free!) hosting
alternatives. See Book 6, Chapter 4 to learn how to create and
deploy static web pages.

Using your existing internet provider
If you access the internet via a corporate or educational network, your
institution might have its own web server you can use. If you get online
via an internet service provider (ISP), surf to the ISP’s support pages,
which should tell you whether the company has a web server available.
Almost all ISPs provide space so their customers can put up personal
pages free of charge.

Finding a free hosting provider
If cash is in short supply, a few hosting providers will bring your website
in from the cold out of the goodness of their hearts. In some cases, these
services are open only to specific groups such as students, artists, and
nonprofit organizations. However, plenty of providers put up personal
sites free of charge.

What’s the catch? Well, there are almost always restrictions both on how
much data you can store and on the type of data you can store (no ads,
no dirty pictures, and so on). You might also be required to display some
kind of banner advertisement for the hosting provider on your pages.

Signing up with a commercial hosting provider

For personal and business-related websites, many web artisans end up
renting a chunk of a web server from a commercial hosting provider.
You normally hand over a setup fee to get your account going and then
pay a monthly fee.

Why shell out all that cash when so many free sites are lying around?
Because, as with most things in life, you get what you pay for. By
paying for your host, you generally get more features, better service, and
fewer annoyances (such as the ads that some free sites have you
display).

A Buyer’s Guide to Web Hosting
Unfortunately, choosing a web host isn’t as straightforward as you might
like it to be. For one thing, hundreds of hosts are clamoring for your
business; for another, the pitches and come-ons your average web host
employs are strewn with jargon and technical terms. I can’t reduce the
number of web hosts, but I can help you understand what those hosts are
yammering about. Here’s a list of the terms you’re most likely to come
across when researching web hosts:

Storage space: This term refers to the amount of room allotted to
you on the host’s web server to store your files. The amount of
acreage you get determines the amount of data you can store. For
example, if you get a 1MB (1 megabyte) limit, you can’t store more
than 1MB worth of files on the server. HTML files don’t take up
much real estate, but large graphics sure do, so you need to watch
your limit. For example, you could probably store about 200 pages in
1MB of storage (assuming about 5KB per page), but only about 20
images (assuming about 50KB per image). Generally, the more you
pay for a host, the more storage space you get.
Bandwidth: The bandwidth is a measure of how much of your data
the server serves. For example, suppose the HTML file for your page
is 1KB (1 kilobyte) and the graphics associated with the page
consume 9KB. If someone accesses your page, the server ships out a
total of 10KB; if ten people access the page (either at the same time

or over a period of time), the total bandwidth is 100KB. Most hosts
give you a bandwidth limit (or cap), which is most often a certain
number of megabytes or gigabytes per month. (A gigabyte is equal to
about 1,000 megabytes.) Again, the more you pay, the greater the
bandwidth you get.

 If you exceed your bandwidth limit, users will usually still
be able to get to your pages (although some hosts shut down access
to an offending site). However, almost all web hosts charge you an
extra fee for exceeding your bandwidth, so check this out before
signing up. The usual penalty is a set fee per every megabyte or
gigabyte over your cap.
Domain name: The domain name is a general internet address, such
as wiley.com or whitehouse.gov. A domain name tends to be easier
to remember than the long-winded addresses most web hosts supply
you by default, so they’re a popular feature. Two types of domain
names are available:

A regular domain name (such as yourdomain.com or
yourdomain.org)

A subdomain name (such as
yourdomain.webhostdomain.com)

To get a regular domain, you either need to use one of the many
domain registration services such as GoDaddy (www.godaddy.com) or
Register.com(www.register.com). A more convenient route is to
choose a web hosting provider that will do this for you. Either way, it
will usually cost you $35 per year (although some hosts offer cheap
domains as a loss leader and recoup their costs with hosting fees;
also, discount domain registrars such as GoDaddy offer domains for
as little as $9.99 per year (although that price might only apply to the
first year, so buyer beware). If you go the direct route, almost all web
hosts will host your domain, which means that people who use your
domain name will get directed to your website on the host’s web

http://wiley.com/
http://whitehouse.gov/
https://www.godaddy.com/
http://register.com/
https://www.register.com/

server. For this to work, you must tweak the domain settings on the
registrar. This task usually involves changing the DNS servers
associated with the domain so that they point to the web host’s
domain name servers. Your web host will give you instructions on
how to do this.
With a subdomain name, webhostdomain.com is the domain name of
the web hosting company, and it simply tacks on whatever name you
want at the beginning. Many web hosts will provide you with this
type of domain, often for free.
Email addresses: Most hosts offer you one or more email addresses
along with your web space. The more you pay, the more mailboxes
you get. Some hosts offer email forwarding, which enables you to
have messages sent to your web host address rerouted to some other
email address.
Shared server: If the host offers a shared server (or virtual server),
you'll be sharing the server with other websites — dozens or even
hundreds of them. The web host takes care of all the highly technical
server management chores, so all you have to do is maintain your
site. This option is by far the best (and cheapest) choice for
individuals or small business types.
Dedicated server: With a dedicated server, you get your own server
computer on the host. That may sound like a good thing, but it’s
usually up to you to manage the server, which can be a dauntingly
technical task. Also, dedicated servers are much more expensive than
shared servers.
Operating system: You usually have two choices for the operating
system on the web server, Unix (or Linux) and Windows Server.
Unix systems have the reputation of being very reliable and fast,
even under heavy traffic loads, so they’re usually the best choice for
a shared server. Windows systems are a better choice for dedicated
servers because they’re easier to administer than their Unix cousins.
Note, too, that Unix servers are case sensitive in terms of file and
directory names, while Windows servers are not.

http://webhostdomain.com/

Databases: This term refers to the number and type of databases you
may create with your account. Unix systems usually offer MySQL
databases, whereas Windows servers offer SQL Server databases.
Administration interface: This is the host app that you use to
perform tasks on the server, such as uploading files or creating users.
Many hosts offer the excellent cPanel interface, and most Unix-
based systems offer the phpMyAdmin app for managing your
MySQL data.
Ad requirements: A few free web hosts require you to display some
type of advertising on your pages, such as a banner ad across the top
of the page, a pop-up ad that appears each time a person accesses
your pages, or a watermark ad, usually a semitransparent logo that
hovers over your page. Fortunately, free hosts that insist on ads are
rare these days, so you can usually find a host without this
requirement (your visitors will thank you!).
Uptime: Uptime refers to the percentage of time the host’s server is
up and serving. There’s no such thing as 100 percent uptime because
all servers require maintenance and upgrades at some point.
However, the best hosts have uptime numbers over 99 percent. (If a
host doesn’t advertise its uptime, it’s probably because it’s very low.
Be sure to ask before committing yourself.)
Tech support: If you have problems setting up or accessing your
site, you want to know that help — in the form of tech support — is
just around the corner. The best hosts offer 24/7 tech support, which
means you can contact the company — by chat, phone, or email —
24 hours a day, 7 days a week.
FTP support: You usually use the internet’s FTP service to transfer
your files from your computer to the web host. If a host offers FTP
access (some hosts have their own method for transferring files), be
sure you can use it any time you want and there are no restrictions on
the amount of data you can transfer at one time.
Website statistics: Website statistics will tell you things such as how
many people have visited your site, which pages are the most
popular, how much bandwidth your site is consuming, and which

browsers and browser versions surfers are using. Most decent hosts
offer a ready-made stats package, but the best ones also give you
access to the raw log files so you can play with the data yourself.
Ecommerce: Some hosts offer a service that lets you set up a web
store so you can sell stuff on your site. This service usually includes
a shopping script, access to credit card authorization and other
payment systems, and the capability to set up a secure connection.
You usually get this feature in only the more expensive hosting
packages, and you’ll most often have to pay a setup fee to get your
store built.
Scalability: This term refers to the host's capability to modify your
site’s features as required. For example, if your site becomes popular,
you might need to increase your bandwidth limit. If the host is
scalable, it can easily change your limit (or any other feature of your
site).

Finding a Web Host
Okay, you’re ready to start researching the hosts to find one that suits
your web style. As I mention earlier, there are hundreds, perhaps even
thousands, of hosts, so how is a body supposed to whittle them down to
some kind of short list? Here are some ideas:

Ask your friends and colleagues. The best way to find a good host
is that old standby, word of mouth. If someone you trust says a host
is good, chances are you won’t be disappointed — assuming you and
your pal have similar hosting needs. If you want a full-blown
ecommerce site, don’t solicit recommendations from someone who
has only a humble home page.
Solicit host reviews from experts. Ask existing webmasters and
other people “in the know” about which hosts they recommend or
have heard good things about. A good place to find such experts is
Web Hosting Talk (www.webhostingtalk.com), a collection of
forums related to web hosting.

https://www.webhostingtalk.com/

Contact web host customers. Visit sites that use a particular web
host and send an email message to the webmaster asking what they
think of the host’s service.
Peruse the lists of web hosts. A number of sites track and compare
web hosts, so they’re an easy way to get in a lot of research. Careful,
though, because a lot of sketchy lists are only trying to make a buck
by getting you to click ads. Here are some reputable places to start:

CNET Web Hosting Solutions: www.cnet.com/web-hosting

PC Magazine Web Site Hosting Services Reviews:
www.pcmag.com/reviews/web-hosting-services

Review Hell: www.reviewhell.com

Review Signal Web Hosting Reviews:
https://reviewsignal.com/webhosting

Finding Your Way around Your New
Web Home

After you sign up with a web hosting provider and your account is
established, the web administrator creates two things for you: a directory
on the server that you can use to store your website files, and your very
own web address. (This is true also if you’re using a web server
associated with your corporate or school network.) The directory —
which is known in the biz as your root directory — usually takes one of
the following forms:

/yourname/

/home/yourname/

/yourname/public_html/

In each case, yourname is the login name (or username) the provider
assigns to you, or it may be your domain name (with or without the .com
part). Remember, your root directory is a slice of the host's web server,
and this slice is yours to mess around with however you like. Usually,
you can do all or most of the following to the root:

https://www.cnet.com/web-hosting/
https://www.pcmag.com/reviews/web-hosting-services
https://www.reviewhell.com/
https://reviewsignal.com/webhosting

Add files to the directory.
Add subdirectories to the directory.
Move or copy files from one directory to another.
Rename files or directories.
Delete files from the directory.

Your web address normally takes one of the following shapes:
https://provider/yourname/

https://yourname.provider/

https://www.yourname.com/

Here, provider is the host name of your provider (for example,
www.hostcompany.com or just hostcompany.com), and yourname is your
login name or domain name. Here are some examples:

https://www.hostcompany.com/mywebsite/

https://mywebsite.hostcompany.com/

https://www.mywebsite.com/

Your directory and your web address
A direct and important relationship exists between your server directory
and your address. That is, your address points to your directory and
enables other people to view the files you store in that directory. For
example, suppose I decide to store a file named thingamajig.html in
my directory and my main address is
https://mywebsite.hostcompany.com/. This means someone else can
view that page by typing the following URL into a web browser:

https://mywebsite.hostcompany.com/thingamajig.html

Similarly, suppose I create a subdirectory named stuff and use it to
store a file named index.html. A surfer can view that file by convincing
a web browser to head for the following URL:

https://mywebsite.hostcompany.com/stuff/index.html

In other words, folks can surf to your files and directories by
strategically tacking on the appropriate filenames and directory names

https://www.hostcompany.com/
https://www.hostcompany.com/
https://https//mywebsite.hostcompany.com/

after your main web address.

 For most web servers, the default file in each directory is
index.html, where default means it’s the file that gets served if no
filename is specified. For example, the following addresses will
both display the index.html file:

https://mywebsite.hostcompany.com/stuff/index.html

https://mywebsite.hostcompany.com/stuff/

Making your hard disk mirror your web home
As a web developer, one of the key ways to keep your projects organized
is to set up your directories on your computer, and then mirror those
directories on your web host. Believe me, this will make your testing and
uploading duties immeasurably easier.

 Copying a file from your computer to a remote location (such as
your web host's server) is known in the file transfer trade as
uploading.

This process begins at the root. On the web host, you already have a root
directory assigned to you by the hosting provider, so now you need to
designate a folder on your computer to be the root mirror. If you’re using
the XAMPP web development environment (refer to Book 1, Chapter 2),
the XAMPP installation’s htdocs subfolder is perfect as your local root.
Otherwise, choose or create a folder on your computer to use as the local
root.

What you do from here depends on the number of web development
projects you’re going to build, and the number of files in each project:

A single web development project consisting of just a few files: In
this case, just put all the files into the root directory.

A single web development project consisting of many files: The
more likely scenario for a typical web development project is to have
multiple HTML, CSS, JavaScript, and PHP files, plus lots of
ancillary files such as images and fonts. Although it’s okay to place
all your HTML files in the root directory, do yourself a favor and
organize all your other files into subfolders by file type: a css
subfolder for CSS files, a js subfolder for JavaScript files, and so on.

Multiple web development projects: As a web developer, you'll
almost certainly create tons of web projects, so it’s crucial to
organize them. The ideal way to do this is to create a separate root
subdirectory for each project. Then within each of these
subdirectories, create sub-subdirectories for file types such as CSS,
JavaScript, images, and so on.

To help you understand why mirroring your local and remote directory
structures is so useful, suppose you set up a subfolder on your computer
named graphics that you use to store your image files. To insert into
your page a file named mydog.jpg from that folder, you'd use the
following reference:

graphics/mydog.jpg

When you send your HTML file to the server and then display the file in
a browser, it looks for mydog.jpg in the graphics subdirectory. If you
don't have such a subdirectory — either you didn’t create it or you used
a different name, such as images — the browser won’t find mydog.jpg
and your image won't appear. However, if you match the subdirectories
on your web server with the subfolders on your computer, your page will
work properly without modifications both at home and on the web.

 One common faux pas beginning web developers make is to
include the local drive and all the folder names when referencing a
file. Here’s an example:

C:\xampp\htdocs\graphics\mydog.jpg

This image will show up just fine when it’s viewed from your computer.
But it will fail miserably when you upload it to the server and view it on
the web because the C:\xampp\htdocs\ part exists only on your
computer.

 The Unix (or Linux) computers that play host to the vast
majority of web servers are downright finicky when it comes to
uppercase and lowercase letters in file and directory names. It’s
crucial that you check the file references in your code to be sure the
file and directory names you use match the combination of
uppercase and lowercase letters used on your server. For example,
suppose you have a CSS file on your server that’s named
styles.css. If your HTML references that file as, say, STYLES.CSS,
the server won't find the file and your styles won’t get applied.

Uploading your site files
Once your web page or site is ready for its debut, it’s time to get your
files to your host’s web server. If the server is on your company or
school network, you send the files over the network to the directory set
up by your system administrator. Otherwise, you upload the files to the
root directory created for you on the hosting provider’s web server.

How you go about uploading your site files depends on the web host, but
here are the four most common scenarios:

Use an FTP program. It’s a rare web host that doesn’t offer support
for the File Transfer Protocol (FTP, for short), which is the internet’s
most popular method for transferring files from here to there. To use
FTP, you usually need to get a piece of software called an FTP
client, which enables you to connect to your web host’s FTP server
(your host can provide you with instructions for this) and offers an
interface for standard file tasks, such as navigating and creating
folders, uploading the files, and deleting and renaming files. Popular
Windows clients are CuteFTP (www.globalscape.com/cuteftp) and

https://www.globalscape.com/cuteftp

Cyberduck (https://cyberduck.io). For the Mac, try Transmit
(https://panic.com/transmit) or FileZilla (https://filezilla-
project.org).

Use your text editor’s file upload feature. Some text editors come
with an FTP client built-in, so you can edit a file and then
immediately upload it with a single command. The Nova text editor
(https://nova.app) supports this too-handy-for-words feature.

Use the File Manager feature of cPanel. I mention earlier that lots
of web hosts offer an administration tool called cPanel that offers an
interface for hosting tasks such as email and domain management.
cPanel also offers a file manager feature that you can use to upload
files and perform other file management chores.
Use the web host’s proprietary upload tool. For some reason, a
few web hosts offer only their own proprietary interface for
uploading and messing around with files and directories. Refer to
your host’s Help or Support page for instructions.

Making changes to your web files
What happens if you send a web development file to your web host and
then realize you’ve made a typing gaffe or spy a coding mistake? Or
what if you have more information to add to one of your web pages?
How do you make changes to the files you’ve already sent?

Well, here’s the short answer: You don’t. That’s right, after you’ve sent
your files, you never have to bother with them again. That doesn’t mean
you can never update your site, however. Instead, you make your
changes to the files that reside on your computer and then send these
revised files to your web host. These files replace the old files, and your
site is updated just like that.

 Be sure you send the updated file to the correct directory on the
server. Otherwise, you may overwrite a file that happens to have the
same name in some other directory.

https://cyberduck.io/
https://panic.com/transmit/
https://filezilla-project.org/
https://nova.app/

Book 2

Coding the Front End, Part 1:
HTML and CSS

Contents at a Glance
Chapter 1: Structuring the Page with HTML

Getting the Hang of HTML

Understanding Tag Attributes

Learning the Fundamental Structure of a Web Page

Some Notes on Structure versus Style

Applying the Basic Text Tags

Creating Links

Building Bulleted and Numbered Lists

Inserting Special Characters

Inserting Images

Carving Up the Page

Commenting Your HTML Code

Chapter 2: Styling the Page with CSS
Figuring Out Cascading Style Sheets

Getting the Hang of CSS Rules and Declarations

Adding Styles to a Page

Styling Page Text

Working with Colors

Getting to Know the Web Page Family

Using CSS Selectors

Revisiting the Cascade

Chapter 3: Sizing and Positioning Page Elements
Learning about the CSS Box Model

Styling Sizes

Adding Padding

Building Borders

Making Margins

Getting a Grip on Page Flow

Floating Elements

Positioning Elements

Chapter 4: Creating the Page Layout
What Is Page Layout?

Making Flexible Layouts with Flexbox

Shaping the Overall Page Layout with CSS Grid

Chapter 1
Structuring the Page with HTML
IN THIS CHAPTER

 Getting comfy with HTML
 Figuring out HTML tags and attributes
 Understanding the basic blueprint for all web pages
 Adding text, images, and links to your page
 Building bulleted and numbered lists

I am always fascinated by the structure of things; why do things work
this way and not that way.

— URSUS WEHRLI
When it comes to web development, it’s no exaggeration to say that the
one indispensable thing, the sine qua non for those of you who studied
Latin in school, is HTML. Absolutely everything else you make as a
web developer — your CSS rules, your JavaScript code, even your PHP
scripts — can’t hang its hat anywhere but on some HTML. These other
web development technologies don’t even make sense outside of an
HTML context.

So, in a sense, this chapter is the most important for you as a web coder
because all the rest of the book depends to a greater or lesser degree on
the HTML know-how found in the following pages. If that sounds
intimidating, not to worry: One of the great things about HTML is that
it’s not a huge topic, so you can get up to full HTML speed without a
massive investment of time and effort.

Because HTML is so important, you’ll be happy to know that I don’t
rush things. You’ll get a thorough grounding in all things HTML, and

when you’re done you’ll be more than ready to tackle the rest of your
web development education.

Getting the Hang of HTML
Building a web page from scratch may seem like a daunting task. It
doesn’t help that the codes you use to set up, configure, and format a
web page are called the Hypertext Markup Language (HTML for short),
a name that could only warm the cockles of a geek’s heart. Here’s a
mercifully brief review of each term:

Hypertext: An oblique reference to the links that are the defining
characteristic of web pages. In prehistoric times — that is, the 1980s
— tall-forehead types referred to any text that, when selected, takes
you to a different document, as hypertext.
Markup: Instructions that specify how the content of a web page
should be displayed in the web browser.
Language: The set of codes that make up all the markup
possibilities for a page.

But even though the name HTML is intimidating, the codes used by
HTML aren’t even close to being hard to learn. There are only a few of
them, and in many cases they even make sense!

At its most basic, HTML is nothing more than a collection of markup
codes — called tags — that specify the structure of your web page. In
HTML, structure is a rubbery concept that can refer to anything from the
entire page all the way down to a single word or even just a character or
two.

You can think of a tag as a kind of container. What types of things can it
contain? Mostly text, although lots of tags contain things like chunks of
the web page and even other tags.

Most tags use the following generic format:
<tag>content</tag>

What you have here are a couple of codes (the <tag> and </tag>
placeholders, above) that define a container. Most of these codes are
one- or two-letter abbreviations, but sometimes they're entire words. You
always surround these codes with angle brackets, <>, which tell the web
browser that it’s dealing with a chunk of HTML and not just some
random text.

The first of these codes — represented by the <tag> placeholder — is
called the start tag and marks the opening of the container; the second of
the codes — represented by the </tag> placeholder — is called the end
tag and marks the closing of the container. (Note the extra slash (/) that
appears in the end tag.)

In between you have content, which refers to whatever is contained in
the tag. For example, here’s a simple sentence that might appear in a
web page (check out bk02ch01/example01.html in this book’s example
files):

In this book, you learn that HTML is awesome.

Figure 1-1 shows how this might appear in a web browser.

FIGURE 1-1: The sample sentence as it appears in a web browser.

Ho hum, right? Suppose you want to punch this up a bit by emphasizing
awesome. In HTML, the tag for emphasis is , so you'd modify your
sentence like so:

In this book, you learn that HTML is awesome.

Note how I’ve surrounded the word awesome with and ? The
first is the start tag and it says to the browser, “Yo, Browser Boy!
You know the text that comes after this? Be a good fellow and treat it as
emphasized text.” This continues until the browser reaches the end tag
, which lets the browser know it's supposed to stop what it’s doing.

So the tells the browser, “Okay, okay, that’s enough with the
emphasis already!”

All web browsers display emphasized text in italics, so that’s how the
word now appears, as shown in Figure 1-2 (check out
bk02ch01/example02.html).

FIGURE 1-2: The sentence revised to italicize the word awesome.

There are tags for lots of other structures, including important text,
paragraphs, headings, page titles, links, and lists. HTML is just the
collection of all these tags.

 One of the most common mistakes rookie web weavers make is
to forget the slash (/) that identifies an end tag. If your page appears
wrong when you view it in a browser, check for a missing slash.
Also check for a backslash (\) instead of a slash, which is another
common error.

Understanding Tag Attributes
You'll often use tags straight up, but all tags are capable of being
modified in various ways. This change might be as simple as supplying a
unique identifier to the tag for use in a script or a style, or it might be a
way to change how the tag operates. Either way, you modify a tag by
adding one or more attributes to the start tag. Most attributes use the
following generic syntax:

<tag attribute="value">

Here, you replace attribute with the name of the attribute you want to
apply to the tag, and you replace value with the value you want to
assign the attribute.

For example, the <a> tag marks up text as a link. A link to what, you
ask? To whatever address you specify as the value of the href attribute
(which I explain in more detail later in the “Linking basics” section), as
demonstrated in the following example (bk02ch01/example03.html):

Be sure to stop by my home page.

As shown in Figure 1-3, the web browser converts the home page text
into a link that points to the address https://paulmcfedries.com/.
(Refer to the section “Creating Links,” later in this chapter, for more info
on the <a> tag.)

FIGURE 1-3: For the <a> tag, the href attribute specifies the link destination.

Learning the Fundamental
Structure of a Web Page

In this section, I show you the tags that serve as the basic blueprint you'll
use for all your web pages.

Your HTML files will always lead with the following tag:
<!DOCTYPE html>

This tag (it has no end tag) is the so-called doctype declaration, and it
has an eye-glazingly abstruse technical meaning that, happily, you can
safely ignore. All I'll say about it is that you have to include this tag at
the top of all your HTML files to make sure your pages render properly.

https://paulmcfedries.com/

(Also, I tend to write DOCTYPE in uppercase letters out of habit, but
writing it as doctype is perfectly legal.)

Next up you add the <html lang="en"> tag. This tag tells any web
browser that tries to read the file that it's dealing with a file that contains
HTML doodads. It also uses the lang attribute to specify the document's
language, which in this case is English.

Similarly, the last line in your document will always be the
corresponding end tag: </html>. You can think of this tag as the HTML
equivalent for “The End.” So, each of your web pages will include this
on the second line:

<html lang="en">

and this on the last line:
</html>

The next items serve to divide the page into two sections: the head and
the body. The head section is like an introduction to the page. Web
browsers use the head to glean various types of information about the
page. A number of items can appear in the head section, but the only one
that makes sense at this early stage is the title of the page, which I talk
about in the next section, “Giving your page a title.”

To define the head, add <head> and </head> tags immediately below the
<html> tag you typed earlier. So your web page should now appear like
this:

<!DOCTYPE html>

<html lang="en">

 <head>

 </head>

</html>

 Although technically it makes no difference if you enter your tag
names in uppercase or lowercase letters, the HTML powers-that-be
recommend HTML tags in lowercase letters, so that's the style I use
in this book, and I encourage you to do the same.

 Note that I indented the <head> and </head> tags a bit (by four
spaces). This indentation is good practice when HTML tags reside
within another HTML container because it makes your code easier
to read and easier to troubleshoot.

While you're in the head section, here’s an added head-scratcher:
<meta charset="utf-8">

You place this element between the <head> and </head> tags (indented
another four spaces for easier reading). It tells the web browser that your
web page uses the UTF-8 character set, which you can mostly ignore
except to know that UTF-8 contains almost every character (domestic
and foreign), punctuation mark, and symbol known to humankind.

The body section is where you enter the text and other fun stuff that the
browser will display. To define the body, place <body> and </body> tags
after the head section (that is, below the </head> tag):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body>

 </body>

</html>

 A common page error is to include two or more copies of these
basic tags, particularly the <body> tag. For best results, be sure you
use each of the four basic structural tags — <!DOCTYPE>, <html>,
<head>, and <body> — only one time on each page.

Giving your page a title
When you surf the web, you've probably noticed that your browser
displays some text in the current tab. That tab text is the web page title,
which is usually a short phrase that gives the page a name. You can give
your own web page a name by adding the <title> tag to the page's head
section.

To define a title, surround the title text with the <title> and </title>
tags. For example, if you want the title of your page to be “My Humble
Home Page,” enter it as follows:

<title>My Humble Home Page</title>

Note that you always place the title inside the head section, so your basic
HTML document now appears like this (bk02ch01/example04.html):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My Humble Home Page</title>

 </head>

 <body>

 </body>

</html>

Figure 1-4 shows this HTML file loaded into a web browser. Notice how
the title appears in the browser's tab bar.

FIGURE 1-4: The text you insert into the <title> tag shows up in the browser tab.

Here are a few things to keep in mind when thinking of a title for your
page:

Be sure your title describes what the page is all about.
Don’t make your title longer than 50 or 60 characters. Otherwise, the
browser might chop off the end because the tab doesn’t have enough
room to display it.
Use a title that makes sense when someone views it out of context.
For example, if someone really likes your page, that person might
add it to their list of favorites or bookmarks. The browser displays
the page title in the Favorites list, so it’s important that the title
makes sense when the person accesses their bookmarks later.
Don’t use cryptic or vague titles. Titling a page “Link #42” or “My
Web Page” might make sense to you, but your visitors will almost
certainly be scratching their heads.

Adding some text
Now it’s time to put some flesh on your web page’s bones by entering
the text you want to appear in the body of the page. For the most part,
you can type the text between the <body> and </body> tags, like this
(bk02ch01/example05.html):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My Humble Home Page</title>

 </head>

 <body>

 Hello HTML World!

 </body>

</html>

Figure 1-5 shows how a web browser displays this HTML.

FIGURE 1-5: Text you add to the page body appears in the browser's content window.

Before you start typing willy-nilly, however, you should know the
following:

You might think you can line things up and create some interesting
effects by stringing together two or more spaces. Ha! Web browsers
chew up all those extra spaces and spit them out into the nether
regions of cyberspace. Why? Well, the philosophy of the web is that
you can use only HTML tags to lay out a document. So a run of
multiple spaces (or whitespace, as it’s called) is ignored.
Tabs also fall under the rubric of whitespace. You can enter tabs all
day long, but the browser ignores them.
Browsers also like to ignore the carriage return. It might sound
reasonable to the likes of you and me that pressing Enter (or Return
on a Mac) starts a new paragraph, but that’s not so in the HTML
world.
If you want to separate two chunks of text, you have multiple ways
to go, but here are the two easiest:

For no space between the texts: Place a
 (for line break)
tag between the two bits of text.
For some breathing room between the texts: Surround each
chunk of text with the <p> and </p> (for paragraph) tags.

If HTML documents are just plain text, does that mean you're out of
luck if you need to use characters such as © and €? Luckily, no. For
the most part, you can just add these characters to your file.
However, HTML also has special codes for these kinds of characters.
I talk about them a bit later in this chapter in the “Inserting Special
Characters” section.
If, for some reason, you’re using a word processor instead of a text
editor, know that it won’t help to format your text using the
program’s built-in commands. The browser cheerfully ignores even
the most elaborate formatting jobs because browsers understand only
HTML (and CSS and JavaScript). And besides, a document with

formatting is, by definition, not a pure text file, so a browser might
bite the dust trying to load it.

Some Notes on Structure versus
Style

One of the key points of front-end web development is to separate the
structure of the web page from its styling. This makes the page faster to
build, easier to maintain, and more predictable across a range of
browsers and operating systems. HTML provides the structure side,
while CSS handles the styling.

That’s fine as far as it goes, but HTML performs its structural duties
with a couple of quirks you need to understand:

This isn’t your father’s idea of structure. That is, when you think
of the structure of a document, you probably think of larger chunks
such as articles, sections, and paragraphs. HTML does all that, but it
also deals with structure at the level of sentences, words, and even
characters.
HTML’s structures often come with some styling attached. Or, I
should say, all web browsers come with predefined styling that they
use when they render some HTML tags. Yes, I know I just said that
it’s best to separate structure and style. Think of it this way: When
you build a new deck using cedar, your completed deck has a natural
cedar appearance to it, but you’re free to apply a coat of varnish or
paint. HTML is the cedar, whereas CSS is the paint.

I mention these quirks because they can help answer some questions that
might arise as you work with HTML tags.

 Another key to understanding why HTML does what it does is
that much of HTML has been set up so that a web page is
understandable to an extent by software that analyzes the page. One
important example is a screen reader used by surfers with low
vision. If a screen reader can easily figure out the entire structure of
the page from its HTML tags, it can present the page properly to the
user. Similarly, software that seeks to index, read, or otherwise
analyze the page will be able to do its task successfully only if the
page’s HTML tags are a faithful representation of the page’s
intended structure.

Applying the Basic Text Tags
HTML has a few tags that enable you to add structure to text. Many web
developers use these tags only for the built-in browser formatting that
comes with them, but you really should try to use the tags semantically,
as the geeks say, which means to use them based on the meaning you
want the text to convey.

Emphasizing text
One of the most common meanings you can attach to text is emphasis.
By putting a little extra oomph on a word or phrase, you tell the reader to
add stress to that text, which can subtly alter the meaning of your words.
For example, consider the following sentence:

You'll never fit in there with that ridiculous thing on your head!

Now consider the same sentence with emphasis added to one word:
You'll never fit in there with that ridiculous thing on your head!

You emphasize text on a web page by surrounding that text with the
 and tags (bk02ch01/example06.html)):

You'll never fit in there with that ridiculous thing on your head!

All web browsers render the emphasized text in italics, as shown in
Figure 1-6.

FIGURE 1-6: The web browser renders emphasized text using italics.

HTML has a closely related tag: <i>. The <i> tag's job is to mark up
alternative text, which refers to any text that you want treated with a
different mood or role than regular text. Common examples include
book titles, technical terms, foreign words, or a person’s thoughts. All
web browsers render text between <i> and </i> in italics.

Marking important text
One common meaning that you'll often want your text to convey is
importance. It might be some significant step in a procedure, a vital
prerequisite or condition for something, or a crucial passage within a
longer text block. In each case, you’re dealing with text that you don’t
want your readers to miss, so it needs to stand out from the regular prose
that surrounds it.

In HTML, you mark text as important by surrounding it with the
 and tags, as in this example
(bk02cho1/example07.html):

As you enter the building, you'll see on the wall to your

right a large, red button that says, "DO NOT PRESS!" You

will be sorely tempted to press that button. The desire

to press that button will be well-nigh irresistible.

However, I urge you in the strongest possible terms:

Do not press that button!

All web browsers render text marked up with the tag in bold,
as shown in Figure 1-7.

FIGURE 1-7: The browser renders important text using bold.

Just to keep us all on our web development toes, HTML also offers a
close cousin of the tag: the tag. You use the tag to
mark up keywords in the text. A keyword is a term that you want to draw
attention to because it plays a different role than the regular text. It could
be a company name or a person's name (think of those bold faced names
that are the staple of celebrity gossip columns). The browser renders text
between the and tags in a bold font.

Nesting tags
It's perfectly legal — and often necessary — to combine multiple tag
types by nesting one inside the other. For example, check out this code
(bk02ch01/example08.html):

As you enter the building, you'll see on the wall to your

right a large, red button that says, "DO NOT PRESS!" You

will be sorely tempted to press that button. The desire

to press that button will be well-nigh irresistible.

However, I urge you in the strongest possible terms:

Do not press that button!

Did you notice what I did there? In the text between the and
 tags, I marked up the word not with the and tags.
The result? You got it: bold, italic text, as shown in Figure 1-8.

FIGURE 1-8: The browser usually combines nested tags, such as the bold, italic text shown
here.

Adding headings
Earlier you saw that you can give your web page a title using the aptly
named <title> tag. However, that title appears only in the browser's tab.
What if you want to add a title that appears in the body of the page?
That's almost easier done than said because HTML comes with a few
tags that enable you to define headings, which are bits of text that appear

in a separate paragraph and usually stick out from the surrounding text
by being bigger, appearing in a bold typeface, and so on.

There are six heading tags, ranging from <h1>, which uses the largest
type size, down to <h6>, which uses the smallest size. Here's some web
page code (bk02ch01/example09.html) that demonstrates the six heading
tags, and Figure 1-9 shows how they appear in a web browser:

<h1>This is Heading 1</h1>

<h2>This is Heading 2</h2>

<h3>This is Heading 3</h3>

<h4>This is Heading 4</h4>

<h5>This is Heading 5</h5>

<h6>This is Heading 6</h6>

For comparison, here's some regular text.

FIGURE 1-9: The six HTML heading tags.

What’s up with all the different headings? The idea is that you use them
to create a kind of outline for your web page. How you do this depends
on the page, but here’s one possibility:

Use <h1> for the overall page title.

Use <h2> for the page subtitle.

Use <h3> for the titles of the main sections of your page.

Use <h4> for the titles of the subsections of your page.

Adding quotations

You might have noticed that each chapter of this book begins with a
short, apt quotation. Hey, who doesn't love a good quote, right? The
readers of your web pages will be quote-appreciators, too, I’m sure, so
why not sprinkle your text with a few words from the wise?

In HTML, you designate a passage of text as a quotation by using the
<blockquote> tag. Here’s an example (bk02ch01/example10.html):

Here's what the Scottish biographer James Boswell had to say about puns:

<blockquote>

 For my own part I think no innocent species of wit

 or pleasantry should be suppressed: and that a good

 pun may be admitted among the smaller excellencies

 of lively conversation.

</blockquote>

I couldn't agree more!

The web browser renders the text between <blockquote> and
</blockquote> in its own paragraph that it also indents slightly from the
left margin, as shown in Figure 1-10.

FIGURE 1-10: The web browser renders <blockquote> text indented slighted from the left.

Creating Links
When all is said and done (actually, long before that), your website will
consist of anywhere from 2 to 102 pages (or even more, if you've got
lots to say). Here’s the thing, though: If you manage to cajole someone
onto your home page, how do you get that person to your other pages?
That really is what the web is all about, isn’t it, getting folks from one
page to another? And of course, you already know the answer to the
question. You get visitors from your home page to your other pages by
creating links that take people from here to there. In this section, you

learn how to build your own links and how to finally put the hypertext
into HTML.

Linking basics
The HTML tags that do the link thing are <a> and . Here's how the
<a> tag works:

Here, href stands for hypertext reference, which is just a fancy-
schmancy way of saying “address” or “URL.” Your job is to replace
address with the address of the web page you want to use for the link.
And yes, you have to enclose the address in quotation marks.

The form of address value you use depends on where the web page is
located with respect to the page that has the link. There are three
possibilities:

Local web page in the same directory: Refers to a web page that's
part of your website and is stored in the same directory as the HTML
file that has the link. In this case, the <a> tag’s href value is the
filename of the page. Here's an example:

Local web page in a different directory: Refers to a web page
that’s part of your website and is stored in a directory other than the
one used by the HTML file that has the link. In this case, the <a>
tag’s href value is a backslash (/), followed by the directory name,
another backslash, and then the filename of the page. Here's an
example:

Remote web page: Refers to a web page that’s not part of your
website. In this case, the <a> tag’s href value is the full URL of the
page. Here's an example:

You’re not done yet, though, not by a long shot (insert groan of
disappointment here). What are you missing? Right: You have to give
the reader some descriptive link text to click. That’s pretty
straightforward because all you do is insert the text between the <a> and
 tags, like this:

Link text

Need an example? You got it (bk02ch01/example11.html):
For web coding fun, check out the

Web Dev Workshop!

Figure 1-11 shows how it appears in a web browser. Note how the
browser colors and underlines the link text, and when I point my mouse
at the link, the address I specified in the <a> tag appears in the lower-left
corner of the browser window.

FIGURE 1-11: How the link appears in the web browser.

Anchors aweigh: Internal links
When a surfer clicks a standard link, the page loads and the browser
displays the top part of the page. However, it’s possible to set up a
special kind of link that will force the browser to initially display some
other part of the page, such as a section in the middle of the page. For
these special links, I use the term internal links because they take the
reader directly to some inner part of the page.

When would you ever use an internal link? Most of your HTML pages
will probably be short and sweet, and the web surfers who drop by will
have no trouble navigating their way around. But if, like me, you suffer
from a bad case of terminal verbosity combined with bouts of extreme
long-windedness, you’ll end up with web pages that are lengthy, to say
the least. Rather than force your readers to scroll through your tomelike
creations, you can set up links to various sections of the document. You
can then assemble these links at the top of the page to form a sort of
“hypertable of contents,” as an example.

Internal links link to a specially marked element — called an anchor —
that you’ve inserted somewhere on the same page. To understand how
anchors work, think of how you might mark a spot in a book you’re
reading. You might dog-ear the page, attach a note, or place something
between the pages, such as a bookmark or your cat’s tail.

An anchor performs the same function: It marks a particular spot in a
web page, and you can then use a regular <a> tag to link to that spot.
Here’s the general format for an anchor tag:

<element id="name">

An anchor tag appears a lot like a regular tag, except that it also includes
the id attribute, which is set to the name you want to give the anchor.
Here's an example:

<section id="section1">

 You can use whatever you want for the name, but it must begin
with a letter and can include any combination of letters, numbers,
underscores (_), and hyphens (-). Also, id values are case-
sensitive; for example, the browser treats the id value section1
differently than the id value Section1.

To set up the anchor link, you create a regular <a> tag, but the href
value becomes the name of the anchor, preceded by a hash symbol (#):

Here's an example that links to the anchor I showed earlier:

 Have you been wondering why the tag to create a link is <a> and
not something more intuitive, such as <link> (which is used for
something completely different)? The a in the <a> tag comes from
the word anchor. Confusingly, this isn't the same anchor as in an
anchor tag or an anchor link. Instead, in the early days of HTML,
the link text that you clicked was called anchor text, and that text
was created by surrounding it with the <a> and tags. The
phrase anchor text is no longer used, but the <a> tag is here to stay.

Although you'll mostly use anchors to link to sections of the same web
page, there’s no law against using them to link to specific sections of
other pages. Simply add the appropriate anchor to the other page and
then link to it by adding the anchor’s name (preceded, as usual, by #) to
the end of the page’s filename. Here’s an example:

Building Bulleted and Numbered
Lists

For some reason, people love lists: Best (and Worst) Dressed lists, Top
Ten lists, My All-Time Favorite X lists, where X is whatever you want it
to be: movies, songs, books, I Love Lucy episodes — you name it.
People like lists, for whatever reasons.

Okay, so let’s make some lists. Easy, right? Well, sure, any website
jockey can just plop a Best Tootsie Roll Flavors Ever list on a page by
typing each item, one after the other. Perhaps our list maker even gets a

bit clever and inserts the
 tag between each item, which displays
them on separate lines. Ooooh.

Yes, you can make a list that way, and it works well enough, I suppose,
but there's a better way. HTML has a few tags designed to give you
much more control over your list-building chores. For example, you can
create a bulleted list that actually has those little bullets out front of each
item. Nice! Want a Top Ten list instead? HTML has your back by
offering special tags for numbered lists, too.

Making your point with bulleted lists
A no-frills,
-separated list isn’t very useful or readable because it
doesn’t come with any visual indicators that help differentiate one item
from the next. An official, HTML-approved bulleted list solves that
problem by leading off each item with a bullet — a cute little black dot.

Bulleted lists use two types of tags:

The entire list is surrounded by the and tags. Why ul?
Well, what the rest of the world calls a bulleted list, the HTML pooh-
bahs call an unordered list.
Each item in the list is preceded by the (list item) tag and is
closed with the end tag.

Here’s the general setup:

 Bullet text goes here

 And here

 Yes, here as well

 You get the idea…

Note that I've indented the list items by four spaces, which makes it
easier to get that they’re part of a container. Here’s an
example to chew on (bk02ch01/example12.html):

<h3>My All-Time Favorite Oxymorons</h3>

 Pretty ugly

 Awfully good

 Jumbo shrimp

 Original copy

 Random order

 Act naturally

 Tight slacks

 Freezer burn

 Sight unseen

 Crash landing

Figure 1-12 shows how the web browser renders this code, cute little
bullets and all.

FIGURE 1-12: A typical bulleted list.

Numbered lists: Easy as one, two, three
If you want to include a numbered list of items — it could be a Top Ten
list, bowling league standings, steps to follow, or any kind of ranking —
don’t bother adding the numbers yourself. Instead, you can use a
numbered list to make the web browser generate the numbers for you.

Like bulleted lists, numbered lists use two types of tags:

The entire list is surrounded by the and tags. The ol here
is short for ordered list because those HTML nerds just have to be
different, don't they?
Each item in the list is surrounded by and .

Here's the general structure to use:

 First item

 Second item

 Third item

 You got this…

I’ve indented the list items by four spaces to make it easier to see that
they’re inside an container. Here’s an example
(bk02ch01/example13.html):

<h3>My Ten Favorite U.S. College Nicknames</h3>

 U.C. Santa Cruz Banana Slugs

 Delta State Fighting Okra

 Kent State Golden Flashes

 Evergreen State College Geoducks

 New Mexico Tech Pygmies

 South Carolina Fighting Gamecocks

 Southern Illinois Salukis

 Whittier Poets

 Western Illinois Leathernecks

 Delaware Fightin' Blue Hens

Note that I didn’t include a number before each list item. However, when
I display this document in a browser (check out Figure 1-13), the
numbers are automatically inserted. Pretty slick, huh?

FIGURE 1-13: When the web browser renders the ordered list, it’s kind enough to add the
numbers for you automatically.

Inserting Special Characters

Earlier in this chapter, I talk briefly about a special <meta> tag that goes
into the head section:

<meta charset="utf-8">

That tag, which on the surface appears to be nothing but gibberish,
actually adds a bit of magic to your web page. The voodoo is that now
you can add special characters such as © and ™ directly to your web
page text and the web browser will display them without complaint.

The trick is how you add these characters directly to your text, and that
depends on your operating system. First, if you're using Windows, you
have two choices:

Hold down the Alt key and then press the character’s four-digit
ASCII code using your keyboard’s numeric keypad. For example,
you type an em dash (—) by pressing Alt+0151.
Paste the character from the Character Map application that comes
with Windows.

If you’re a Mac user, you also have two choices:

Type the character’s special keyboard shortcut. For example, you
type an em dash (—) by pressing Option+Shift+- (hyphen).
Paste the character from the Symbols Viewer that comes with
macOS.

However, there’s another way to add special characters to a page. The
web wizards who created HTML came up with special codes called
character entities (which is surely a name only a true geek would love)
that represent these oddball symbols.

These codes come in two flavors: a character reference and an entity
name. Character references are basically just numbers, and the entity
names are friendlier symbols that describe the character you’re trying to
display. For example, you can display the registered trademark symbol
(®) by using the ® character reference or the ® entity name, as
shown here:

Print-On-Non-Demand&174;

or
Print-On-Non-Demand®

Note that both character references and entity names begin with an
ampersand (&) and end with a semicolon (;). Don't forget either
character when using special characters in your own pages.

 One common use of character references is to display HTML
tags without the web browser rendering them as tags. To do this,
replace the tag’s less-than sign (<) with < (or <) and the tag's
greater-than sign (>) with > (or >).

Inserting Images
Whether you want to tell stories, give instructions, pontificate, or just
plain rant about something, you can do all of that and more by adding
text to your page. But to make it more interesting for your readers, add a
bit of eye candy every now and then. To that end, you can uses an
HTML tag to add one or more images to your page.

However, before we get too far into this picture business, I should tell
you that, unfortunately, you can’t use just any old image on a web page.
Browsers are limited in the types of images they can display. You can
use four main types of image formats:

GIF: The original web graphics format (it’s short for Graphics
Interchange Format). GIF (it’s pronounced “giff” or “jiff”) is limited
to 256 colors, so it’s best for simple images like line art, clip art, and
text. GIFs are also useful for creating simple animations.
JPEG: Gets its name from the Joint Photographic Experts Group
that invented it. JPEG (it’s pronounced “jay-peg”) supports complex
images that have many millions of colors. The main advantage of
JPEG files is that, given the same image, they’re smaller than PNGs,

so they take less time to download. Careful, though: JPEG uses lossy
compression, which means it makes the image smaller by discarding
redundant pixels. The greater the compression, the more pixels that
are discarded and the less sharp the image will appear. That said, if
you have a photo or similarly complex image, JPEG is almost always
the best choice because it gives the smallest file size.
PNG: The Portable Network Graphics format supports millions of
colors. PNG (pronounced “p-n-g” or “ping”) is a compressed format,
but unlike JPEGs, PNGs use lossless compression. This means
images retain sharpness, but the file sizes can get quite big. If you
have an illustration or icon that uses solid colors or a photo that
contains large areas of near-solid color, PNG is a good choice. PNG
also supports transparency.
SVG: With the Scalable Vector Graphics (SVG) format, images are
generated using vectors (mathematical formulas based on points and
shapes on a grid) rather than pixels. Surprisingly, these vectors reside
as a set of instructions in a special text-based format, which means
you can edit the image using a text editor! SVG is a good choice for
illustrations, particularly if you have software that supports the SVG
format, such as Inkscape or Adobe Illustrator.

Okay, enough of all that. Time to start squeezing some images onto your
web page. As I mention earlier, an HTML code tells a browser to display
an image. It’s the tag, and here’s how it works:

Here, src is short for source, filename is the name of the graphics file
you want to display, and description is a short description of the image
(which is read by screen readers or revealed when users aren't displaying
images or when the image fails to load). Note that there’s no end tag to
add here.

Here’s an example. Suppose you have an image named logo.png. To
add it to your page, you use the following line:

In effect, this tag says to the browser, “Excuse me? Would you be so
kind as to go out and grab the image file named logo.png and insert it in
the page right here where the tag is?” Dutifully, the browser loads
the image and displays it in the page.

For this simple example to work, bear in mind that your HTML file and
your graphics file need to be sitting in the same directory. Many
webmasters create a subdirectory just for images, which keeps things
neat and tidy. If you plan on doing this, be sure to study my instructions
for using directories and subdirectories in Book 1, Chapter 3.

Here's an example (bk02ch01/example14.html), with Figure 1-14
showing how things appear in a web browser:

To see a World in a Grain of Sand

And a Heaven in a Wild Flower

<img src="images/flower-and-ant.jpg"

 alt="Macro photo showing an ant exploring a flower">

FIGURE 1-14: A web page with an image thrown in.

Carving Up the Page
Adding a bit of text, some links, and maybe a list or three to the body of
the page is a good start, but any web page worth posting will require
much more than that. For starters, all your web pages require a high-
level structure. Why? Well, think about the high-level structure of this

book, which includes the front and back covers, the table of contents, an
index, and seven mini-books, each of which contains several chapters,
which in turn consist of many sections and paragraphs within those
sections. It’s all nice and neat and well-organized, if I do say so myself.

Now imagine, instead, that this entire book was just page after page of
undifferentiated text: no mini-books, no chapters, no sections, no
paragraphs, plus no table of contents or index. I’ve just described a
book-reader’s worst nightmare, and I’m sure I couldn’t even pay you to
read such a thing.

Your web pages will suffer the same fate unless you add some structure
to the body section, and for that you need to turn to HTML’s high-level
structure tags.

The first thing to understand about these tags is that they’re designed to
infuse meaning — that is, semantics — into your page structures. You’ll
learn what this means as I introduce each tag, but for now get a load of
the abstract page shown in Figure 1-15.

FIGURE 1-15: An abstract view of HTML5’s semantic page structure tags.

I next discuss each of the tags shown in Figure 1-15.

The <header> tag
You use the <header> tag to create a page header, which is usually a
strip across the top of the page that includes elements such as the site or
page title and a logo. (Don’t confuse the page header with the page’s
head section that appears between the <head> and </head> tags.)

Since the header almost always appears at the top of the page, the
<header> tag is usually placed right after the <body> tag, as shown in the
following example and in Figure 1-16 (refer to
bk02ch01/example15.html):

<body>

 <header>

 <h1>Welcome to Web Dev Workshop</h1>

 <hr>

 </header>

 …

</body>

FIGURE 1-16: A page header with a logo, title, and horizontal rule.

The <nav> tag
The <nav> tag defines a page section that includes a few elements that
help visitors navigate your site. These elements could be links to the
main sections of the site, links to recently posted content, or a search
feature. The <nav> section typically appears after the header, as shown
here and in Figure 1-17 (refer to bk02ch01/example16.html):

<body>

 <header>

 <h1>Welcome to Web Dev Workshoph1>

 <hr>

 </header>

 <nav>

 Home

 Tools

 Code

 Books

 </nav>

 …

</body>

FIGURE 1-17: The <nav> section usually appears just after the <header> section.

The <main> tag
The <main> tag sets up a section to hold the content that is, in a sense,
the point of the page. For example, if you're creating the page to tell
everyone all that you know about Siamese Fighting Fish, your Siamese
Fighting Fish text, images, links, and so on would go into the <main>
section.

The <main> section usually comes right after the <head> and <nav>
sections:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

Main content goes here

 </main>

 …

</body>

The <article> tag
You use the <article> tag to create a page section that contains a
complete composition of some sort: a blog post, an essay, a poem, a
review, a diatribe, or a jeremiad.

In most cases, you'll have a single <article> tag nested inside your
page’s <main> section:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

Article content goes here

 </article>

 </main>

 …

</body>

However, it isn't a hard-and-fast rule that your page can have only one
<article> tag. In fact, it isn’t a rule at all. If you want to have two or
more compositions in your page — and thus two or more <article>
sections within your <main> tag — be my guest.

The <section> tag
The <section> tag indicates a major part of the page: usually a heading
tag followed by some text. How do you know whether a chunk of the
page is major or not? The easiest way is to imagine if your page had a
table of contents. If you'd want a particular part of your page to be
included in that table of contents, it’s major enough to merit the
<section> tag.

Most of the time, your <section> tags will appear within an <article>
tag:

<main>

 <article>

 <section>

 Section 1 heading goes here

 Section 1 text goes here

 </section>

 <section>

 Section 2 heading goes here

 Section 2 text goes here

 </section>

 …

 </article>

</main>

The <aside> tag
You use the <aside> tag to cordon off a bit of the page for content that,
although important or relevant for the site as a whole, is at best
tangentially related to the page's <main> content. The <aside> is often a
sidebar that includes site news or links to recent content, but it might
also include links to other site pages related to the current page.

The <aside> tag most often appears within the <main> area but after the
<article> content:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

 …

 </article>

 <aside>

 Aside content goes here

 </aside>

 </main>

 …

</body>

The <footer> tag
You use the <footer> tag to create a page footer, which is typically a
strip across the bottom of the page that includes elements such as a
copyright notice, contact info, and social media links.

Since the footer almost always appears at the bottom of the page, the
<footer> tag is usually positioned right before the </body> tag, as
shown here:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

 …

 </article>

 <aside>

 …

 </aside>

 </main>

 <footer>

 Footer content goes here

 </footer>

</body>

Handling non-semantic content with <div>
The <header>, <nav>, <main>, <article>, <section>, <aside>, and
<footer> tags create meaningful structures within your page, which is
why HTML nerds call these semantic elements. Even the humble <p>
tag, which I introduced earlier in this chapter, is semantic in that it
represents a single paragraph, usually within a <section> tags.

But what are would-be web weavers to do when they want to add a
chunk of content that just doesn’t fit any of the standard semantic tags?
That situation happens a lot, and the solution is to slap that content
inside a div (for division) element. The <div> tag is a generic container
that doesn't represent anything meaningful, so it’s the perfect place for
any non-semantic stuff that needs a home:

<div>

 Non-semantic content goes right here

</div>

Here’s an example (bk02ch01/example17.html)):
<div>

 Requisite social media links:

</div>

<div>

 Facebook

 X

 Instagram

 Hooli

</div>

Note in Figure 1-18 that the browser renders the two <div> elements on
separate lines.

FIGURE 1-18: The browser renders each <div> element on a new line.

Handling words and characters with
If you might want to do something with a small chunk of a larger piece
of text, such as a phrase, a word, or even a character or three, you need
to turn to a so-called inline element, which creates a container that exists
within some larger element and flows along with the rest of the content
in that larger element.

The most common inline element to use is span, which creates a
container around a bit of text (bk02ch01/example18.html):

<p>

Notice how an

inline element flows right along with the

rest of the text.

</p>

What's happening here is that the tag is applying a style called
small caps to the text between and . As shown in Figure
1-19, the text flows along with the rest of the paragraph.

FIGURE 1-19: Using makes the container flow with the surrounding text.

Commenting Your HTML Code
One way you can help to make your code more readable and
understandable — particularly if someone else is going to be examining
your code or if you want to give yourself a hand when you return to the
code several months from now — is to add a generous helping of
comments to the code. In an HTML file, a comment is a bit of text that
the web browser ignores when it renders the page. That might sound
useless to you, but rest assured that comments have quite a few uses:

To add text that explains why a particular chunk of HTML is written
the way it is
To help differentiate parts of the HTML code that use similar tag
structures
To mark sections of the HTML file that you or someone else needs to
start or complete

To mark some text as a comment, precede the text with <!-- and follow
the text with -->. Here’s an example (bk02ch01/example19.html):

<div>

 Requisite social media links:

</div>

<!--

 Each of the following links needs to be updated with the

 full address of our corresponding social media page.

 Thanks!

-->

<div>

 Facebook

 X

 Instagram

 Hooli

</div>

Chapter 2
Styling the Page with CSS

IN THIS CHAPTER
 Understanding cascading style sheets
 Learning the three methods you can use to add a style sheet
 Applying styles to web page elements
 Working with fonts and colors
 Taking advantage of selectors and other style sheet timesavers

HTML elements enable Web-page designers to mark up a document’s
structure, but beyond trust and hope, you don’t have any control over
your text’s appearance. CSS changes that. CSS puts the designer in the
driver’s seat.

— HÅKON WIUM LIE, THE “FATHER” OF CSS
One of the things that makes web coding with HTML so addictive is that
you can slap up a page using a few basic tags and, when you examine
the result in the browser, it usually works pretty good. A work of art it’s
not, but it won’t make your eyes sore. That basic functionality and
appearance are baked-in courtesy of the default formatting that all web
browsers apply to various HTML elements. For example, text
appears in a bold font, there's a bit of vertical space between <p> tags,
and <h1> text shows up quite a bit larger than regular text.

The browsers' default formatting means that even a basic page appears
reasonable, but I’m betting you’re reading this book because you want to
shoot for something more than reasonable. In this chapter, you discover
that the secret to creating beautiful pages is to override the default
browser formatting with your own. You explore custom styling and dig
into specific styles for essentials such as fonts, alignment, and colors.

Figuring Out Cascading Style
Sheets

If you want to control the appearance of your web pages, the royal road
to that goal is a web development technology called cascading style
sheets, or CSS. As I mention in Book 2, Chapter 1, your design goal
should always be to separate structure and formatting when you build
any web project. HTML’s job is to take care of the structure part, but to
handle the formatting of the page you must turn to CSS. Before getting
to the specifics, I answer three simple questions: What’s a style? What’s
a sheet? What’s a cascade?

Styles: Bundles of formatting options
If you’ve ever used a fancy-schmancy word processor such as Microsoft
Word, Google Docs, or Apple Pages, you’ve probably stumbled over a
style or two in your travels. In a nutshell, a style is a combination of two
or more formatting options rolled into one nice, neat package. For
example, you might have a Title style that combines four formatting
options: bold, centered, 24-point type size, and a Verdana typeface. You
can then apply this style to any text, and the program dutifully formats
the text with all four options. If you change your mind later and decide
your titles should use, say, an 18-point font, all you have to do is
redefine the Title style. The program automatically trudges through the
entire document and updates each bit of text that uses the Title style.

In a web page, a style performs a similar function. That is, it enables you
to define a series of formatting options for a given page knickknack,
such as a tag like <div> or <h1>. Like word processor styles, web page
styles offer two main advantages:

They save time because you create the definition of the style's
formatting once, and the browser applies that formatting each time
you use the corresponding page element.
They make your pages easier to modify because all you need to do is
edit the style definition — all the places where the style is used

within the page are updated automatically.

For example, Figure 2-1 shows some <h1> text as it appears with the
web browser’s default formatting (check out bk02ch02/example01.html
in this book’s example files). Figure 2-2 shows the same <h1> text, but
now I've souped up the text with several styles, including a border, a font
size of 72 pixels, the Verdana typeface, and page centering (check out
bk02ch02/example02.html).

FIGURE 2-1: An <h1> heading that appears with the web browser’s default formatting.

FIGURE 2-2: The same text from Figure 2-1, now with added styles.

Sheets: Collections of styles
So far so good, but what the heck is a sheet? The term style sheet
harkens back to the days of yore when old-timey publishing firms would
keep track of their preferences for things such as typefaces, type sizes,
and margins. All these so-called house styles were stored in a manual
known as a style sheet. On the web, a style sheet is similar: It’s a
collection styles that you can apply to a web page.

Cascading: How styles propagate
The cascading part of the name cascading style sheets is a bit technical;
it refers to a mechanism built into CSS for propagating styles between
elements. For example, suppose you want all your page text to be blue
instead of the default black. Does that mean you have to create a
“display as blue” CSS instruction for every single text-related tag on
your page? No, thank goodness! Instead, you apply it just once, to, say,
the <body> tag, and CSS makes sure that every text tag in the <body> tag

gets displayed as blue. This is called cascading a style. I go into this
cascading business in a bit more detail later in the chapter (in the section
titled “Revisiting the Cascade”), but before you get there, you need to
learn more about how CSS works.

Getting the Hang of CSS Rules and
Declarations

Before I show you how to use CSS in your web pages, I want to take a
second to give you an overview of how a style is structured.

The simplest case is where a single formatting option is applied to an
element. The general syntax is

selector {

 property: value;

}

Here, selector is a reference to the web page doodad to which you want
the style applied. This reference (known in the CSS trade as a selector
because it selects what you want to format) is often an HTML element
name (such as h1 or div), but CSS has a powerful toolbox of ways you
can reference things, which I discuss later in this chapter.

The property part is the name of the CSS property you want to apply.
CSS offers a large collection of properties, each of which is a short,
alphabetic keyword, such as font-family for the typeface, color for the
text color, and border-width for the thickness of a border. The property
name is followed by a colon (:), a space for readability, the value you
want to assign to the property, and then a semicolon (;). This
combination — property name, colon, space, and value — is known in
the trade as a CSS declaration (although the moniker property-value pair
is common, as well).

 Always enter the property name using lowercase letters. If the
value includes any characters other than letters or a hyphen, you
need to surround the value with quotation marks.

Note, too, that the declaration is surrounded by braces ({ and }). All the
previous code — from the selector down to the closing brace (}) is
called a style rule.

For example, the following rule applies a 72-pixel (indicated by the px
unit) font size to the <h1> tag:

h1 {

 font-size: 72px;

}

Your style rules aren't restricted to just a single declaration: You’re free
to add as many as you need. The following example shows the rule I
used to style the h1 element as shown earlier in Figure 2-2 (again, check
out bk02ch02/example02.html):

h1 {

 border-color: black;

 border-style: solid;

 border-width: 1px;

 font-family: Verdana;

 font-size: 72px;

 text-align: center;

}

 Note that the declaration block — that is, the part of the rule
within the braces ({ and }) — is most easily read if you indent the
declarations with a tab or with either two or four spaces. The order
of the declarations isn't crucial; some developers use alphabetical
order, whereas others group related properties.

Besides applying multiple styles to a single selector, it’s also possible to
apply a single style to multiple selectors. You set up the style in the usual

way, but instead of a single selector at the beginning of the rule, you list
all the selectors that you want to style, separated by commas. In the
following example, a yellow background color is applied to the
<header>, <aside>, and <footer> tags:

header,

aside,

footer {

 background-color: yellow;

}

Adding Styles to a Page
With HTML tags, you just plop the tag where you want it to appear on
the page, but styles aren't quite so straightforward. In fact, you can style
your web page in three main ways: inline styles, internal style sheets,
and external style sheets.

Inserting inline styles
An inline style is a style rule that you insert directly into whatever tag
you want to format. Here’s the general syntax to use:

<element style="property1: value1; property2: value2; …">

That is, you add the style attribute to your tag, and then set it equal to
one or more declarations, separated by semicolons.

For example, to apply 72-pixel type to an <h1> heading, you'd add an
inline style that uses the font-size CSS property:

<h1 style="font-size: 72px;">

 Note that an inline style gets applied only to the tag within
which it appears. Consider the following code
(bk02ch02/example03.html):

<h1 style="font-size: 72px;">The Big Kahuna</h1>

<h1>Kahunas: Always Big?</h1>

<h1>Wait, What the Heck Is a Kahuna?</h1>

As shown in Figure 2-3, the larger type size only gets applied to the first
<h1> tag, whereas the other two h1 elements appear in the browser's
default size.

FIGURE 2-3: Only the top <h1> tag has the inline style, so only its text is styled at 72 pixels.

Embedding an internal style sheet
Inline styles are a useful tool, but because they get shoehorned inside
tags they end up scattered all over the page’s HTML code and tend to be
difficult to maintain. Also, an inline style applies to just a single element,
but you’re more likely to want a particular style rule applied to multiple
page elements.

For easier maintenance of your styles, and to take advantage of the many
ways that CSS offers to apply a single style rule to multiple page
elements, you need to turn to style sheets, which can be either internal
(as I discuss here) or external (as I discuss in the next section).

An internal style sheet is a style sheet that resides within the same file as
the page’s HTML code. Specifically, the style sheet is embedded
between the <style> and </style> tags in the page's head section, like
so:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Page title</title>

 <style>

 Your style rules go here

 </style>

 </head>

 <body>

…

Here’s the general syntax to use:
<style>

 selectorA {

 propertyA1: valueA1;

 propertyA2: valueA2;

 …

 }

 selectorB {

 propertyB1: valueB1;

 propertyB2: valueB2;

 …

 }

 …

</style>

An internal style sheet consists of one or more style rules embedded
within a <style> tag, which is why an internal style sheet is also
sometimes called an embedded style sheet.

In the following code (bk02ch02/example04.html), I apply border styles
to the h1 and h2 elements: solid and dotted, respectively. Figure 2-4
shows the result.

HTML:
<h1>Whither Solid Colors?</h1>

<h2>In Praise of Polka Dots</h2>

<h2>What's Dot and What's Not</h2>

<h2>What Dot to Wear</h2>

CSS:
<style>

 h1 {

 border-color: black;

 border-style: solid;

 border-width: 2px;

 }

 h2 {

 border-color: black;

 border-style: dotted;

 border-width: 2px;

 }

</style>

FIGURE 2-4: An internal style sheet that applies different border styles to the h1 (top) and
h2 elements.

Note, in particular, that my single style rule for the h2 element gets
applied to all the <h2> tags in the web page. That's the power of an
internal style sheet: You need only a single rule to apply one or more
styles to every instance of a particular element.

The internal style sheet method is best when you want to apply a
particular set of style rules to just a single web page. If you have rules
that you want applied to multiple pages, you need to go the external style
sheet route.

Linking to an external style sheet
Style sheets get insanely powerful when you use an external style sheet,
which is a separate file that contains your style rules. To use these rules
within any web page, you add a special <link> tag inside the page head.
This tag specifies the name and location of the external style sheet file,
and the browser then uses that file to grab the style rules.

Here are the steps you need to follow to set up an external style sheet:

1. Use your favorite text editor to create a shiny new text file.
2. Add your style rules to this file.

Note that you don’t need the <style> tag or any other HTML tags.

3. Save the file.

It's traditional to save external style sheet files using a .css
extension (for example, styles.css), which helps you remember
down the road that this is a style sheet file. You can either save the
file in the same folder as your HTML file or create a subfolder
(named, say, css or styles).

4. For every page in which you want to use the styles, add a <link>
tag inside the page's head section.
Here’s the general format to use (where filename.css is the name of
your external style sheet file):

<link rel="stylesheet" href="filename.css">

If you created a subfolder for your CSS files, be sure to add the
subfolder to the href value (for example,
href="styles/filename.css").

For example, suppose you create a style sheet file named styles.css,
and that file includes the following style rules (bk02ch02/styles.css):

h1 {

 color: red;

}

p {

 font-size: 20px;

}

You then refer to that file by using the <link> tag, as shown here
(bk02ch02/example05.html):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Page title</title>

 <link rel="stylesheet" href="styles.css">

 </head>

 <body>

 <h1>This Heading Will Appear Red</h1>

 <p>This text will be displayed in a 20-pixel font</p>

 </body>

</html>

Why is having an external style sheet so powerful? You can add the
same <link> tag to any number of web pages, and they'll all use the
same style rules. This one-sheet-to-style-them-all approach makes it a
breeze to create a consistent look and feel for your site. And if you
decide that your <h1> text should be, say, green instead, all you have to
do is edit the style sheet file (styles.css). Automatically, every single
one of your pages that link to this file will be updated with the new
style!

Styling Page Text
You'll spend the bulk of your CSS development time applying styles to
your web page text. CSS offers a huge number of text properties, but
those I show in Table 2-1 are the most common. I discuss each of these
properties in more detail in the sections that follow.

TABLE 2-1 Some Common CSS Text Properties

Property Example Description

font-size font-size: 20px; Sets the size of the text

font-family font-family: serif; Sets the typeface of the text

font-weight font-weight: bold; Sets whether the text uses a bold font

font-style font-style: italic; Sets whether the text uses an italic font

text-

decoration

text-decoration:

underline;

Applies (or removes) underline or strikethrough
styles

text-align text-align: center; Aligns paragraph text horizontally

text-indent text-indent: 8px;
Sets the size of the indent for the first line of a
paragraph

Setting the type size
When it comes to the size of your page text, the CSS tool to pull out of
the box is font-size:

font-size: value;

Here, value is the size you want to apply to your element, which means
a number followed by the unit you want to use. I discuss the units you
can use in the next section, but for now we can stick with one of the
most common units: pixels. The pixels unit is represented by the letters
px, and a single pixel is equivalent to 1/96 of an inch. All browsers set a
default size for regular text, and that default is usually 16px. However, if
you prefer that, say, all your paragraph (<p>) text get displayed at the 20-
pixel size, you'd include the following rule in your style sheet:

p {

 font-size: 20px;

}

Getting comfy with CSS measurement units
CSS offers a few measurement units that you need to know. You use
these units not only for setting type sizes but also for setting the size of
padding, borders, margins, shadows, and many other CSS properties.
Table 2-2 lists the most common CSS measurement units.

TABLE 2-2 Some CSS Measurement Units

Unit Name Type Equals

px pixel Absolute 1/96 of an inch

pt point Absolute 1/72 of an inch

em em Relative The element's default, inherited, or defined font size

rem root em Relative The font size of the root element of the web page

vw viewport width Relative 1/100 of the current width of the browser's content area

vh viewport
height Relative 1/100 of the current height of the browser’s content

area

Here are some notes about these units that I hope will decrease that
furrow in your brow:

An absolute measurement unit is one that has a fixed size: either
1/96 of an inch in the case of a pixel or 1/72 of an inch in the case of
a point.

A relative unit is one that doesn’t have a fixed size. Instead, the size
depends on whatever size is supplied to the element. For example,
suppose the browser’s default text size is 16px, which is equivalent
then to 1em. If your page consists of a single <article> tag and you
set the article element's font-size property to 1.5em, the browser
will display text within the <article> tag at 24px (since 16 times 1.5
equals 24). If, however, the browser user has configured their default
text size to 20px, they'll get your article text displayed at 30px (20
times 1.5 equals 30).
The em unit can sometimes be a head-scratcher because it takes its
value from whatever element it's contained within. For example, if
your page has an <article> tag and you set the article element's
font-size property to 1.5em, the browser will display text within
the <article> tag at 24px (assuming a 16px default size). However,
if within the <article> tag you have a <section> tag and you set
the section element's font-size property to 1.25em, the browser
will display text within the <section> tag at 30px (since 24 times
1.25 equals 30).
If you want more consistency in your text sizes, use rem instead of
em, because rem is always based on the default font size defined by
either the web browser or the user. For example, if your page uses a
16px default size and has an <article> tag with the font-size
property set to 1.5rem, the browser will display text within the
<article> tag at 24px. If within the <article> tag you have a
<section> tag and you set the section element's font-size
property to 1.25rem, the browser will display text within the
<section> tag at 20px (since 16 times 1.25 equals 20).

Applying a font family
You can make a huge difference in the overall appeal of your web pages
by paying attention to the typefaces you apply to your headings and
body text. A typeface is a particular design applied to all letters,
numbers, symbols, and other characters. CSS types prefer the term font

family, hence the property you use to set text in a specific typeface is
named font-family:

font-family: value;

Here, value is the name of the typeface, which needs to be surrounded
by quotation marks if the name contains spaces, numbers, or punctuation
marks other than a hyphen (-). Feel free to list multiple typefaces, as
long as you separate each with a comma. When you list two or more font
families, the browser reads the list from left to right, and uses the first
font that's available either on the user’s system or in the browser itself.

When it comes to specifying font families, you have three choices:

Use a generic font. This font is implemented by the browser itself
and set by using one of the following five keywords: serif (offers
small cross strokes at the ends of many characters), sans-serif
(doesn't use the cross strokes), cursive (similar to handwriting),
fantasy (a decorative font), or monospace (gives equal space to each
character). Figure 2-5 shows each of these generic fonts in action
(for the code, check out bk02ch02/example06.html).

FIGURE 2-5: Generic fonts are implemented by all web browsers and come in five
flavors: serif, sans-serif, cursive, fantasy, and monospace.

Use a system font. This typeface is installed on the user’s computer.
How can you possibly know that? You don’t. Instead, you have two
choices. One possibility is to use a system font that’s installed
universally. Examples include Georgia and Times New Roman
(serifs), Verdana and Tahoma (sans serifs), and Courier New
(monospace). The other way to go is to list several system fonts,

knowing that the browser will use the first one that’s implemented on
the user’s PC. Here’s a sans-serif example:

font-family: "Gill Sans", Calibri, Verdana, sans-serif;

 One useful system font is system-ui, which tells the web
browser to use the default typeface of the user's operating system.
This font can give your web pages a familiar feel. (For an example,
check out bk02ch02/example07.html, mentioned in the next section.)
Use a Google font. Google Fonts offers access to hundreds of free
and well-crafted fonts that you can use on your site. Go to
https://fonts.google.com, click a font you like, and then click the
plus sign (+) beside styles such as bold and italic. In the Use On the
Web section of the right sidebar, copy the <link> tags and then paste
them in your HTML file, somewhere in the <head> section (before
your <style> tag if you're using an internal style sheet, or before
your CSS <link> tag if you're using an external style sheet). Go back
to the Use On the Web section, copy the font-family declaration,
and then paste that into each CSS rule where you want to use the
font.

Changing the font weight
In Book 2, Chapter 1, I talk about how the and tags have
semantic definitions (important text and keywords, respectively). But
what if you want text to appear bold, but that text isn’t important or a
keyword? In that case, you can style the text the CSS way with the
font-weight property:

font-weight: value;

Here, value is either the word bold, or one of the numbers 100, 200,
300, 400, 500, 600, 700 (this is the same as using bold), 800, and 900,
where the higher numbers give bolder text and the lower numbers give
lighter text (check out bk02ch02/example07.html and Figure 2-6); 400 is

https://fonts.google.com/

regular text, which you can also specify using the word normal. Note,
however, that depending on the typeface you're using, not all of these
values will give you bolder or lighter text.

FIGURE 2-6: These sentences demonstrate font-weight values from 100 (top) to 900
(bottom).

Styling text with italics
In Book 2, Chapter 1, I mention that the and <i> tags have
semantic significance (emphasis and alternative text, respectively). But
what if you have text that should get rendered in italics but not with
emphasis or as alternative text? No problem: Get CSS on the job by
adding the font-style property to your rule
(bk02ch02/example08.html):

font-style: italic;

Styling links
When you add a link to the page, the web browser displays the link text
in a different color (usually blue) and underlined. This might not fit with
the rest of your page design, so go ahead and adjust the link styling as
needed.

You can apply any text style to a link, including changing the font size,
typeface, and color (which I discuss later in this chapter), and adding
bold or italics.

One common question web coders ask is “Links: underline or not?” Not
everyone is a fan of underlined text, and if you fall into that camp, you
can use the following rule to remove the underline from your links:

a {

 text-decoration: none;

}

 Creating a custom style for links is standard operating procedure
for web developers, but a bit of caution is in order because a
mistake made by many new web designers it to style links too much
like regular text (particularly when they've removed underlining
from their links). Your site visitors should be able to recognize a
link from ten paces, so be sure to make your links stick out from the
regular text in some way.

 If you style, say, an aside element with various text properties
(such as color and font-size) and then include a link within that
aside, the web browser will stubbornly refuse to apply the aside
element's styles to the link! Cue the frustration! The reason is
technical, but the solution is to use either the descendant
combinator or the child combinator, both of which I discuss later in
this chapter (in the “Getting to Know the Web Page Family”
section).

Aligning text horizontally
By default, your web page text lines up nice and neat along the left
margin of the page. Nothing wrong with that, but what if you want
things to align along the right margin, instead? Or perhaps you want to
center something on the page. Wouldn’t that be nice? You can do all that
and more by pulling out the text-align property (check out
bk02ch02/example09.html and Figure 2-7):

text-align: left|center|right|justify;

The justify value tells the web browser to align the element's text on
both the left and right margin.

FIGURE 2-7: The left, center, right, and justify alignment options in action (from left to
right).

Indenting a paragraph's first line
You can signal the reader that a new paragraph is being launched by
indenting the first line a bit from the left margin. This is easier done than
said with CSS by applying the text-indent property:

text-indent: value;

Here, value is a number followed by any of the CSS measurement units
I mention earlier in this chapter. For example, a common indent value is
1em, which I've applied here to the p element:

p {

 text-indent: 1em;

}

Working with Colors

When rendering the page using their default styles, browsers don’t do
much with colors, other than showing link text a default and familiar
blue. But CSS offers some powerful color tools, so there’s no reason not
to show the world your true colors.

Specifying a color
I begin by showing you the three main ways that CSS provides for
specifying the color you want:

Use a color keyword. CSS defines more than 140 color keywords.
Some of these are straightforward, such as red, yellow, and purple,
while others are, well, a bit whimsical (and hunger-inducing):
lemonchiffon, papayawhip, and peachpuff. My Web Dev Workshop
(https://webdevworkshop.io/tools/css-color-keywords/) lists
them all, as shown in Figure 2-8.
Use the rgb() function.rgb() is a built-in CSS function that takes
three values: one for red, one for green, and one for blue (separated
by spaces). Each of these can be a value between 0 and 255, and
these combinations can produce any of the 16 million or so colors on
the spectrum. For example, the following function produces a nice
red:

rgb(255 99 71)

https://webdevworkshop.io/tools/css-color-keywords/

FIGURE 2-8: Go to the Web Dev Workshop to access a full list of the CSS color
keywords.

Use an RGB code. An RGB code is a six-digit value that takes the
form #rrggbb, where rr is a two-digit value that specifies the red
component of the color, gg is a two-digit value that specifies the
green component, and bb is a two-digit value that specifies the blue
component. Alas, these two-digit values are hexadecimal — base 16
— numbers, which run from 0 to 9 and then a to f. As two-digit
values, the decimal values 0 through 255 are represented as 00
through ff in hexadecimal. For example, the following RGB code
produces the same red as in the previous example:

#ff6347

Coloring text
To apply a CSS color to some text, you use the color property:

color: value;

Here, value can be a color keyword, an rgb() function, or an RGB
code. The following three rules produce the same color text:

color: tomato;

color: rgb(255 99 71);

color: #ff6347;

Coloring the background
For some extra page pizazz, try adding a color to the background of
either the entire page or a particular element. You do this in CSS by
using the background-color property:

background-color: value;

Here, value can be a color keyword, an rgb() function, or an RGB
code. The following example displays the page with white text on a
black background:

body {

 color: rgb(255 255 255);

 background-color: rgb(0 0 0);

}

 When you're messing around with text and background colors,
make sure you leave enough contrast between the text and
background to ensure that your page visitors can still read the text
without shaking their fists at you. But too much contrast isn’t
conducive to easy reading, either. For example, using pure white for
text and pure black for the background (as I did in the preceding
code, tsk, tsk) isn’t great because there’s too much contrast.
Darkening the text a shade and lightening the background a notch
makes all the difference:

body {

 color: rgb(222 222 222);

 background-color: rgb(32 32 32);

}

Getting to Know the Web Page
Family

One of the prerequisites for becoming a web developer is understanding
both the structure of a typical web page and the odd (at least at first)
lingo associated with that structure. As an example, I’m going to refer to
the semantic HTML elements that I demonstrate in Book 2, Chapter 1
(in Figure 1-16, in particular). Figure 2-9 shows that semantic structure
as a tree diagram:

The tree has the <html> tag at the top. The second level consists of the
<head> tag and the <body> tag, and the <head> tag leads to a third level
that consists of the <title> and <style> tags. For the <body> tag, the
third level contains four tags: <header>, <nav>, <main>, and <footer>.
The <main> tag leads to the <article> tag, which contains two
<section> tags and an <aside> tag.

FIGURE 2-9: The structure of a semantic HTML web page.

Okay, I can see the “So what?” thought bubble over your head, so I'll get
to the heart of the matter. With this structure in mind, you can now
identify and define five useful members of the web page family tree:

Parent: An element that contains one or more other elements in the
level below it. For example, in Figure 2-9, the <html> tag is the
parent of the <head> and <body> tags, whereas the <head> tag is the
parent of the <title> and <style> tags.

Child: An element that is contained within another element that sits
one level above it in the tree. (Which is another way of saying that
the element has a parent.) In Figure 2-9 the <header>, <nav>,
<main>, and <footer> tags are children of the <body> tag, whereas
the two <section> tags and the <aside> tag are children of the
<article> tag.

Siblings: Two or more elements that share the same parent element.
In Figure 2-9 the <header>, <nav>, <main>, and <footer> tags are
siblings because they share the <body> tag as a parent element.

Ancestor: An element that contains one or more levels of elements.
In Figure 2-9, the <body> tag is an ancestor of the <aside> tag,
whereas the <html> tag is an ancestor of everything on the page.

Descendant: An element that is contained within another element
that sits one or more levels above it in the tree. In Figure 2-9, the
<section> tags are descendants of the <main> tag, whereas the
<article> tag is a descendant of the <body> tag.

This no doubt seems far removed from web development, but these ideas
play a crucial role in CSS (and also in JavaScript; refer to Book 3)
because they enable your code to target page elements powerfully and
succinctly. That targeting is done with special codes called selectors,
which I discuss next.

Using CSS Selectors
When you add a CSS rule to an internal or external style sheet, you
assemble your declarations into a declaration block (that is, you
surround them with the { and } thingies) and then assign that block to a
selector that specifies the page item (or items) you want to style. For

example, the following rule throws a few properties at the page's <h1>
tags:

h1 {

 font-size: 72px;

 font-family: Verdana;

 text-align: center;

}

But the selector you assign to the declaration block doesn’t have to be an
HTML tag name. In fact, CSS has a huge number of ways to specify a
selector to define what parts of the page you want to style. When you
use a tag name, for example, you’re specifying a type selector. However,
there are many more selectors — a few dozen, in fact — but lucky for
you, the ones I discuss in the sections that follow should cover most of
your web development needs.

The class selector (.)
If you master just one CSS selector, make it the class selector because
you’ll use it time and again in your web projects. A class selector is one
that targets its styles at a particular web page class. So, what’s a class?
I’m glad you asked. A class is an attribute assigned to one or more page
tags that enables you to create a kind of grouping for those tags. Here’s
the syntax for adding a class to an element:

<element class="class-name">

Replace element with the name of the element and replace class-name
with the name you want to assign. The name must begin with a letter and
the rest can be any combination of letters, numbers, hyphens (-), and
underscores (_). Here's an example:

<div class="caption">

With your classes assigned to your tags as needed, you’re ready to start
selecting those classes using CSS. You do that by preceding the class
name with a dot (.) in your style rule:

.class-name {

 property1: value1;

 property2: value2;

 …

}

For example, here’s a rule for the caption class
(bk02ch02/example10.html):

.caption {

 font-size: .75rem;

 font-style: italic;

}

The advantage here is that you can assign the caption class to any tag
on the page, and CSS will apply the same style rule to each of those
elements.

The id selector (#)
In Book 2, Chapter 1, I talk about creating an anchor by adding a unique
id attribute to a tag, which enables you to create a link that targets the
anchor:

<element id="id-name">

Here's an example:
<h2 id="subtitle">

You can also use the id attribute as a CSS selector, which enables you to
target a particular element with extreme precision. You set this up by
preceding the id value with a hashtag symbol (#) in your CSS rule:

#id-name {

 property1: value1;

 property2: value2;

 …

}

For example, here's a rule for the subtitle id
(bk02ch02/example11.html):

#subtitle {

 color: gray;

 font-size: 1.75rem;

 font-style: italic;

}

This isn’t as useful as the class selector because it can only target a
single element, which is why web developers use id selectors only
rarely.

The descendant combinator
Rather than targeting specific tags, classes, or ids, you might need to
target every instance of a particular element that is contained within
another element. As I explain earlier (refer to “Getting to Know the Web
Page Family”), those contained elements are called descendants, and
CSS offers the descendant combinator for applying styles to them. To
set up a descendant selector, you include in your rule the ancestor
selector and the descendant selector you want to style, separated by a
space:

ancestor descendant {

 property1: value1;

 property2: value2;

 …

}

For example, here’s a rule that applies a few styles to every <a> tag that's
contained with an <aside> tag (bk02ch02/example12.html):

aside a {

 color: red;

 font-style: italic;

 text-decoration: none;

}

The child combinator (>)
The descendant combinator that I discuss in the preceding section is one
of the most powerful in the CSS kingdom because it targets all the
descendants of a particular selector that reside within an ancestor, no
matter how many levels down the page hierarchy those descendants live.
However, it’s often more suitable and more manageable to target only
those descendants that reside one level down: in short, the children of
some parent element.

To aim some styles at the child elements of a parent, you use the CSS
child combinator, where you separate the parent and child selectors with

a greater-than sign (>):

parent > child {

 property1: value1;

 property2: value2;

 …

}

For example, here's a rule that targets the links that are the immediate
children of an <aside> tag (bk02ch02/example13.html):

aside > a {

 color: green;

 font-style: bold;

 text-decoration: none;

}

The subsequent-sibling combinator (~)
One common CSS task is to apply a style rule to a particular subject that
meets the following criteria:

The target element appears in the HTML after a specified element,
which is known as the reference element.
The target element and the reference element are siblings.

To apply some styles to such a subject, you use the subsequent-sibling
combinator, where you separate the reference and target selectors with a
tilde (~):

reference ~ target {

 property1: value1;

 property2: value2;

 …

}

For example, here's a rule that targets any ul element that’s a subsequent
sibling of an h3 element (bk02ch02/example14.html):

h3 ~ ul {

 background: lightpink;

 border: 5px outset crimson;

 list-style-type: square;

 padding: 8px 20px;

}

The next-sibling combinator (+)
Rather than target all the siblings that come after some reference
element, as does the subsequent-sibling combinator that I discuss in the
preceding section, you might need to target only the next sibling that
comes after the reference element.

For example, suppose you have a page full of h2 elements, each of
which is followed by multiple p elements, where the first p element is
some text that summarizes the p elements that follow. In this case, it
makes sense to style those first p elements differently, perhaps by
italicizing the text.

To apply a style rule to just the next sibling that comes after some
reference element, you use the next-sibling combinator, where you
separate the reference and target selectors with a plus sign (+):

reference + target {

 property1: value1;

 property2: value2;

 …

}

For example, here's a rule that targets any p element that’s the next
sibling of an h2 element (bk02ch02/example15.html):

h2 + p {

 font-style: italic;

}

A review of some pseudo-classes
A class selector targets elements assigned a particular class. However, in
many cases, instead of having a class in common, the elements you want
to target have a particular condition in common. For example, consider
each page element that's a first child of its parent. All such page
elements have the condition of first-child-ness in common. How can you
target such elements? By using a pseudo-class, which is a CSS selector

that acts like a class by generically targeting elements that meet some
condition (such as first-child-ness).

All pseudo-classes begin with a colon (:), followed by one or more
dash-separated words. You can use a pseudo-class on its own or
modified by an element. Here’s the general on-its-own syntax:

:pseudo-class {

 property1: value1;

 property2: value2;

 …

}

Using a pseudo-class on its own means your rule matches every element
that meets the pseudo-class’s underlying condition.

To style every element that’s a first child of its parent element, you use
the :first-child pseudo-class:

:first-child {

 font-style: italic;

}

However, you're more likely to want to apply your rule to first children
of a specific element type. You do that by putting the element name
before the pseudo-class, like so:

element:pseudo-class {

 property1: value1;

 property2: value2;

 …

}

For example, the following rule applies a style to every p element that’s
a first child of its parent:

p:first-child {

 font-style: italic;

}

You can combine pseudo-classes with other selectors, particularly the
combinators. For example, the following rule applies a style to every p
element that's a first child of an article element:

article > p:first-child {

 font-style: italic;

}

Another common way to combine pseudo-classes and selectors is to
modify the element name with a class, like so:

element.class:pseudo-class {

 property1: value1;

 property2: value2;

 …

}

For example, the following rule applies a style to every p element that
uses the intro class and is a first child of its parent:

p.intro:first-child {

 font-style: italic;

}

CSS offers several dozen pseudo-classes. Yep, several dozen. If that
sounds like an alarming amount, don't worry: Many — perhaps even the
majority of — pseudo-classes are obscure and used only occasionally at
best, even by professionals. In Table 2-3, I list the most useful pseudo-
classes.

TABLE 2-3 Some Common Pseudo-Classes

Pseudo-Class Selects Example

element:first-child Any child element that is the first
of a parent element's children.

p:first-child {

text-indent: 0;

}

Refer to
bk02ch02/example16.html.

element:last-child Any child element that is the last
of a parent element’s children.

p:last-child {

margin-bottom: 1.5rem;

}

Refer to
bk02ch02/example17.html.

element:nth-child(n) One or more elements based on
their position in a parent

tr:nth-child(even) {

Pseudo-Class Selects Example

element’s collection of children.
For n, you can use any of the
following:

An integer. For
example, nth-
child(2) selects
the second child of
the parent.
An integer multiple.
For example, nth-
child(3n) selects
every third child of
the parent.
An integer multiple
plus an integer
offset. For example,
p:nth-

child(3n+2)

selects any p
element that's in the
second (n=0), fifth
(n=1), eighth (n=2),
and so on position
of a parent’s child
elements.
The keyword even.
For example, nth-
child(even)

selects the even-
numbered children
of the parent.

background-color:

lightgray;

}

Refer to
bk02ch02/example18.html.

Pseudo-Class Selects Example

The keyword odd.
For example, nth-
child(odd) selects
the odd-numbered
children of the
parent.

element:first-of-type Any child element that's the first
of its type in a parent element’s
children.

aside:first-of-type {

border: 5px double

black;

}

Refer to
bk02ch02/example19.html.

element:last-of-type Any child element that’s the last
of its type in a parent element’s
children.

p:last-of-type {

margin-bottom: 1.5rem;

}

Refer to
bk02ch02/example20.html.

element:nth-of-type(n) One or more elements of a
specified type based on their
position in a parent element’s
collection of children. You
specify n using the same
methods I outline earlier for the
:nth-child() pseudo-class.

p:nth-of-type(3n) {

background-color: gray;

}

Refer to
bk02ch02/example21.html.

element:focus The element that has the focus
(that is, the element currently
selected on the page, usually by
tabbing to the element, but also
by clicking within an element
such as a text box).

input:focus {

background-color:

lightsteelblue;

}

Refer to
bk02ch02/example22.html.

Pseudo-Class Selects Example

element:hover The element over which the user
is hovering the mouse pointer.

button:hover {

box-shadow: 10px 5px 5px

grey;

}

Refer to
bk02ch02/example23.html.

element:is(selector-

list)

Any of the selectors in the
specified selector list.

:is(h1, h2, h3) {

margin: 20px 16px;

}

Refer to
bk02ch02/example24.html.

element:not(selector-

list)

Every element that doesn't
match any of the selectors in the
specified selector list.

:not(.decorative) {

font-family: Georgia,

serif;

}

Refer to
bk02ch02/example25.html.

element:where(selector-

list)

Any of the selectors in the
specified selector list.

:where(h1, h2, h3) {

margin: 20px 16px;

}

Refer to
bk02ch02/example26.html.

element:has(selector-

list)

Any element that’s a parent of
any item in a selector list of child
elements. You can also use
:has() to match an ancestor, a
previous sibling, or a later
sibling; see the example file.

nav:has(> a) {

background: lightgrey;

border: 4px double

darkgrey;

}

Refer to
bk02ch02/example27.html.

 The :is() and :where() pseudo-classes sure look identical,
don't they? The difference is that while the specificity of :is() is

the highest specificity of whatever’s in the selector list, the
specificity of :where() is always zero. Refer to “Revisiting the
Cascade,” later in this chapter, to learn about specificity.

A few pseudo-elements you need to know
As your CSS career progresses, sooner or later (almost always sooner)
you'll bump up against two conundrums that have bedeviled web page
designers since Day One:

How can I insert and style content on the fly based on the current
state of an element?
How can I style a specific chunk of an element, such as its first line?

The common thread that runs through both problems is that you want to
style something that’s not part of the original page’s HTML. In the first
case, you want to add new content; in the second case, you want to style
a chunk that doesn’t have an HTML equivalent. In other words, you
want to work with page items that are not quite elements, which are
known as pseudo-elements in the land of CSS.

All pseudo-elements begin with two colons (::), followed by a keyword.
Here’s the general syntax:

element::pseudo-element {

 property1: value1;

 property2: value2;

 …

}

where:

element is the name of the element type you want to target.

pseudo-element is the name of the pseudo-element.

Table 2-4 lists the four most useful pseudo-elements: ::after and
::before, which you use to add content on the fly — known as
generated content — and ::first-letter and ::first-line, which
you use to style chunks of an element.

TABLE 2-4 Some Common Pseudo-Elements

Pseudo-Class Description Example

parent::after {

content:

'content';

property1:

value1;

property2:

value2;

…

}

Generates a new last child element for
the specified target parent element

:is(h2, h3)::after {

content: '¶';

color: #333;

font-size: 1rem;

margin-left: 0.25rem;

}

Refer to
bk02ch02/example28.html.

parent::before

{

content:

'content';

property1:

value1;

property2:

value2;

…

}

Generates a new first child element for
the specified target parent element

.tip::before {

content: 'TIP';

display: block;

color: green;

font-size: 12px;

}

Refer to
bk02ch02/example29.html.

element::first-

letter {

property1:

value1;

property2:

value2;

…

}

Targets the first letter of a specified
block-level element

h2 + p::first-letter {

color: crimson;

font-size: 32px;

}

Refer to
bk02ch02/example30.html.

Pseudo-Class Description Example

element::first-

line {

property1:

value1;

property2:

value2;

…

}

Targets the first line of text in a specified
block element

h2 + p::first-line {

text-transform:

uppercase;

}

Refer to
bk02ch02/example31.html.

Revisiting the Cascade

 I close this first CSS chapter with a quick review of the cascade
concept, which you need to drill into your brain if you want to write
good CSS and troubleshoot the inevitable CSS problems that will
crop up in your web development career.

At its heart, the cascade is a sorting algorithm for property declarations.
For each element (or pseudo-element) on the page, the cascade begins by
looking through all the page's CSS sources for every property
declaration with a selector that matches the element.

If a given property declaration occurs only once for the element, the
cascade applies that declaration to the element, no questions asked.
However, often a property has multiple declarations for the same
element and two or more of those declared property values are different.
When multiple possible values can apply to an element property, the
algorithm must figure out which declaration to use. To decide which
declaration gets applied, the cascade assigns a weight — a measure of
relevance — to each declaration and then styles the element using the
declaration that has the greatest weight.

To figure out the declaration with the greatest weight, the cascade
algorithm works through one or more tiebreaking criteria in the

following order:

The declaration type
The origin type
Specificity
Source code order

The next few sections flesh out the specifics of these tiebreakers.

Understanding declaration types
CSS includes a kind of Get Out of Jail Free card that enables a property
declaration to climb to the top (or close to the top) of the cascade’s
relevance hierarchy. That miraculous mechanism is the !important
annotation, which you add to a declaration just after the end of the
property value:

color: navy !important;

A declaration that includes the !important annotation is said to be using
the important declaration type, whereas all other declarations are said to
be using the normal declaration type.

 It's tempting to trot out the !important annotation any time you
have a problem getting the cascade to do what you want. Every
now and then you may have a good reason to go this route.
However, it’s almost always better to understand why the cascade is
doing what it’s doing and come up with a solution — for example, a
more relevant selector — before launching the nuclear option of the
!important annotation.

Understanding origin types
The source of a particular CSS declaration is known as its origin. The
origin is important because the cascade algorithm takes the origin into

account when it decides which declarations to use when rendering the
page. Here's a quick summary of the major origin types:

User agent style sheet: The list of default styles that the web
browser applies to certain HTML tags.
User style sheet: The styles that the web browser user has
configured, such as a new default type size.
Author style sheets: The styles that you create or that a third-party
developer has created. Author style sheets come in three varieties:

External style sheets: The style rules that reside in separate
.css files.

Internal style sheets: The style rules you add between the
<style> and </style> tags in the head section of the HTML
file.
Inline styles: The style declarations you add to a tag's style
attribute.

What do the origin types have to do with the cascade algorithm, exactly?
Friend, it’s all about weight.

Declaration type, origin type, and weight
The two declaration types (normal and important) combine with the
different origin types to define a built-in hierarchy of weight. That is, for
a given declaration, the cascade assigns a weight based on the
declaration’s type and origin. When two or more declarations for the
same property are competing to be applied to an element, the cascade
first uses the declaration type/origin type hierarchy in Table 2-5 (listed
from lowest weight to highest weight) to decide which declaration gets
applied.

TABLE 2-5 Declaration Type/Origin Type Weight
Hierarchy

Weight Ranking (lowest to
highest) Origin Type Declaration

Type
Weight Ranking (lowest to
highest) Origin Type Declaration

Type

1 User agent stylesheet Normal

2 User stylesheet Normal

3 Author stylesheets: Internal or
external

Normal

4 Author stylesheets: Inline Normal

5 Author stylesheets: Internal or
external

Important

6 Author stylesheets: Inline Important

7 User stylesheet Important

8 User agent stylesheet Important

So, for example, a normal property declaration in any author stylesheet
(weight ranking 3 or 4 in Table 2-5) always overrides the same normal
property declaration in the user agent stylesheet (weight ranking 1 in
Table 2-5) because author stylesheets are given more weight. Similarly,
an inline normal property declaration (weight ranking 4) overrides the
same normal property declaration in an external or internal stylesheet
(weight ranking 3) because inline styles are given more weight.

Figuring out specificity
What happens when two or more property declarations with the same
declaration type and the same origin type target the same element? The
declarations will have the same weight ranking from Table 2-5, so you
have to turn to the cascade’s next tiebreaking mechanism: specificity.

One of the jobs of the cascade is to differentiate between two kinds of
selector:

Broad: A selector that targets a large range of elements. For
example, the following rule targets every element in the body of the
page:

body {

 color: slateblue;

}

Narrow: A selector that targets a small range of elements. For
example, the following rule targets just the element that has the id
value of subtitle:

#subtitle {

 color: dodgerblue;

}

Most crucially for your purposes here is the CSS concept called
specificity, which is a measure of whether a particular selector is broad,
narrow, or something in between. That is, a selector that targets a broad
range of elements is said to have low specificity, whereas a selector that
targets a narrow range of elements is said to have high specificity.

The general idea is that, from the cascade's point of view, the more
narrowly a selector targets an element, the more likely it is that the CSS
developer’s intention was to have the rule apply to the element.
Therefore, the more specific a selector, the higher its specificity score
and the more weight the cascade gives to the selector’s declaration
block.

Let me stress here that the preceding is from the point of view of the
cascade, which gives preference to selectors with the highest specificity.
That doesn’t mean that you must always prefer high-specificity selectors.
Sometimes a broad selector will get the job done; sometimes a narrow
selector will do. You get to decide the specificity of your selectors, but
you must choose your selectors knowing that, for a given property
declaration, the cascade will give preference to the selector with the
highest specificity.

Specificity is calculated as a kind of score that examines the components
of a given selector and plops them into one of the following three
buckets, which for easy memorization I’ve labeled I, C, and E:

I: Score one point for each ID selector (that is, a selector that begins
with #).

C: Score one point for each class or pseudo-class selector.

E: Score one point for each element (type) or pseudo-element
selector.

You then take the total for each category — each ICE bucket, as I like to
say — and arrange the scores in the following general way:

I-C-E

For example, if a selector has one ID selector, two class selectors, and
four element selectors, the specificity is as follows:

1-2-4

Similarly, a selector with no ID selectors, three class selectors, and two
element selectors would have the following specificity:

0-3-2

How does the cascade decide which of these has the higher specificity?
It compares each bucket, reading them from left to right:

1. Compare the I (ID) buckets of selector A and selector B:
If one selector has a higher I score, that selector has the higher
specificity, so skip the rest of the steps.
If both selectors have the same score, continue with Step 2.

2. Compare the C (class, pseudo-class) buckets of selector A and
selector B:

If one selector has a higher C score, that selector has the
higher specificity, so skip the rest of the steps.
If both selectors have the same C score, continue with Step 3.

3. Compare the E (element, pseudo-element) buckets of selector A and
selector B:

If one selector has a higher E score, that selector has the
higher specificity.

If both selectors have the same E score, it means the selectors
have the same specificity, so the cascade moves on to the next
tiebreaker (which is source code order; head to the next
section “The ultimate tiebreaker: source code order”).

So, in the preceding specificity scores, 1-2-4 has a higher specificity
than 0-3-2.

To help you get a feel for converting selectors into specificity scores, the
following table offers a few examples.

Selector I
Bucket

C
Bucket E Bucket Specificity (I-C-

E)

#title #title 1-0-0

#title > h2 #title h2 1-0-1

.warning .warning 0-1-0

section section 0-0-1

header > nav > a:hover :hover header, nav, a 0-1-3

p.intro + aside .intro p, aside 0-1-2

footer > div.social::before .social footer, div,
::before

0-1-3

#nav-header li.external >

span

#nav .external p, li, span 1-1-3

In practice, you can use specificity to figure out why a particular element
has styles that don't seem right. Quite often, the problem is that the
browser is applying some other style rule that has a selector with a
higher specificity.

 Rather than calculate the specificity yourself, you can let one of
several online calculators handle that chore for you. Here’s a good
one: https://polypane.app/css-specificity-calculator/.

https://polypane.app/css-specificity-calculator

The ultimate tiebreaker: Source code order
If two or more property declarations have the same declaration type, the
same origin type weight ranking, and the same selector specificity, the
cascade has one last tiebreaking strategy it can fall back on: source code
order. That is, given multiple property declarations with equal weight,
the declaration that appears latest in the source code is declared the
winner.

Just to be clear (because this tiebreaker is crucial to figuring out what the
cascade is doing and to solving cascade problems), here’s what I mean
by latest in the source code:

If the declarations all reside in the same internal or external
stylesheet, latest means the declaration that’s closest to the bottom of
the stylesheet. Consider the following code:

p {

 color: darkorchid;

}

…

div, aside, p {

 color: indigo;

}

Text in the p element will be colored indigo because that declaration
appears later in the source code than the darkorchid declaration.

If the declarations reside in different external stylesheets, latest
means the external stylesheet <link> tag that's closest to the bottom
of the HTML file head section. Consider the following:

<head>

 <meta charset="utf-8">

 <title>Remember MySpace?</title>

 <link rel="stylesheet" href="yourstyles.css">

 <link rel="stylesheet" href="mystyles.css">

</head>

If both external stylesheets have a property declaration with equal
weight, the declaration in the mystyles.css files will be the one the
browser applies.

Putting it all together: The cascade algorithm
Okay, now I can combine all the stuff about declaration types, origin
types, specificity, and source code order to explain just how the cascade
goes about choosing which property declarations to apply to an element.

The cascade calculates declaration weights by running through the
following steps:

1. Sort the property declarations based on the declaration type/origin
type weight ranking, from highest (most weight) to lowest.

2. Check for the property declaration that has the highest ranking. One
of two things can happen here:

If just one declaration has the top ranking, apply that
declaration and then skip the rest of the steps.
If two or more declarations are tied at the top of the ranking,
discard all the other declarations and proceed to Step 3.

3. For the property declarations tied with the highest declaration
type/origin type weight ranking, calculate the specificity of each of
the declarations’ selectors and sort the declarations from highest
specificity to lowest.

4. Check for the property declaration with the highest specificity.
Again, one of two things can happen now:

If one declaration has the highest specificity, apply that
declaration and then skip the rest of the steps.
If two or more declarations are tied with the highest
specificity, discard all the other declarations and proceed to
Step 5.

5. For the declarations tied with the highest specificity, sort the
declarations by their order of appearance in the CSS source code.

6. Apply whichever property declaration appears latest in the code.

Chapter 3
Sizing and Positioning Page

Elements
IN THIS CHAPTER

 Wrapping your head around the CSS box model
 Setting the sizes of page elements
 Encrusting elements with padding, borders, and margins
 Letting elements float where they may
 Positioning elements exactly where you want them

Every element in web design is a rectangular box. This was my ah-ha
moment that helped me really start to understand CSS-based web design
and accomplish the layouts I wanted to accomplish.

— CHRIS COYIER
I’m not going to lie to you: When you’re just getting started with CSS,
the elements on the page will sometimes seem to defy your every
command. Like surly teenagers, they ignore your best advice and refuse
to understand that you are — or you are supposed to be — the boss of
them. Okay, I did lie to you a little: That can happen to even the most
experienced web coders. Why the attitude? Because although web
browsers are fine pieces of software for getting around the web, by
default they’re not adept at laying out a web page. Like overly
permissive grandparents, they just let the page elements do whatever
they like. Your job as a parent, er, I mean, a web developer, is to
introduce some discipline to the page.

Fortunately, CSS comes with a huge number of tools and techniques that
you can wield to make stubborn page elements behave themselves. In
this chapter, you discover many of these tools and explore how best to

use them to gain mastery over anything you care to add to a web page.
You delve into styles that cover properties such as dimensions (the
height and width of things), padding and margins (the amount of space
around things), borders (lines around things), and position (where things
appear on the page).

Learning about the CSS Box Model
Everything in this chapter is based on something called the CSS box
model. So I begin by discussing what this box model thing is all about
and why it’s important.

Every web page consists of a series of HTML tags, and each of those
tags represents an element on the page. In the strange and geeky world
known as Style Sheet Land, each of these elements is considered to have
an invisible box around it (okay, it’s a very strange world). You might be
tempted to think that this invisible box surrounds only block-level
elements, which are the tags that start new sections of text: <p>,
<blockquote>, <h1> through <h6>, <div>, all the page layout semantic
tags, such as <header>, <article>, and <section>. That makes sense,
but in fact every single tag, even inline tags such as <a> and ,
have a box around them.

This box has the following components:

Content: The stuff inside the box (the text, the images, or whatever)
Padding: The space around the content
Border: A line that surrounds the box padding
Margin: The space outside of the border separating the box from
other boxes to the left and right, as well as above and below
Dimensions: The height and width of the box
Position: The location of the box within the page

Of these, the first four — the content, padding, border, and margin —
make up the box model. Figure 3-1 shows what the aforementioned

invisible box looks like in the abstract, and Figure 3-2 points out the box
model components using an actual page element (the code for which you
can find in bk02ch03/example01.html in this book’s example files).

FIGURE 3-1: The components of the CSS box model.

FIGURE 3-2: The CSS box model applied to a page element.

Styling Sizes
When the web browser renders a page, it examines each element and
sets the dimensions of that element. For block-level elements such as
header and div, the browser sets the dimensions as follows:

Width: Set to the width of the element's parent. Because by default
the width of the body element is set to the width of the browser’s
content area, in practice all block-level elements have their widths
set to the width of the content area.
Height: Set just high enough to hold all the element’s content.

You can (and should) run roughshod over these defaults by styling the
element’s width and height properties:

width: value;

height: value;

In both cases, you replace value with a number and one of the CSS
measurement units I talk about in Book 2, Chapter 2: px, em, rem, vw, or
vh. For example, if you want your page to take up only half the width of
the browser's content area, you’d use the following rule (check out
bk02ch03/example02.html):

body {

 width: 50vw;

}

Most of the time you’ll only mess with an element’s width because
getting the height correct is notoriously difficult. The height depends on
too many factors: the content, the browser’s window size, the user’s
default font size, and more.

MAKING WIDTH AND HEIGHT MAKE
SENSE

Width and height seem like such straightforward concepts, but you might as well learn
now that CSS has a knack for turning the straightforward into the crooked-sideways. A
block element’s dimensions are a case in point, because you’d think the size of a block
element would be the size of its box out to the border: that is, the content, plus the
padding, plus the border itself. Nope. By default, the size of a block element’s box is
just the content part of the box.

That may not sound like a cause for alarm, but it does mean that when you’re working
with an element’s dimensions, you have to take into account its padding widths and
border sizes if you want to get things right. Believe me, doing so is no picnic.
Fortunately, help is just around the corner. You can avoid all those extra calculations by
forcing the web browser to be sensible and define an element’s size to include not just
the content but the padding and border, as well. A CSS property called box-sizing is
the superhero here:

element {

 box-sizing: border-box;

}

The declaration box-sizing: border-box tells the browser to set the element's height
and width to include the content, padding, and border. You could add this declaration to
all your block-level element rules, but that’s way too much work. Instead, you can use a
trick where you use an asterisk (*) “element,” which is a shorthand way of referencing
every element on the page:

* {

 box-sizing: border-box;

}

Put this at the top of your style sheet, and then you never have to worry about it again.

 Height and width apply only to block-level elements such as
article, div, and p, and not to inline elements such as span and a.
However, it's possible to convert inline elements into blocks. CSS
offers two methods for this inline-to-block makeover:

Make it an inline block. If you want to set an inline element’s
width, height, or other block-related properties but still allow the
element to flow along with the surrounding text, add the following to
the element’s CSS rule:

display: inline-block;

Make it a true block. If you want to set an inline element’s block-
related properties and you no longer want the element to flow with
the surrounding text, turn it into an honest-to-goodness block-level
element by adding the following to the element’s CSS rule:

display: block;

Adding Padding
In the CSS box model, the padding is the space that surrounds the
content out to the border, if the box has one. Your web pages should
always have lots of whitespace (that is, blank, content-free chunks of the
page), and one way to do that is to give each element generous padding
to ensure that the element’s content isn’t crowded either by its border or
by surrounding elements.

The padding has four sections — above, to the right of, below, and to the
left of the content — so CSS offers four corresponding properties for

adding padding to an element:
element {

 padding-top: top-value;

 padding-right: right-value;

 padding-bottom: bottom-value;

 padding-left: left-value;

}

Each value is a number followed by a CSS measurement unit: px, em,
rem, vw, or vh. Here's an example:

.margin-note {

 padding-top: 1rem;

 padding-right: 1.5rem;

 padding-bottom: .5rem;

 padding-left: 1.25rem;

}

CSS also offers a shorthand syntax that uses the padding property. You
can use four different syntaxes with the padding property, and they're all
listed in Table 3-1.

TABLE 3-1 The padding Shorthand Property

Syntax Description

padding: value1; Applies value1 to all four sides

padding: value1 value2;

Applies value1 to the top and bottom and value2 to the
right and left

padding: value1 value2

value3;

Applies value1 to the top, value2 to the right and left, and
value3 to the bottom

padding: value1 value2

value3 value4;

Applies value1 to the top, value2 to the right, value3 to the
bottom, and value4 to the left

 To help you remember the four-value syntax, note that the
values start at the top of the element's box and proceed clockwise
around the box.

Here's how you’d rewrite the previous example using the padding
shorthand:

.margin-note {

 padding: 1rem 1.5rem .5rem 1.25rem;

}

To illustrate what a difference padding can make in your page designs,
take a peek at Figure 3-3 (and bk02ch03/example03.html). Here you
have two <aside> elements, where the one on top looks cramped and
uninviting, whereas the one on the bottom offers ample room for
reading. These two elements are styled identically, except the one on the
bottom has its padding set with the following declaration:

padding: 1rem;

FIGURE 3-3: Without padding (top), your text can look uncomfortably crowded by its border,
but when you add padding (bottom), the same text has room to breathe.

Building Borders
Modern web design eschews vertical and horizontal lines as a means of
separating content, preferring, instead, to let copious amounts of
whitespace do the job. However, that doesn't mean you should never use
lines, particularly borders, in your designs. An element’s border is the
set of lines that enclose the element’s content and padding. These lines
are invisible by default, but you can use CSS not only to display the
borders but also to format them to suit your design needs. Borders are an

often useful way to make it clear that an element is separate from the
surrounding elements in the page.

Four lines are associated with an element’s border — above, to the right
of, below, and to the left of the padding — so CSS offers four properties
for adding borders to an element:

element {

 border-top: top-width top-style top-color;

 border-right: right-width right-style right-color;

 border-bottom: bottom-width bottom-style bottom-color;

 border-left: left-width left-style left-color;

}

Each border requires three values:

Width: The thickness of the border line, which you specify using a
number followed by a CSS measurement unit: px, em, rem, vw, or vh.
Note, however, that most border widths are measured in pixels, often
1px. You can also specify one of the following keywords: thin,
medium, or thick.

Style: The type of border line, which must be one of the following
keywords: dotted, dashed, solid, double, groove, ridge, inset, or
outset. Note that the effects of styles such as double, groove,
ridge, inset, or outset appear only when you use a relatively wide
border (between at least 3px and 8px, depending on the style).

Color: The color of the border line. You can use a color keyword, an
rgb() function, or an RGB code, as I describe in Book 2, Chapter 2.

Here's an example that adds a 1-pixel, dashed, red bottom border to the
header element:

header {

 border-bottom: 1px dashed red;

}

If you want to add a full border around an element and you want all four
sides to use the same width, style, and color, CSS mercifully offers a
shorthand version that uses the border property:

border: width style color;

Here's the declaration I used to add the borders around the elements in
Figure 3-2 (bk02ch03/example03.html):

border: 1px solid black;

Making Margins
The final component of the CSS box model is the margin, which is the
space around the border of the box. Margins are an important detail in
web design because they prevent elements from rubbing up against the
edges of the browser content area, ensure that two elements don't overlap
each other, and create separation between elements.

As with padding, the margin has four sections — above, to the right of,
below, and to the left of the border — so CSS offers four corresponding
properties for adding margins to an element:

element {

 margin-top: top-value;

 margin-right: right-value;

 margin-bottom: bottom-value;

 margin-left: left-value;

}

Each value is a number followed by one of the standard CSS
measurement units: px, em, rem, vw, or vh. Here's an example:

aside {

 margin-top: 1rem;

 margin-right: .5rem;

 margin-bottom: 2rem;

 margin-left: 1.5rem;

}

Like padding, CSS also offers a shorthand syntax that uses the margin
property. Table 3-2 lists the four syntaxes you can use with the margin
property.

 To help you remember the four-value syntax, note that the
values start at the top of the element's box and proceed clockwise
around the box.

Here's the shorthand version of the previous example:
aside {

 margin: 1rem .5rem 2rem 1.5rem;

}

TABLE 3-2 The margin Shorthand Property

Syntax Description

margin: value1; Applies value1 to all four sides

margin: value1 value2;

Applies value1 to the top and bottom and value2 to the right
and left

margin: value1 value2

value3;

Applies value1 to the top, value2 to the right and left, and
value3 to the bottom

margin: value1 value2

value3 value4;

Applies value1 to the top, value2 to the right, value3 to the
bottom, and value4 to the left

Resetting the margin
If you notice a web developer pulling their hair or gnashing their teeth,
it’s a good bet that they’re battling the web browser’s default styles for
margins. These defaults are one of the biggest sources of frustration for
web coders because they force you to relinquish control over one of the
most important aspects of web design: the whitespace on the page.

Most modern web developers have learned not to fight against these
defaults but to eliminate them entirely. They simply reset everything to
zero by adding the following rule to the top of every style sheet they
build:

* {

 margin: 0;

}

The downside is that you must now specify the margins for all your page
elements, but that extra work is a blessing in disguise because now you
have complete control over the whitespace in your page.

Collapsing margins ahead!
CSS has no shortage of eccentricities, and you’ll come across most of
them in your web development career. In this section you look at one of
the odder things that CSS does. First, here’s some HTML and CSS code
to chew over (bk02ch03/example04.html):

HTML:
<header>

<h1>News of the Word</h1>

 <p class="subtitle">Language news you won't find anywhere else (for good

reason!)</p>

</header>

<nav>

 Home

 What's New

 What's Old

 What's What

</nav>

CSS:
nav {

 margin-top: .5rem;

 padding: .75rem;

 border: 1px solid black;

}

I’d like to draw your attention in particular to the margin-top: .5rem
declaration in the nav element's CSS rule. As Figure 3-4 shows, the
browser has rendered a small margin above the nav element.

FIGURE 3-4: The nav element (with the border) has a .5rem top border.

Suppose now I decide that I want a bit more space between the header
and the nav elements, so I add a bottom margin to the header
(bk02ch03/example05.html):

header {

 margin-bottom: .5rem;

}

Figure 3-5 shows the result.

FIGURE 3-5: The header element with a bottom margin added (with the border) has a .5rem
top border.

No, you're not hallucinating: The space between the header and nav
elements didn't change one iota! Welcome to the wacky world of CSS!
In this case, the wackiness comes courtesy of a CSS “feature” called
collapsing margins. When one element’s bottom margin butts up against
another element’s top margin, common sense would dictate that the web
browser would add the two margin values together. Hah, you wish!

Instead, the browser uses the larger of the two margin values and throws
out the smaller value. That is, it collapses the two margin values into a
single value.

So, does that mean you’re stuck? Not at all. To get some extra vertical
space between two elements, you have four choices:

Increase the margin-top value of the bottom element.

Increase the margin-bottom value of the top element.

If you already have margin-top defined on the bottom element and
the top element doesn't use a border, add a padding-bottom value to
the top element.
If you already have margin-bottom defined on the top element and
the bottom element doesn't use a border, add a padding-top value to
the bottom element.

In the last two bullets, combining a top or bottom margin on one element
with a bottom or top padding on the other element works because the
browser doesn’t collapse a margin-and-padding combo.

Getting a Grip on Page Flow
When a web browser renders a web page, one of the boring things it
does is lay out the tags by applying the following rules to each element
type:

Inline elements: Rendered from left to right within each element’s
parent container
Block-level elements: Stacked on top of each other, with the first
element at the top of the page, the second element below the first,
and so on

This way of laying out inline and block-level elements is called the page
flow. For example, consider the following HTML code
(bk02ch03/example06.html):

<header>

 The page header goes here.

</header>

<nav>

 The navigation doodads go here.

</nav>

<section>

 This is the first section of the page.

</section>

<section>

 This is—you got it—the second section of the page.

</section>

<aside>

 This is the witty or oh-so-interesting aside.

</aside>

<footer>

 The page footer goes here.

</footer>

This code is a collection of six block-level elements — a header, a nav,
two section tags, an aside, and a footer. Figure 3-6 shows how the
web browser renders them as a stack of boxes.

FIGURE 3-6: The web browser renders the block-level elements as a stack of boxes.

Nothing is inherently wrong with the default page flow, but having your
web page render as a stack of boxes lacks a certain flair. Fortunately for
your creative spirit, you’re not married to the default, one-box-piled-on-
another flow. CSS gives you many useful methods for breaking out of
the normal page flow. In the rest of this chapter, I talk about two ways of
giving your pages some out-of-the-flow pizzazz: floating and
positioning. (For more ways to break out of the default page flow, refer
to Book 2, Chapter 4.)

Floating Elements
When you float an element, the web browser takes the element out of the
default page flow. Where the element ends up on the page depends on
whether you float it to the left or to the right:

Float left: The browser places the element as far to the left and as
high as possible within the element’s parent container.
Float right: The browser places the element as far to the right and as
high as possible within the element’s parent container.

In both cases, the non-floated elements flow around the floated element.

You convince the web browser to float an element by adding the float
property:

element {

 float: left|right|none;

}

For example, consider the following code (bk02ch03/example07.html)
and its rendering in Figure 3-7:

<header>

 <h1>News of the Word</h1>

 <p class="subtitle">Language news you won't find anywhere else (for good

reason!)</p>

</header>

<nav>

 Home

 What's New

 What's Old

 What's What

</nav>

FIGURE 3-7: As usual, the browser displays the block-level elements as a stack of boxes.

As shown in Figure 3-7, the web browser is up to its usual page flow
tricks: stacking all the block-level elements on top of each other.
However, I think this page would look better if the title (the <h1> tag)
and the subtitle (the <p> tag) appeared to the right of the logo. To do that,
I can float the tag to the left (bk02ch03/example08.html):

header img {

 float: left;

 margin-right: 2em;

}

Figure 3-8 shows the results. With the logo floated to the left, the rest of
the content — particularly the <h1> tag and the <p> tag — now flows
around the tag.

FIGURE 3-8: When the logo gets floated left, the rest of the content flows around it.

Clearing your floats
The default behavior for non-floated stuff is to wrap around anything
that's floated, which is often exactly what you want. However, there will
be times when you want to avoid having an element wrap around your
floats. For example, consider the following code
(bk02ch03/example09.html) and how it gets rendered, as shown in
Figure 3-9.

<header>

 <h1>Can't You Read the Sign?</h1>

</header>

<nav>

 Home

 Signs

 Contact Us

 Suggest a Sign

</nav>

<article>

 <img src="images/keep-off-the-grass.jpg"

 alt="A sign that reads 'Keep off the grass' with a

 well-worn dirt path beside it.">

</article>

<footer>

 © Can't You Read?, Inc.

</footer>

FIGURE 3-9: When the image is floated left, the footer wraps around it and ends up in a
weird place.

With the tag floated to the left, the rest of the content flows
around it, including the content of the <footer> tag, which now appears
by the top of the image.

You want your footer to appear at the bottom of the page, naturally, so
how can you fix this? By telling the web browser to position the footer
element so that it clears the floated image, which means that it appears

after the image in the page flow. You clear an element by adding the
clear property:

element {

 clear: left|right|both|none;

}

Use clear: left to clear all left-floated elements, clear: right to
clear all right-floated elements, or clear: both to clear everything.
When I add clear: left to the footer element
(bk02ch03/example10.html), Figure 3-10 shows that the footer content
now appears at the bottom of the page.

footer {

 clear: left;

}

FIGURE 3-10: Adding clear: left to the footer element causes the footer to clear the left-
floated image and appear at the bottom of the page.

Collapsing containers ahead!
The odd behavior of CSS is apparently limitless, and floats offer yet
another example. Consider the following HTML
(bk02ch03/example11.html) and its result in Figure 3-11:

<article>

 <section>

 New words are often created…

 </section>

 <aside>

 Note: The Oxford English Dictionary…

 </aside>

</article>

Note, in particular, that I've styled the article element with a border.

FIGURE 3-11: An <article> tag containing a <section> tag and an <aside> tag, rendered
using the default page flow.

Rather than the stack of blocks shown in Figure 3-11, you might prefer
to have the section and the aside elements side-by-side. Great idea!
Add width properties to each, and float the section element to the left
and the aside element to the right. Here are the rules
(bk02ch03/example12.html), and Figure 3-12 shows the result.

section {

 float: left;

 width: 28rem;

}

aside {

 float: right;

 width: 20rem;

}

FIGURE 3-12: With its content floated, the <article> element collapses down to just its
border.

Well, that's weird! The line across the top is what’s left of the article
element. What happened? Because I floated both the section and the
aside elements, the browser removed them from the page flow, which
made the article element behave as though it had no content at all. The
result? A CSS bugaboo known as container collapse.

To fix this, you have to give the parent container some content that
forces the parent to clear its own children (bk02ch03/example 13.html):

HTML:
<article class="self-clear">

CSS:
.self-clear::after {

 content: "";

 display: block;

 clear: both;

}

The ::after pseudo-element (refer to Book 2, Chapter 2) tells the
browser to create an element and add it as the last child of whatever
element gets the class. What's being added here is an empty string (since

you don’t want to add anything substantial to the page), and that empty
string is displayed as a block that uses clear: both to clear the
container’s children. Since the container now has some (empty) content,
it no longer collapses, as shown in Figure 3-13.

FIGURE 3-13: With the self-clear class added to the <article> tag, the article element
now has content that clears its own children, so the element is no longer collapsed.

Positioning Elements
A second method for breaking out of the web browser's default stacked
boxes page flow is to position an element yourself using CSS properties.
For example, you could tell the browser to place an image in the top-left
corner of the window, no matter where that element’s tag appears
in the page’s HTML code. This method is known as positioning in the
CSS world, and it’s a powerful tool, so much so that most web
developers use positioning only sparingly.

The first bit of positioning wizardry you need to know is, appropriately,
the position property:

element {

 position: static|relative|absolute|fixed|sticky;

}

where:

static places the element in its default position in the page flow.

relative offsets the element from its default position with respect to
its parent container while keeping the element in the page flow.
absolute offsets the element from its default position with respect to
its parent (or sometimes an earlier ancestor) container while
removing the element from the page flow.
fixed offsets the element from its default position with respect to the
browser window while removing the element from the page flow.
sticky starts the element with relative positioning until the element's
parent crosses a specified offset with respect to the browser viewport
(usually because the user is scrolling the page), at which point the
element switches to fixed positioning. If the opposite boundary of
the element’s parent block then scrolls to where the element is stuck,
the element reverts to relative positioning and scrolls with the parent.

Because static positioning is what the browser does by default, I won't
say anything more about it. For the other four positioning values —
relative, absolute, fixed, and sticky — note that each one offsets the
element. Where do these offsets come from? From the following CSS
properties:

element {

 top: top-value;

 right: right-value;

 bottom: bottom-value;

 left: left-value;

}

where top shifts the element down, right shifts the element from the
right, bottom shifts the element up, and left shifts the element from the
left.

In each case, the value you supply is either a number followed by one of
the CSS measurement units (px, em, rem, vw, or vh) or a percentage.

Using relative positioning
Relative positioning is a bit weird because not only does it offset an
element relative to its parent container, but it still keeps the element's
default space in the page flow intact.

Here’s an example (bk02ch03/example14.html):

HTML:
<h1>

 keyhole path

</h1>

<div>

 <i>n.</i> A straight footpath with overhanging trees

 that create a tunnel effect.

</div>

<img src="images/keyholepath1.jpg"

 alt="Photo of a keyhole path">

<img src="images/keyholepath2.jpg"

 alt="Photo of a keyhole path" class="offset-image">

<img src="images/keyholepath3.jpg"

 alt="Photo of a keyhole path">

CSS:
.offset-image {

 position: relative;

 left: 300px;

}

The CSS code defines a rule for a class named offset-image, which
applies relative positioning and offsets the element from the left by
300px. In the HTML code, the offset-image class is applied to the
middle image. As shown in Figure 3-14, not only is the middle image
shifted from the left, but the space in the page flow where it would have
appeared by default remains intact, so the third image's place in the page
flow doesn’t change. As far as that third image is concerned, the middle
image is still right above it.

FIGURE 3-14: The middle image uses relative positioning to shift from the left, but its place
in the page flow remains.

Giving absolute positioning a whirl
Absolute positioning not only offsets the element from its default
position, but it also removes the element from the page flow. Sounds
useful, but if the element is no longer part of the page flow, from what
element is it offset? Good question, and here’s the short answer: the
closest ancestor element that uses non-static positioning.

If that has you furrowing your brow, I have a longer answer that should
help. To determine which ancestor element is used for the offset of the
absolutely positioned element, the browser goes through a procedure
similar to this:

1. Move one level up the page hierarchy to the previous ancestor.
2. Check the position property of that ancestor element.

3. If the position value of the ancestor is static, go back to Step 1
and repeat the process for the next level up the hierarchy; otherwise
(that is, if the position value of the parent is anything other than
static), offset the original element with respect to the ancestor.

4. If, after going through Steps 1 to 3 repeatedly, you end up at the top
of the page hierarchy — that is, at the <html> tag — use that to
offset the element, which means in practice that the element is offset
with respect to the browser's content area.

I mention in the preceding section that relative positioning is weird
because it keeps the element’s default position in the page flow intact.
However, now that weirdness turns to goodness because if you want a
child element to use absolute positioning, you add position: relative
to the parent element’s style rule. Because you don’t also supply an
offset to the parent, it stays put in the page flow, but now you have what
CSS nerds called a positioning context for the child element.

I think an example would be welcome right about now
(bk02ch03/example15.html):

HTML:
<section>

 <img src="images/new.png"

 alt="Starburst with the text 'New'">

 <h2>

 holloway

 </h2>

 <div>

 <i>n.</i> A sunken footpath or road; a path that is enclosed by high

embankments on both sides.

 </div>

 <div>

 There are two main methods that create holloways: By years (decades,

centuries) of constant foot traffic that wears down the path (a process

usually accelerated somewhat by water erosion); or by digging out a path

between two properties and piling up the dirt on either side.

 </div>

</section>

CSS:

section {

 position: relative;

 border: 1px double black;

}

img {

 position: absolute;

 top: 0;

 right: 0;

}

In the CSS, the section element is styled with the position: relative
declaration, and the img element is styled with position: absolute and
top and right offsets set to 0. In the HTML code, note that the
<section> tag is the parent of the tag, so the latter's absolute
positioning will be with respect to the former. With top and right offsets
set to 0, the image will now appear in the top-right corner of the section
element and, indeed, it does, as shown in Figure 3-15.

FIGURE 3-15: The img element uses absolute positioning to send it to the top right corner of
the section element.

Trying out fixed positioning
With fixed positioning, the element is taken out of the normal page flow
and is then offset with respect to the browser's content area, which
means the element doesn’t move, not even a little, when you scroll the
page (that is, the element is fixed in its new position).

One of the most common uses of fixed positioning is to plop a header at
the top of the page and make it stay there while the user scrolls the rest
of the content. Here’s an example that shows you how to create such a
header (bk02ch03/example16.html):

HTML:
<header>

 <h2>

 holloway

 </h2>

</header>

<main>

…

</main>

CSS:
header {

 position: fixed;

 top: 0;

 left: 0;

 width: 100%;

 height: 4rem;

 border: 1px double black;

 background-color: rgb(147, 196, 125);

}

main {

 margin-top: 4rem;

}

The HTML code includes a header element with an image and a
heading, followed by a longish main section that I don't include here for
simplicity’s sake. In the CSS code, the header element is styled with
position: fixed, and the offsets top and left set to 0. These offsets
fix the header to the top left of the browser's content area. I also added
width: 100% to give the header the entire width of the window. Note,
too, that I set the header height to 64px. To make sure the main section
begins below the header, I styled the main element with margin-top:
4rem. Figure 3-16 shows the results.

FIGURE 3-16: A page with the header element fixed to the top of the screen. When you
scroll the rest of the page, the header remains where it is.

Making elements stick (temporarily)
Sticky positioning is a kind of combination of relative and fixed. That is,
the element starts off with relative positioning until the element’s
containing block crosses a specified threshold (usually because the user
is scrolling the page), at which point the element switches to fixed
positioning. If the opposite edge of the element’s containing block then
scrolls to where the element is stuck, the element reverts to relative
positioning and resumes scrolling with the containing block.

For example, suppose your page has a section element, and inside that
section is an h2 element that you've positioned as sticky. Here’s an
abbreviated version of the code (check out bk02ch03/example17.html
for the complete version):

HTML:
<section>

 <h2>Cat ipsum</h2>

 <p>http://www.catipsum.com/</p>

 <p>Sample:</p>

 <p class="sample-text">

 Cat ipsum dolor sit amet, prance along on top of the garden fence,

annoy the neighbor's dog and make it bark stuff and things intrigued by the

shower. Please stop looking at your phone and pet me sleep everywhere, but

not in my bed get my claw stuck in the dog's ear and adventure always but

drool yet roll over and sun my belly. Ooh, are those your $250 dollar

sandals?

 </p>

</section>

CSS:
h2 {

 position: sticky;

 top: 0;

}

In the CSS code, notice that for the h2 element, I set position: sticky.
To specify the threshold at which the element sticks, I set top: 0, which
means this element will stick in place when the top edge of the section
element hits the top of the viewport, as shown in Figure 3-17.

FIGURE 3-17: A page with an h2 element stuck (temporarily) to the top of the screen.

Chapter 4
Creating the Page Layout

IN THIS CHAPTER
 Understanding page layout basics
 Learning the fundamentals of Flexbox layouts
 Getting a grip on Grid layouts

Flexbox is essentially for laying out items in a single dimension — in a
row OR a column. Grid is for layout of items in two dimensions — rows
AND columns.

— RACHEL ANDREWS
Why are some web pages immediately appealing, while others put the
“Ugh” in “ugly”? There are lots of possible reasons: colors, typography,
image quality, the density of exclamation points. For my money,
however, the number one reason why some pages soar while others are
eyesores is the overall look and feel of the page. We’ve all visited
enough websites to have developed a kind of sixth sense that tells us
immediately whether a page is worth checking out. Sure, colors and
fonts play a part in that intuition, but we all respond viscerally to the big
picture that a page presents.

That big picture refers to the overall layout of the page, and that’s the
subject you explore in this chapter. Here you discover what page layout
is all about, and you investigate two CSS-based methods for making
your web pages behave the way you want them to. By the time you’re
done mastering the nitty-gritty of page layout, you’ll be in a position to
design and build beautiful and functional pages that’ll have them
screaming for more.

What Is Page Layout?

The page layout is the arrangement of the page elements within the
browser’s content area, including not only what appears when you first
open the page but also the rest of the page that comes into view as you
scroll down. The page layout acts as a kind of blueprint for the page, and
like any good blueprint, the page layout details how a page looks at two
levels:

The macro level: Refers to the overall layout of the page, which
determines how the major sections of the page — header, nav, main,
footer, and so on — fit together as a whole.

The micro level: Refers to the layout within a section or subsection
of the page. For example, the page's header element might have one
layout, whereas the page’s article section might have another.

CSS offers two main layout techniques, each of which you can apply at
either the macro level or the micro level:

CSS Flexible Box (Flexbox): Arranges elements either vertically or
horizontally within flexible boxes.
CSS Grid: Arranges the elements in a row-and-column structure.

The rest of this chapter discusses each of these techniques.

Making Flexible Layouts with
Flexbox

For many years, the go-to layout technique for most CSS pros was either
floating elements or inline blocks (that is, setting a block element’s
display property to inline-block so that the element behaves, layout-
wise, as an inline element). Both techniques offered numerous banana
peels in the path that tripped up many a developer, including forgetting
to clear your floats and having containers collapse (check out Book 2,
Chapter 3 to learn more about these pitfalls).

However, beyond these mere annoyances, float-based or inline-block-
based layouts had trouble with a few more important things, making it
very hard to get

An element's content centered vertically within the element’s
container
Elements evenly spaced horizontally across the full width (or
vertically across the full height) of their parent container
A footer element to appear at the bottom of the browser’s content
area

Fortunately, these troubles vanish if you use a CSS technology called
Flexible Box Layout Module, or Flexbox, for short. The key here is the
flex part of the name. As opposed to the default page flow and layouts
that use floats and inline blocks, all of which render content using rigid
blocks, Flexbox renders content using containers that can grow and
shrink — I’m talking both width and height here — in response to
changing content or browser window size. But Flexbox also offers
powerful properties that make it a breeze to lay out, align, distribute, and
size the child elements of a parent container.

The first thing you need to know is that Flexbox divides its world into
two categories:

Flex container: A block-level element that acts as a parent to the
flexible elements inside it
Flex items: The elements that reside within the flex container

Setting up the flex container
To designate an element as a flex container, you set its display property
to flex:

container {

 display: flex;

}

With that done, the element's children automatically become flex items.

Flexbox is a one-dimensional layout tool, which means the flex items are
arranged within their flex container either horizontally — that is, in a
row — or vertically — that is, in a column. This direction is called the
primary axis and you specify it using the flex-direction property:

element {

 display: flex;

 flex-direction: row|row-reverse|column|column-reverse;

}

where:

row is the primary axis is horizontal and the flex items are arranged
from left to right. This is the default value.
row-reverse is the primary axis is horizontal and the flex items are
arranged from right to left.
column is the primary axis is vertical and the flex items are arranged
from top to bottom.
column-reverse is the primary axis is vertical and the flex items are
arranged from bottom to top.

The axis that is perpendicular to the primary axis is called the secondary
axis.

As an example, here's some CSS and HTML code (check out
bk02ch04/example01.html in this book’s example files). Figure 4-1
shows how it looks if you let the browser lay it out:

HTML:
<div class="container">

 <div class="item item1">1</div>

 <div class="item item2">2</div>

 <div class="item item3">3</div>

 <div class="item item4">4</div>

 <div class="item item5">5</div>

</div>

CSS:

.container {

 border: 5px double black;

}

.item {

 border: 1px solid black;

 padding: .1rem;

 font-family: "Verdana", sans-serif;

 font-size: 5rem;

 text-align: center;

}

.item1 {

 background-color: rgb(240, 240, 240);

}

.item2 {

 background-color: rgb(224, 224, 224);

}

.item3 {

 background-color: rgb(208, 208, 208);

}

.item4 {

 background-color: rgb(192, 192, 192);

}

.item5 {

 background-color: rgb(176, 176, 176);

}

FIGURE 4-1: If you let the browser lay out the elements, you get the default stack of blocks.

The browser does its default thing where it stacks the div blocks on top
of each other and makes each one take up the full width of its parent div

(the one with the container class), which has its boundaries marked by
the double border in Figure 4-1.

Now configure the parent div — again, the one with the container class
— as a flex container with a horizontal primary axis (check out
bk02ch04/example02.html):

.container {

 display: flex;

 flex-direction: row;

 border: 5px double black;

}

This automatically configures the child div elements — the ones with
the item class — as flex items. As shown in Figure 4-2, the flex items
are now aligned horizontally and only take up as much horizontal space
as their content requires.

FIGURE 4-2: With their parent as a flex container, the child elements become flex items.

Aligning flex items along the primary axis
Note in Figure 4-2 that the flex items are bunched together on the left
side of the flex container (which has its boundaries shown by the double
border). This is the default alignment along the primary axis, but you can
change that by modifying the value of the justify-content property:

container {

 display: flex;

 justify-content: flex-start|flex-end|center|space-around |space-

between|space-evenly;

}

where:

flex-start aligns all the flex items with the start of the flex
container (where start means left if flex-direction is row; right if
flex-direction is row-reverse; top if flex-direction is column;

or bottom if flex-direction is column-reverse). This value is the
default, so you can leave out the justify-content property if flex-
start is the alignment you want.

flex-end aligns all the flex items with the end of the flex container
(where end means right if flex-direction is row; left if flex-
direction is row-reverse; bottom if flex-direction is column; or
top if flex-direction is column-reverse).

center aligns all the flex items with the middle of the flex container.

space-around assigns equal amounts of space before and after each
flex item. Note that this distribution doesn't result in even spacing
along the primary axis because the inner flex items (2, 3, and 4 in
Figure 4-3) have two units of space between them, whereas the
starting and ending flex items (1 and 5, respectively, in Figure 4-3)
have only one unit of space to the outside (that is, to the left of item
1 and to the right of item 5).
space-between places the first flex item at the start of the flex
container, the last flex item at the end of the flex container, and then
distributes the rest of the flex items evenly in between.
space-evenly assigns equal amounts of space before and after each
flex item, where the amount of space is calculated to get the flex
items distributed evenly along the primary axis.

Figure 4-3 (bk02ch04/example03.html) demonstrates each of the
possible values of the justify-content property when the flex-
direction property is set to row.

FIGURE 4-3: How the justify-content values align flex items when the primary axis is
horizontal (flex-direction: row).

Aligning flex items along the secondary axis
Besides aligning the flex items along the primary axis, you can also
align them along the secondary axis. For example, if you've set flex-
direction to row, which gives you a horizontal primary axis, the
secondary axis is vertical, which means you can also align the flex items
vertically. By default, the flex items always take up the entire height of
the flex container, but you can get a different secondary axis alignment
by changing the value of the align-items property:

container {

 display: flex;

 align-items: stretch|flex-start|flex-end|center|baseline;

}

where:

stretch expands each flex item in the secondary axis direction until
it fills the entire height (if the secondary axis is vertical) or width (if
the secondary axis is horizontal) of the flex container. This alignment

is the default, so you can leave out the align-items property if
stretch is the alignment you want.

flex-start aligns all the flex items with the start of the flex
container's secondary axis (where start means top if flex-direction
is row or row-reverse; or left if flex-direction is column or
column-reverse).

flex-end aligns all the flex items with the end of the flex container's
secondary axis (where end means bottom if flex-direction is row
or row-reverse; or right if flex-direction is column or column-
reverse).

center aligns all the flex items with the middle of the flex
container's secondary axis.
baseline aligns the flex items along the bottom edges of the item
text. (Technically, given a line of text, the baseline is the invisible
line upon which lowercase characters such as o and x appear to sit.)
If the flex items contain multiple lines of text, the flex items are
aligned along the baseline of the first lines in each item.

Figure 4-4 demonstrates each of the possible values of the align-items
property when the secondary axis is vertical (that is, in this case, the
flex-direction property is set to row) and each flex container is given
a height of 30vh (the edges of each container are given a double border).
(Also check out bk05ch02/example04.html.) To make the baseline
example useful, I added random amounts of top and bottom padding to
each flex item.

Centering an element horizontally and vertically
In the olden days of CSS, centering an element both horizontally and
vertically within its parent was notoriously difficult. Style wizards
stayed up until late at night coming up with ways to achieve this feat.
They succeeded, but their techniques were obscure and convoluted.
Then Flexbox came along and changed everything by making it almost
ridiculously easy to plop something smack dab in the middle of the page:

container {

 display: flex;

 justify-content: center;

 align-items: center;

}

FIGURE 4-4: How the align-items values align flex items when the secondary axis is
vertical.

Yes, that's all there is to it. Here's an example
(bk02ch04/example05.html):

HTML:
<div class="container">

 <div class="item">Look, ma, I'm centered!</div>

</div>

CSS:
.container {

 display: flex;

 justify-content: center;

 align-items: center;

 height: 25vh;

 border: 5px double black;

}

.item {

 font-family: "Georgia", serif;

 font-size: 2rem;

}

As shown in Figure 4-5, the flex item sits right in the middle of its flex
container.

FIGURE 4-5: To center an item, set the container’s justify-content and align-items
properties to center.

Laying out a navigation bar with Flexbox
One common web page component is a navigation bar that has several
links arranged horizontally within a nav element. You could use either
floats or inline blocks (refer to Book 2, Chapter 3) to lay out the
navigation bar, but you’ll end up resorting to finicky finagling of vertical
and horizontal padding to get the links nicely positioned within the nav
element.

With Flexbox, however, you don't need to resort to such time-consuming
tweaking to gets things lined up nice and neat. Here’s a Flexbox version
of a navigation bar (bk02ch04/example06.html). Figure 4-6 shows how
it looks in the browser:

HTML:
<nav>

 Home

 Blog

 Store

 About

 Contact

</nav>

<main>

 Main content goes here…

</main>

CSS:
nav {

 background-color: #ccc;

}

nav ul {

 display: flex;

 justify-content: space-around;

 align-items: center;

 height: 2.5rem;

 list-style-type: none;

}

main {

 margin-top: 1rem;

}

FIGURE 4-6: Using Flexbox, you can modify flex container properties for nicely spaced
links.

Note that I made the ul element the flex container. By setting justify-
content to space-around and align-items to center, you get the flex
items — that is, the navigation links — perfectly spaced within the
navigation bar.

Allowing flex items to grow
By default, when you set the justify-content property to flex-start,
flex-end, or center, the flex items take up only as much room along
the primary axis as they need for their content, as shown earlier in
Figures 4-2 and 4-3. This is admirably egalitarian, but it does often leave
a bunch of empty space in the flex container. Interestingly, one of the
meanings behind the flex in Flexbox is that you can make one or more
flex items grow to fill that empty space.

You configure a flex item to grow by setting the flex-grow property on
the item:

item {

 flex-grow: value;

}

Here, value is a number greater than or equal to 0. The default value is
0, which tells the browser not to grow the flex items. That usually results
in empty space in the flex container, as shown in Figure 4-7
(bk02ch04/example07.html).

FIGURE 4-7: By default, all flex items have a flex-grow value of 0, which often results in
empty space.

For positive values of flex-grow, there are three scenarios to consider:

You assign a positive flex-grow value to just one flex item. The
flex item grows until no more empty space remains in the flex
container. For example, here's a rule that sets flex-grow to 1 for the
element with class item1 (bk02ch04/example08.html). Figure 4-8
shows that item 1 has grown until there is no more empty space in
the flex container:

.item1 {

 flex-grow: 1;

}

FIGURE 4-8: With flex-grow: 1, an item grows until the container has no more
empty space.

You assign the same positive flex-grow value to two or more flex
items. The flex items grow equally until no more empty space
remains in the flex container. For example, here's a rule that sets
flex-grow to 1 for the elements with the classes item1, item2, and
item3 (bk02ch04/example09.html). Figure 4-9 shows that items 1, 2,
and 3 have grown until there is no more empty space in the flex
container:

.item1,

.item2,

.item3 {

 flex-grow: 1;

}

FIGURE 4-9: When items 1, 2, and 3 are styled with flex-grow: 1, the items grow
equally.

You assign a different positive flex-grow value to two or more
flex items. The flex items grow proportionally based on the flex-
grow values until no more empty space remains in the flex container.
For example, if you give one item a flex-grow value of 1, a second
item a flex-grow value of 2, and a third item a flex-grow value of
1, the proportion of the empty space given to each will be,
respectively, 25 percent, 50 percent, and 25 percent. Here's some
CSS code that supplies these proportions to the elements with the
classes item1, item2, and item3 (bk02ch04/example10.html). Figure
4-10 shows the results:

.item1 {

 flex-grow: 1;

}

.item2 {

 flex-grow: 2;

}

.item3 {

 flex-grow: 1;

}

 To calculate what proportion of the flex container’s empty space
is assigned to each flex item, add up the flex-grow values, and then
divide the individual flex-grow values by that total. For example,
values of 1, 2, and 1 add up to 4, so the percentages are 25 percent
(1/4), 50 percent (2/4), and 25 percent (1/4), respectively.

FIGURE 4-10: Items 1 and 3 get 25 percent of the container's empty space, whereas item 2
gets 50 percent.

Allowing flex items to shrink
The flexibility of Flexbox means that flex items can not only grow to fill
a flex container's empty space but also shrink if the flex container
doesn’t have enough space to fit the items. Shrinking flex items to fit
inside their container is the default Flexbox behavior, but you gain a
measure of control over which items shrink and by how much by using
the flex-shrink property on a flex item:

item {

 flex-shrink: value;

}

Here, value is a number greater than or equal to 0. The default value is
1, which tells the browser to shrink all the flex items equally to get them
to fit inside the flex container.

For example, consider the following code (bk02ch04/example11.html):

HTML:

<div class="container">

 <div class="item item1">1</div>

 <div class="item item2">2</div>

 <div class="item item3">3</div>

 <div class="item item4">4</div>

 <div class="item item5">5</div>

</div>

CSS:
.container {

 display: flex;

 width: 500px;

 border: 5px double black;

}

.item {

 width: 200px;

}

The flex container (the container class) is 500px wide, but each flex
item (the item class) is 200px wide. To get everything to fit, the browser
shrinks each item equally, and the result is shown in Figure 4-11.

FIGURE 4-11: By default, the browser shrinks the items equally along the primary axis until
they fit.

 The browser shrinks each flex item truly equally (that is, by the
same amount) only when each item has the same size along the
primary axis (for example, the same width when the primary axis is
horizontal). If the flex items have different sizes, the browser
shrinks each item roughly in proportion to its size: Larger items
shrink more, whereas smaller items shrink less. I use the word
roughly here because in fact the calculations the browser uses to
determine the shrinkage factor are brain-numbingly complex. If you

want to learn more (don't say I didn’t warn you!), check out
https://madebymike.com.au/writing/understanding-flexbox.

For positive values of flex-shrink, you have three ways to control the
shrinkage of a flex item:

Assign the item a flex-shrink value between 0 and 1. The
browser shrinks the item less than the other flex items. For example,
here's a rule that sets flex-shrink to .5 for the element with class
item1, and Figure 4-12 shows that item 1 has shrunk less than the
other items in the container:

.item1 {

 flex-shrink: .5;

}

FIGURE 4-12: Styling item 1 with flex-shrink: .5 shrinks it less than the other
items.

Assign the item a flex-shrink value greater than 1. The browser
shrinks the item more than the other flex items. For example, the
following rule sets flex-shrink to 2 for the element with class
item1, and Figure 4-13 shows that item 1 has shrunk more than the
other items in the container:

.item1 {

 flex-shrink: 2;

}

https://madebymike.com.au/writing/understanding-flexbox

FIGURE 4-13: Styling item 1 with flex-shrink: 2 shrinks the item more than the
others.

Assign the item a flex-shrink value of 0. The browser doesn't
shrink the item. The following rule sets flex-shrink to 0 for the
element with class item1, and Figure 4-14 shows that the browser
doesn't shrink item 1:

.item1 {

 flex-shrink: 0;

}

FIGURE 4-14: Styling item 1 with flex-shrink: 0 doesn't shrink the item.

 If a flex item is larger along the primary axis than its flex
container, and you set flex-shrink: 0 on that item, ugliness
ensues. That is, the flex item breaks out of the container and,
depending on where it sits within the container, might take one or
more other items with it. If you don’t want a flex item to shrink,
make sure the flex container is large enough to hold it.

Laying out content columns with Flexbox
Flexbox works best when you use it to lay out components along one
dimension, but that doesn’t mean you can’t use it to lay out an entire
page. As long as the page structure is relatively simple, Flexbox works
great for laying out elements both horizontally and vertically.

A good example is the classic page layout that has a header and
navigation bar across the top of the page, a main section with an article
and a sidebar beside it, and a footer across the bottom of the page. Here’s

some Flexbox code (bk02ch04/example15.html) that creates this layout,
which is shown in Figure 4-15:

HTML:
<body>

 <header>

 Header

 </header>

 <nav>

 Navigation

 </nav>

 <main>

 <article>

 Article

 </article>

 <aside>

 Aside

 </aside>

 </main>

 <footer>

 Footer

 </footer>

</body>

CSS:
html {

 height: 100%;

}

body {

 display: flex;

 flex-direction: column;

 gap: 1rem;

 justify-content: flex-start;

 align-items: stretch;

 font-size: 2rem;

 height: 100%;

 margin-left: 1rem;

 width: 75vw;

}

header,

nav,

article,

aside,

footer {

 border: 1px solid black;

 padding: 0.5rem;

}

main {

 flex-grow: 1;

 display: flex;

 flex-direction: row;

 gap: 1rem;

 justify-content: flex-start;

 align-items: stretch;

}

article {

 flex-grow: 1;

}

aside {

 flex-grow: 0;

 flex-shrink: 0;

 flex-basis: 10rem;

}

FIGURE 4-15: A classic page layout, Flexbox-style.

Here’s a closer look at what’s happening in this code:

The <body> tag is set up as a flex container, and that container is
styled with flex-direction: column to create a vertical primary

axis for the page as a whole.
The body element has its height property set to 100%, which makes
the flex container always take up the entire height of the browser's
content area. Note that setting height: 100% on the body element
only works because earlier I added the same declaration to the html
element.
The body element also declares gap: 1rem to create a 1rem space
between each flex item.
All the content elements — header, nav, article, aside, and
footer elements are given a border and some padding.

The main element is styled with flex-grow: 1, which tells the
browser to grow the main element vertically until it uses up the
empty space in the flex container. This also ensures that the footer
element appears at the bottom of the content area even if there isn't
enough content to fill the main element.

The main element is also a flex container styled with flex-
direction: row to create a horizontal primary axis. Note, as well,
the use of the gap property to set a 1rem horizontal gap between each
flex item.
Inside the main flex container, the article element is given flex-
grow: 1, so it grows as needed to take up the remaining width of the
main element (that is, after the width of the aside element is taken
into account).
To get a fixed-width sidebar, the aside element's rule has both flex-
grow and flex-shrink set to 0, and it also includes the declaration
flex-basis: 10rem. The flex-basis property provides the browser
with a suggested starting point for the size of the element. In this
case, with both flex-grow and flex-shrink set to 0, the flex-basis
value acts like a fixed width.

 You can use a shorthand property called flex to combine flex-
grow, flex-shrink, and flex-basis into a single declaration:

item {

 flex: grow-value shrink-value basis-value;

}

For example, I could rewrite the aside element's rule in the preceding
example as follows:

aside {

 flex: 0 0 10rem;

}

Shaping the Overall Page Layout
with CSS Grid

One of the most exciting and anticipated developments in recent CSS
history is the advent of a technology called CSS Grid. The Grid
specification gives you a straightforward way to divide a container into
one or more rows and one or more columns — that is, as a grid — and
then optionally assign the container's elements to specific sections of the
grid. With CSS Grid, you can give the web browser instructions such as
the following:

Set up the <body> tag as a grid with four rows and three columns.

Place the header element in the first row and make it span all three
columns.
Place the nav element in the second row and make it span all three
columns.
Place the article element in the third row, columns one and two.

Place the aside element in the third row, column three.

Place the footer element in the fourth row and make it span all three
columns.

Before you learn how to do all of this and more, you need to know that a
Grid uses two categories of elements:

Grid container: A block-level element that acts as a parent to the
elements inside it and that you configure with a set number of rows
and columns
Grid items: The elements that reside within the grid container and
that you assign (or the browser assigns automatically) to specific
parts of the grid

Setting up the grid container
To designate an element as a grid container, you set its display property
to grid:

container {

 display: grid;

}

With that first step complete, the element's children automatically
become grid items.

Specifying the grid rows and columns
Your grid container doesn’t do much on its own. To make it useful, you
need to create a grid template, which specifies the number of rows and
columns you want in your grid. You set up your template by adding the
grid-template-columns and grid-template-rows properties to your
grid container:

container {

 display: grid;

 grid-template-columns: column-values;

 grid-template-rows: row-values

}

The column-values and row-values are space-separated lists of the
sizes you want to use for each column and row in your grid. The sizes

can be numbers expressed in any of the standard CSS measurement units
(px, em, rem, vw, or vh), a percentage, or the keyword auto, which tells
the browser to automatically set the size based on the other values you
specify.

Here's an example (bk02ch04/example 16.html), and Figure 4-16 shows
the result:

HTML:
<div class="container">

 <div class="item item1">1</div>

 <div class="item item2">2</div>

 <div class="item item3">3</div>

 <div class="item item4">4</div>

 <div class="item item5">5</div>

 <div class="item item6">6</div>

</div>

CSS:
.container {

 display: grid;

 grid-template-columns: 100px 300px 200px;

 grid-template-rows: 100px 200px;

}

FIGURE 4-16: A basic grid created by setting just three properties: display, grid-template-
columns, and grid-template-rows.

 You can also specify a column or row size using a unit called fr,
which is specific to Grid and represents a fraction of the free space
available in the grid container, either horizontally (for columns) or
vertically (for rows). For example, if you assign one column 1fr of
space and another column 2fr, the browser gives one third of the
horizontal free space to the first column and two thirds of the
horizontal free space to the second column.

 If you leave out the grid-template-rows property, the browser
automatically configures the row heights based on the height of the
tallest element in each row.

Creating grid gaps
By default, the browser doesn't include any horizontal space between
each column or any vertical space between each row. If you’d prefer
some daylight between your grid items, you can add the column-gap and
row-gap properties to your grid container:

container {

 display: grid;

 column-gap: column-gap-value;

 row-gap: row-gap-value

}

In both properties, the value is a number expressed in any of the standard
CSS measurement units (px, em, rem, vw, or vh). Here's an example
(bk02ch04/example17.html):

.container {

 display: grid;

 grid-template-columns: 100px 300px 200px;

 grid-template-rows: 100px 200px;

 column-gap: 10px;

 row-gap: 15px;

}

 You can use a shorthand property called gap to combine column-
gap and row-gap into a single declaration:

container {

 display: grid;

 gap: row-gap-value [column-gap-value];

}

 When you use the gap shorthand property, if you specify only
row-gap-value, Grid applies the value to both rows and columns.

Assigning grid items to rows and columns
Rather than letting the web browser populate the grid automatically, you
can take control of the process and assign your grid items to specific
rows and columns. For each grid item, you specify four values:

item {

 grid-column-start: column-start-value;

 grid-column-end: column-end-value;

 grid-row-start: row-start-value;

 grid-row-end: row-end-value;

}

where:

grid-column-start is a number that specifies the column where the
item begins.
grid-column-end is a number that specifies the column before
which the item ends. For example, if grid-column-end is set to 4,
the grid item ends in column 3. Some notes:

If you omit this property, the item uses only the starting
column.
If you use the keyword end, the item runs from its starting
column through to the last column in the grid.

You can use the keyword span followed by a space and then a
number that specifies the number of columns you want the
item to span across the grid. For example, the following two
sets of declarations are equivalent:

grid-column-start: 1;

grid-column-end: 4;

grid-column-start: 1;

grid-column-end: span 3;

grid-row-start is a number that specifies the row where the item
begins.
grid-row-end is a number that specifies the row before which the
item ends. For example, if grid-row-end is set to 3, the grid item
ends in row 2. Some notes:

If you omit this property, the item uses only the starting row.
If you use the keyword end, then the item runs from its
starting row through to the last row in the grid.
You can use the keyword span followed by a space and then a
number that specifies the number of rows you want the item
to span down the grid. For example, the following two sets of
declarations are equivalent:

grid-row-start: 2;

grid-row-end: 4;

grid-row-start: 2;

grid-row-end: span 2;

Here's an example (bk02ch04/example18.html), and the results are
shown in Figure 4-17:

HTML:
<div class="container">

 <div class="item item1">1</div>

 <div class="item item2">2</div>

 <div class="item item3">3</div>

 <div class="item item4">4</div>

 <div class="item item5">5</div>

<div class="item item6">6</div>

</div>

CSS:
.container {

 display: grid;

 grid-template-columns: repeat(5, 100px);

 grid-template-rows: repeat(3, 150px);

}

.item1 {

 grid-column-start: 1;

 grid-column-end: 3;

 grid-row-start: 1;

 grid-row-end: 1;

}

.item2 {

 grid-column-start: 3;

 grid-column-end: span 3;

 grid-row-start: 1;

 grid-row-end: 1;

}

.item3 {

 grid-column-start: 1;

 grid-column-end: 1;

 grid-row-start: 2;

 grid-row-end: end;

}

.item4 {

 grid-column-start: 2;

 grid-column-end: 4;

 grid-row-start: 2;

 grid-row-end: end;

}

.item5 {

 grid-column-start: 4;

 grid-column-end: span 2;

 grid-row-start: 2;

 grid-row-end: 2;

}

.item6 {

 grid-column-start: 4;

 grid-column-end: span 2;

 grid-row-start: 3;

 grid-row-end: 3;

}

FIGURE 4-17: Some grid items assigned to different columns and rows in the grid.

 In the example, note that I use a function named repeat to
specify multiple columns and rows that are the same size. Here's the
syntax to use:

repeat(number, size)

Replace number with the number of columns or rows you want to create,
and replace size with the size you want to use for each of those columns
or rows. For example, the following two declarations are equivalent:

grid-template-rows: 150px 150px 150px;

grid-template-rows: repeat(3, 150px);

 CSS also offers two shorthand properties that you can use to
make the process of assigning items to columns and rows a bit more
streamlined:

item {

 grid-column: column-start-value / column-end-value;

 grid-row: row-start-value / row-end-value;

}

Aligning grid items
CSS Grid offers several properties that you can use to align stuff in your
grid. Grid’s alignment properties fall into two general categories:

Direction: Refers to the axis along which the alignment is
performed:

Justify: Sets the alignment along the grid container’s inline
axis.
Align: Sets the alignment along the grid container’s block
axis.

Target: Refers to the part of the grid to which the alignment is
applied:

Content: Sets the alignment on all the columns or all the rows
in the grid.
Items: Sets the alignment on individual grid items within
their assigned grid areas.

Given the preceding categories, CSS Grid defines four alignment
properties:

justify-content: Sets the alignment along the inline axis of all
grid's columns. Here’s the syntax:

container {

 justify-content: start|center|end|stretch|space-around|space-

between|space-evenly;

}

align-content: Sets the alignment along the block axis of all grid’s
rows. Here’s the syntax:

container {

 align-content: start|center|end|stretch|space-around|space-

between|space-evenly|baseline;

}

 For align-content (or align-items, coming up) to work,
you need to set a height on the grid container — specifically, a height
greater than the combined natural height of all the rows. Without that
custom height, the browser will set the container height just tall
enough to fit the rows, so there's no extra space for align-content
(or align-items) to do its thing.

justify-items: Sets the alignment along the inline axis of each grid
item within its grid area. Here's the syntax:

container {

 justify-items: start|center|end|stretch;

}

align-items: Sets the alignment along the block axis of each grid
item within its grid area. Here’s the syntax:

container {

 align-items: start|center|end|stretch|baseline;

}

Laying out content columns with Grid
As a two-dimensional layout system, Grid is perfect for laying out an
entire page. This includes the classic page layout that I talk about earlier:
a header and navigation bar across the top of the page, an article with a
sidebar beside it, and a footer across the bottom of the page. Here's some
Grid code (bk02ch04/example19.html) that creates this layout, which is
shown in Figure 4-18:

HTML:
<body>

 <header>

 Header

 </header>

 <nav>

 Navigation

 </nav>

 <article>

 Article

 </article>

 <aside>

 Aside

 </aside>

 <footer>

 Footer

 </footer>

</body>

CSS:
html {

 height: 100%;

}

body {

 display: grid;

 grid-template-columns: 1fr 10rem;

 grid-template-rows: 2.5rem 2.5rem 1fr 2.5rem;

 gap: 1rem 1rem;

 font-size: 2rem;

 height: 100%;

 margin-left: 1rem;

 width: 75vw;

}

header {

 grid-column: 1 / end;

grid-row: 1;

 border: 1px solid black;

}

nav {

 grid-column: 1 / end;

 grid-row: 2;

 border: 1px solid black;

}

article {

 grid-column: 1;

 grid-row: 3;

 border: 1px solid black;

}

aside {

 grid-column: 2 / end;

 grid-row: 3;

 border: 1px solid black;

}

footer {

 grid-column: 1 / end;

 grid-row: 4;

 border: 1px solid black;

}

FIGURE 4-18: The classic page layout, Grid-style.

Here’s a detailed look at what the code does:

The <body> tag is set up as a grid container, and that container is
styled with two columns and four rows.
The body element has its height property set to 100%, which makes
the grid container always take up the entire height of the browser's
content area. Note that setting height: 100% on the body element
works only because earlier I added the same declaration to the html
element.

html {

 height: 100%;

}

All header, nav, and footer elements span from the first column to
the end of the grid, and they're assigned rows 1, 2, and 4,
respectively.
The article element uses only column 1 and row 3, both of which
were defined with the size 1fr, which allows the article element to
take up the free space in the grid.
The aside element uses column 2, which was assigned a width of
10rem, so its width is fixed.

Book 3

Coding the Front End, Part 2:
JavaScript

Contents at a Glance
Chapter 1: An Overview of JavaScript

JavaScript: Controlling the Machine

What Is a Programming Language?

Is JavaScript Hard to Learn?

What You Can Do with JavaScript

What You Can’t Do with JavaScript

What You Need to Get Started

Basic Script Construction

A Quick Introduction to the Console

Dealing with a Couple of Exceptional Cases

Adding Comments to Your Code

Creating External JavaScript Files

Chapter 2: Understanding Variables
Understanding Variables

Naming Variables: Rules and Best Practices

Understanding Literal Data Types

JavaScript Reserved Words

JavaScript Keywords

Chapter 3: Building Expressions
Understanding Expression Structure

Building Numeric Expressions

Building String Expressions

Building Comparison Expressions

Building Logical Expressions

Understanding Operator Precedence

Chapter 4: Controlling the Flow of JavaScript
Making True/False Decisions with if Statements

Branching with if…else Statements

Making Multiple Decisions

Understanding Code Looping

Using while Loops

Using for Loops

Using do…while Loops

Controlling Loop Execution

Avoiding Infinite Loops

Chapter 5: Harnessing the Power of Functions
What Is a Function?

The Structure of a Function

Where Do You Put a Function?

Calling a Function

Passing Values to Functions

Returning a Value from a Function

Getting Your Head around Anonymous Functions

Moving to Arrow Functions

Running Functions in the Future

Understanding Variable Scope

Using Recursive Functions

Chapter 6: Playing with the Document Object Model
Working with Objects

Getting to Know the Document Object Model

Specifying Elements

Traversing the DOM

Manipulating Elements

Modifying CSS with JavaScript

Tweaking HTML Attributes with JavaScript

Chapter 7: Building Reactive Pages with Events
What’s an Event?

Understanding the Event Types

Listening for an Event

Getting Data about the Event

Preventing the Default Event Action

Example: The DOMContentLoaded Event

Example: The dblclick Event

Chapter 8: Working with Arrays
What Is an Array?

Declaring an Array

Populating an Array with Data

How Do I Iterate Thee? Let Me Count the Ways

Creating Multidimensional Arrays

Manipulating Arrays

Chapter 9: Manipulating Strings, Dates, and Numbers
Manipulating Text with the String Object

Dealing with Dates and Times

Working with Numbers: The Math Object

Chapter 10: Storing User Data in the Browser
Understanding Web Storage

Introducing JSON

Adding Data to Web Storage

Getting Data from Web Storage

Removing Data from Web Storage

Chapter 11: More JavaScript Goodies
Expanding Arrays and Objects with the Spread Operator

Condensing Arrays with the Rest Parameter

Exporting and Importing Code

Chapter 1
An Overview of JavaScript

IN THIS CHAPTER
 Understanding programming in general and JavaScript in

particular
 Getting a taste of what you can (and can’t) do with JavaScript
 Learning the tools you need to get coding
 Adding JavaScript code to a web page
 Getting acquainted with the all-important console

What’s in your hands, I think and hope, is intelligence: the ability to see
the machine as more than when you were first led up to it, that you can
make it more.

— ALAN PERLIS
When we talk about web coding, what we’re really talking about is
JavaScript. Yep, you need HTML and CSS to create a web page, and you
need tools such as PHP and MySQL to convince a web server to give
your page some data, but the glue — and sometimes the duct tape —
that binds all these technologies is JavaScript. The result is that
JavaScript is now (and has been for a while) the default programming
language for web development. If you want to control a page using code
(and I know you do), you must use JavaScript to do it.

It also means that JavaScript is (and has been for a while) universal on
the web. Sure, there are plenty of barebones home pages out there that
are nothing but HTML and a sprinkling of CSS, but everything else —
from humble personal blogs to fancy-pants designer portfolios to
bigtime corporate ecommerce operations — relies on JavaScript to make
things look good and work the way they’re supposed to (most of the
time, anyway).

So when it comes to the care and feeding of your web development
education, JavaScript is one of the most important — arguably the most
important — of all the topics you need to learn. Are you excited to start
exploring JavaScript? I knew it!

JavaScript: Controlling the Machine
When a web browser is confronted with an HTML file, it goes through a
simple but tedious process: It reads the file one line at a time, starting
from (usually) the <html> tag at the top and finishing with the </html>
tag at the bottom. Along the way, it might have to break out of this line-
by-line monotony to perform some action based on what it has read. For
example, if it stumbles over the tag, the browser will immediately
ask the web server to ship out a copy of the graphics file specified in the
src attribute (refer to Book 2, Chapter 1).

The point here is that, at its core, a web browser is just a page-reading
machine that doesn't know how to do much of anything else besides
follow the instructions (the markup) in an HTML file. (For convenience,
I’m ignoring the browser’s other capabilities, such as saving
bookmarks.)

One of the reasons that many folks get hooked on creating web pages is
that they realize from the beginning that they have control over this
page-reading machine. Slap some text between a tag and its
corresponding end tag and the browser dutifully displays the text as
bold. Create a CSS Grid structure (check out Book 2, Chapter 4) and the
browser displays your formerly haphazard text in nice, neat rows and
columns, no questions asked. These two examples show that, instead of
just viewing pages from the outside, you now have a key to get inside
the machine and start working its controls. That is the hook that grabs
people and gets them seriously interested in web page design.

Imagine if you could take this idea of controlling the page-reading
machine to the next level. Imagine if, instead of ordering the machine to
process mere tags and text, you could issue much more sophisticated

commands that could control the inner workings of the page-reading
machine. Who wouldn't want that?

Well, that’s the premise behind JavaScript. It’s essentially just a
collection of commands that you can wield to control the browser. Like
HTML tags, JavaScript commands are inserted directly into the web
page file. When the browser does its line-by-line reading of the file and
it comes across a JavaScript command, it executes that command, just
like that.

However, the key here is that the amount of control JavaScript gives you
over the page-reading machine is much greater than what you get with
HTML tags. The reason is that JavaScript is a full-fledged programming
language. Although the L in HTML stands for language, there isn’t even
the tiniest hint of a programming language associated with HTML.
JavaScript, though, is the real programming deal.

What Is a Programming Language?
So what does it mean to call something a “programming language”? To
understand this term, you need look no further than the language you use
to speak and write. At its most fundamental level, human language is
composed of two things — words and rules:

The words are collections of letters that have a common meaning
among all the people who speak the same language. For example, the
word book denotes a type of object, the word heavy denotes a
quality, and the word read denotes an action.
The rules are the ways in which words can be combined to create
coherent and understandable concepts. If you want to be understood
by other speakers of the language, you have only a limited number of
ways to throw two or more words together. I read a heavy book is an
instantly comprehensible sentence, but book a I read heavy is
gibberish.

The key goal of human language is being understood by someone else
who is listening to you or reading something you wrote. If you use the

proper words to refer to things and actions, and if you combine words
according to the rules, the other person will understand you.

A programming language works in more or less the same way. That is,
it, too, has words and rules:

The words are a set of terms that refer to the specific things that your
program works with (such as the browser window) or the specific
ways in which those things can be manipulated (such as sending the
browser to a specified address). They’re known as reserved words or
keywords.
The rules are the ways in which the words can be combined to
produce the desired effect. In the programming world, these rules are
known as the language’s syntax.

In JavaScript, many of the words you work with are straightforward.
Some refer to aspects of the browser, some refer to parts of the web
page, and some are used internally by JavaScript. For example, in
JavaScript, the word document refers to a specific object (the web page
as a whole), and the word write() refers to a specific action (writing
data to the page).

The crucial concept here is that just as the fundamental purpose of
human language is to be understood by another person, the fundamental
purpose of a programming language is to be understood by whatever
machine is processing the language. With JavaScript, that machine is the
page-reading machine: the web browser.

You can make yourself understood by the page-reading machine by
using the proper JavaScript words and by combining them using the
proper JavaScript syntax. For example, JavaScript's syntax rules tell you
that you can combine the words document and write() like so:
document.write(). If you use write().document or document write()
or any other combination, the page-reading machine won't understand
you.

The key, however, is that being “understood” by the page-reading
machine really means being able to control the machine. That is, your

JavaScript “sentences” are commands that you want the machine to
carry out. For example, if you want to add the text “Hello World!” to a
web page using JavaScript, you include the following statement in your
code:

document.write("Hello World!");

When the page-reading machine trudges through the HTML file and
comes upon this statement, it will go right ahead and insert the text
between the quotation marks into the page.

Is JavaScript Hard to Learn?
I think there’s a second reason why many folks get jazzed about creating
web pages: It’s not that hard. HTML sounds like it’s a hard thing, and
certainly if you look at the source code of a typical web page without
knowing anything about HTML, the code appears about as intimidating
as anything you can imagine.

However, I’ve found that anyone can learn HTML as long as they start
with the basic tags, examine lots of examples of how they work, and
slowly work their way up to more complex pages. It’s just a matter of
creating a solid foundation and then building on it.

I’m convinced that JavaScript can be approached in much the same way.
I’m certainly not going to tell you that JavaScript is as easy to learn as
HTML. That would be a bald-faced lie. However, I will tell you that
there is nothing inherently difficult about JavaScript. Using our language
analogy, it just has a few more words to know and a few more rules to
learn. But I believe that if you begin with the basic words and rules,
study tons of examples to learn how they work, and then slowly build up
to more complex scripts, you can learn JavaScript programming. I
predict here and now that by the time you finish this book, you’ll even
be a little bit amazed at yourself and at what you can do.

What You Can Do with JavaScript

The people I’ve taught to create web pages are a friendly bunch who
enjoy writing to me to tell me how their pages are coming along. In
many cases, they tell me they’ve hit the web page equivalent of a
roadblock. That is, there’s a certain thing they want to do, but they don’t
know how to do it in HTML. So, I end up getting lots of questions like
these:

How do I display one of those pop-up boxes?
How do I add content to the page on-the-fly?
How can I make something happen when a user clicks a button?
How can I make an image change when the mouse hovers over it?
How can I calculate the total for my order form?

For each question, the start of the answer is always this: “Sorry, but you
can’t do that using HTML; you have to use JavaScript instead.” I then
supply them with a bit of code that they can cut and paste into their web
pages and then get on with their lives.

If you’re just getting started with JavaScript, my goal in this book is to
help you to move from cut-and-paste to code-and-load. That is, you’ll
end up being able to create your own scripts to solve your own unique
HTML and web page problems. I hope to show you that learning
JavaScript is worthwhile because you can do many other things with it:

Ask a web server for data and then display that data on your page.
Add, modify, or remove page text, HTML tags, and even CSS
properties.
Display messages to the user and ask the user for info.
“Listen” for and then perform actions based on events such as a
visitor clicking their mouse or pressing a key.
Send the user’s browser to another page.
Validate the values in a form before submitting it to the server. For
example, you can make sure that certain fields are filled in.

Collect, save, and retrieve data for each of your users, such as site
customizations.

In this book, you learn how to do all these things and many more.

What You Can’t Do with JavaScript
JavaScript is good, but it’s not that good. JavaScript can do many things,
but there’s a long list of things that it simply can’t do. Here’s a sampling
of what falls outside the scope of browser-based JavaScript:

Write data permanently to an existing file. For example, you can’t
take the data from a guest book and add it to a file that stores the
messages.
Access files on the server.
Glean any information about the user, including email or IP
addresses.
Submit credit-card–based purchases for authorization and payment.
Create multiplayer games.
Get data directly from a server database.
Handle file uploads.

JavaScript can’t do most of these things because it’s what is known in
the trade as a client-side programming language, which means that it
runs on the user’s browser (which programming types like to call a
client).

Server-side JavaScript tools can do some of these things, but they’re
super-sophisticated and therefore beyond the scope here. The good news
is that many of the items in the preceding list are doable using PHP and
MySQL, which I discuss later on (starting in Book 4). For now, though,
just know that there are so many things that client-side JavaScript can do
that you’ll have no trouble being as busy as you want to be.

What You Need to Get Started
One of the nicest things about HTML and CSS is that the hurdles you
have to leap to get started are not only low, but few in number. In fact,
you really need only two things, both of which are free: a text editor to
enter the text, tags, and properties; and a browser to view the results.
(You’ll also need a web server to host the finished pages, but the server
isn’t necessary when you’re creating the pages.) Yes, there are high-end
HTML editors and fancy graphics programs, but these fall into the bells
and whistles category; you can create perfectly respectable web pages
without them.

The basic requirements for JavaScript programming are the same as for
HTML: a text editor and a browser. Again, programs are available to
help you write and test your scripts, but you don’t need them.

To learn more about text editors and using web browsers to test your
code, check out Book 1, Chapter 2.

Basic Script Construction
Okay, that’s more than enough theory. It’s time to roll up your sleeves,
crack your knuckles, and start coding. This section describes the
standard procedure for constructing and testing a script. You’ll see a
working example that you can try out, and later you’ll move on to other
examples that illustrate some JavaScript techniques that you’ll use
throughout this book.

The <script> tag
The basic container for a script is, naturally enough, the HTML
<script> tag and its associated </script> end tag:

<script>

 JavaScript statements go here

</script>

 In HTML5, you can use <script> without any attributes. Before
HTML5, the tag would look like this:

<script type="text/javascript">

The type attribute told the browser the programming language being
used in the script, but JavaScript is the default now, so you no longer
need it. You still come across the <script> tag with the type attribute
used on a ton of pages, so I thought I’d better let you know what it
means.

Where do you put the <script> tag?
With certain exceptions, it doesn't matter a great deal where you put your
<script> tag. Some people place the tag between the page’s </head>
and <body> tags. The HTML standard recommends placing the
<script> tag within the page header (that is, between <head> and
</head>), so that's the style I use in this book:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Where do you put the script tag?</title>

 <script>

 JavaScript statements go here

 </script>

 </head>

 <body>

 </body>

</html>

Here are the exceptions to the put-your-script-anywhere technique:

If your script is designed to write data to the page, the <script> tag
must be positioned within the page body (that is, between the <body>
and </body> tags) in the exact position where you want the text to
appear.

If your script refers to an item on the page (such as a form object),
the script must be placed after that item. In most cases where the
script refers to one or more page objects, coders plop the <script>
tag at the bottom of the page body (that is, just above the </body>
tag).
With many HTML tags, you can add one or more JavaScript
statements as attributes directly within the tag.

 It's perfectly acceptable to insert multiple <script> tags within a
single page, as long as each one has a corresponding </script> end
tag, and as long as you don't put one <script> block within another
one.

Example #1: Displaying a message to the user
You’re now ready to construct and try out your first script. This example
shows you the simplest of all JavaScript actions: displaying a simple
message to the user. The following code shows the script within an
HTML file (check out bk03ch01/example01.html in this book’s example
files):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Displaying a Message to the User</title>

 <script>

 alert("Hello Web Coding World!");

 </script>

 </head>

 <body>

 </body>

</html>

As shown here, place the script within the header of a page, save the file,
and then open the HTML file within your browser.

This script consists of just a single line:

alert("Hello Web Coding World!");

This is called a statement, and each statement is designed to perform a
single JavaScript task. You might be wondering about the semicolon (;)
that appears at the end of the statement. Good eye. You use the
semicolon to mark the end of each of your JavaScript statements.

Your scripts will range from simple programs with just a few statements
to huge projects consisting of hundreds of statements. In the example,
the statement runs the JavaScript alert() method, which displays to the
user whatever message is enclosed by quotation marks within the
parentheses (which could be a welcome message, an announcement of
new features on your site, an advertisement for a promotion, and so on).
Figure 1-1 shows the message that appears when you open the file.

FIGURE 1-1: This alert message appears when you open the HTML file containing the
example script.

 A method is a special kind of JavaScript feature. I discuss
methods in detail in Book 3, Chapter 6. For now, however, think of
a method as a kind of action you want your code to perform.

How did the browser know to run the JavaScript statement? When a
browser processes (parses, in the vernacular) a page, it basically starts at
the beginning of the HTML file and works its way down, one line at a
time, as I mention earlier. If it trips over a <script> tag, it knows one or
more JavaScript statements are coming, and it automatically executes
those statements, in order, as soon as it reads them. The exception is

when JavaScript statements are enclosed within a function, which I
explain in Book 3, Chapter 5.

 One of the cardinal rules of JavaScript programming is “one
statement, one line.” That is, each statement must appear on only a
single line, and there should be no more than one statement on each
line. I said “should” in the second part of the preceding sentence
because it's possible to put multiple statements on a single line, as
long as you separate each statement with a semicolon (;). There are
rare times when it’s necessary to have two or more statements on
one line, but you should avoid it for the bulk of your programming
because multiple-statement lines are difficult to read and to
troubleshoot.

Example #2: Writing text to the page
One of JavaScript’s most powerful features is the capability to write text
and even HTML tags and CSS properties to the web page on-the-fly.
That is, the text (or whatever) gets inserted into the page when a web
browser loads the page. What good is that? For one thing, it’s ideal for
time-sensitive data. For example, you might want to display the date and
time that a web page was last modified so that visitors know how old (or
new) the page is. Here’s some code that shows just such a script (check
out bk03ch01/example02.html):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Writing Data to the Page</title>

 </head>

 <body>

 This is a regular line of text.

 <script>

 document.write("Last modified: " + document.lastModified);

 </script>

This is another line of regular text.

 </body>

</html>

Note how the script appears within the body of the HTML document,
which is necessary whenever you want to write data to the page. Figure
1-2 shows the result.

FIGURE 1-2: When you open the file, the text displays the date and time the file was last
modified.

This script makes use of the document object, which is a built-in
JavaScript construct that refers to whatever HTML file (document) the
script resides in (refer to Book 3, Chapter 6 for more about the document
object). The document.write() statement tells the browser to insert into
the web page whatever text is between the quotation marks within the
parentheses. The document.lastModified portion returns the date and
time the web page file was last changed and saved.

A Quick Introduction to the Console
Every major web browser comes with an extensive suit of developer
tools that enable you to monitor, edit, and troubleshoot your HTML,
CSS, and JavaScript code. These tools are so important that I devote an
entire book to them: Check out Book 5.

Arguably the most important of these developer tools is the console,
which is an interactive window that enables you to display messages, run
JavaScript code on the fly, and look for script error messages. You learn
all about the console in Book 5, Chapter 2. However, over the rest of the
chapters here in Book 3, I use the console in many of the examples, so
here I present a brief introduction to this vital tool.

The first thing you need to know is that your JavaScript code can use the
console.log() method to output a message to the console. As you learn
in Book 5, Chapter 2, displaying messages to the console is one of the
most common techniques that developers use when writing and
troubleshooting their code. The simplest method for sending a message
to the console is to invoke console.log with some text:

console.log("message")

Replace message with the text you want to appear in the console. The
following example (bk03ch01/example03.html) sends the message
Hello Web Coding World! to the console:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Sending a Message to the Console</title>

 <script>

 console.log("Hello Web Coding World!");

 </script>

 </head>

 <body>

 </body>

</html>

To display the console in most web browsers, right-click the web page,
click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  +I in
macOS), and then click the Console tab. Figure 1-3 shows Chrome's
Console tab with the Hello Web Coding World! message displayed.

FIGURE 1-3: A message displayed in the Chrome web browser’s console.

Dealing with a Couple of
Exceptional Cases

In this book, I make a couple of JavaScript assumptions related to the
people who’ll be visiting the pages you post to the web:

They have JavaScript enabled in their web browser.
They are using a relatively up-to-date version of a modern web
browser, such as Chrome, Edge, Safari, or Firefox.

These are pretty safe assumptions, but it pays to be a bit paranoid and
wonder how you may handle the teensy percentage of people who don’t
pass one or both tests.

Handling browsers with JavaScript turned off
You don’t have to worry about web browsers not being able to handle
JavaScript because all modern browsers have supported JavaScript for a
very long time. You may, however, want to worry about people who
have turned off their browser’s JavaScript functionality. Why would
someone do such a thing? Many people disable JavaScript because
they’re concerned about security, they don’t want cookies written to their
hard drives, and so on.

To handle these iconoclasts, place the <noscript> tag within the body of
the page:

<noscript>

 <p>

 Hey, your browser has JavaScript turned off!

 </p>

 <p>

 Okay, cool, but remember that some site features

 require JavaScript, so a few things may not work

 properly or at all.

 </p>

</noscript>

If the browser has JavaScript enabled, the browser doesn't display any of
the text within the <noscript> tag. However, if JavaScript is disabled,
the browser displays the text and tags in the <noscript> tag to the user.

To test your site with JavaScript turned off, here are the techniques to
use in some popular browsers:

Chrome (desktop): Open Settings, click Privacy and Security, click
Site Settings, click JavaScript, and then select the Don't Allow Sites
to Use JavaScript option, as shown in Figure 1-4.

FIGURE 1-4: JavaScript turned off in Google Chrome.

Chrome (Android): Open Settings, tap Site Settings, tap JavaScript,
and then tap the JavaScript switch off.
Edge: Open Settings, click the Settings menu, click Cookies and Site
Permissions, click JavaScript, and then click the Allowed switch off.
Safari (macOS): Open Settings, click the Advanced tab, select the
Show Develop Menu in Menu Bar, and then close Settings. Choose
Develop ⇒   Disable JavaScript.
Safari (iOS or iPadOS): Open Settings, tap Safari, tap Advanced,
and then tap the JavaScript switch off.
Firefox (desktop): In the address bar, type about:config and press
Enter or Return. If Firefox displays a warning page, click Accept the
Risk and Continue to display the Advanced Preferences page. In the

Search Preference Name box, type javascript. In the search results,
look for the javascript.enabled preference. On the far right of that
preference, click the Toggle button to turn the value of the preference
from true to false, as shown in Figure 1-5.

FIGURE 1-5: JavaScript turned off in Firefox.

Handling very old browsers
In this book, you learn the version of JavaScript called ECMAScript
2015, also known as ECMAScript 6, or just ES6. Why this version, in
particular, and not any of the later versions? Two reasons:

ES6 has excellent browser support, with more than 98 percent of all
current browsers supporting the features released in ES 6. Later
versions of JavaScript have less support.
ES6 has everything you need to add all kinds of useful and fun
dynamic features to your pages. Unless you're a professional
programmer, the features released in subsequent versions of
JavaScript are way beyond what you need.

Okay, so what about that few percent of browsers that don’t support
ES6?

First, know that the number of browsers that choke on ES6 features is
getting smaller every day. Sure, it’s 2 percent now (about 1.7 percent,
actually), but it will be 1 percent in six months, a .5 percent in a year,
and so on until the numbers just get too small to measure.

Second, the percentage of browsers that don’t support ES6 varies by
region (it’s higher in many countries in Africa, for example) and by
environment. Most of the people running browsers that don’t fully
support ES6 are using Internet Explorer 11, and most of those people are
in situations in which they can’t upgrade (some corporate environments,
for example).

If luck has it that your web pages draw an inordinate share of these older
browsers, you may need to eschew the awesomeness of ES6 in favor of
the tried-and-true features of ECMAScript 5. To that end, as I introduce
each new JavaScript feature, I point out those that arrived with ES6 and
let you know if there’s a simple fallback or workaround (known as a
polyfill in the JavaScript trade) if you need to use ES5.

Adding Comments to Your Code
A script that consists of just a few lines is usually easy to read and
understand. However, your scripts won't stay that simple for long, and
these longer and more complex creations will be correspondingly more
difficult to read. (This difficulty will be particularly acute if you’re
looking at the code a few weeks or months after you first wrote it.) To
help you decipher your code, it’s good programming practice to make
liberal use of comments throughout the script. A comment is text that
describes or explains a statement or group of statements. Comments are
ignored by the browser, so you can add as many as you deem necessary.

For short, single-line comments, use the double-slash (//). Put the // at
the beginning of the line, and then type in your comment after it. Here's
an example:

// Display the date and time the page was last modified

document.write("Last modified: " + document.lastModified);

You can also use // comments for two or three lines of text. If you have
more than that, however, you’re better off using multiple-line comments
that begin with the /* symbol and end with the */ symbol. Here's an
example:

/*

This script demonstrates JavaScript's ability

to write text to the web page by using the

document.write() method to display the date and time

the web page file was last modified.

This script is Copyright 2024 Paul McFedries.

*/

 Although it’s fine to add quite a few comments when you’re just
starting out, you don’t have to add a comment to everything. If a
statement is trivial or its purpose is glaringly obvious, forget the
comment and move on. If you’re not sure whether to comment
some code, go ahead and add the comment, particularly while
you’re building a script. Adding copious comments to your new
code is a great way to organize your thoughts and keep your code
readable. Later, you can always go back and delete comments that
you no longer need.

Creating External JavaScript Files
Putting a script inside the page header or body isn’t a problem if the
script is relatively short. However, if your script (or scripts) take up
dozens or hundreds of lines, your HTML code can look cluttered.
Another problem you might run into is needing to use the same code on
multiple pages. Sure, you can just copy the code into each page that
requires it, but if you make changes down the road, you need to update
every page that uses the code.

The solution to both problems is to move the code out of the HTML file
and into an external JavaScript file. Moving the code reduces the
JavaScript presence in the HTML file to a single line (as you’ll learn
shortly) and means that you can update the code by editing only the
external file.

Here are some things to note about using an external JavaScript file:

The file must use a plain text format.
Use the .js extension when you name the file.

Don’t use the <script> tag within the file. Just enter your statements
exactly as you would in an HTML file.
The rules for when the browser executes statements within an
external file are identical to those used for statements in an HTML
file. That is, statements outside functions are executed automatically
when the browser comes across your file reference, and statements
within a function aren't executed until the function is called.

To let the browser know that an external JavaScript file exists, add the
src attribute to the <script> tag. For example, if the external file is
named myscripts.js, your <script> tag is set up as follows:

<script src="myscripts.js">

This example assumes that the myscripts.js file is in the same
directory as the HTML file. If the file resides in a different directory,
adjust the src value accordingly. For example, if the myscripts.js file
is in a subdirectory named scripts, you use this:

<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably your own!) by
specifying a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line external JavaScript
file named footer.js:

document.write("Copyright " + new Date().getFullYear());

This statement writes the text Copyright followed by the current year. (I
know: This code looks like gobbledygook right now. Don't sweat it,
because you learn exactly what’s going on here when I discuss the
JavaScript Date object in Book 3, Chapter 9.)

The following code shows an HTML file that includes a reference for
the external JavaScript file (bk03ch01/example03.html):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Using an External JS File</title>

 </head>

 <body>

 <hr>

 <footer>

 <script src="footer.js">

 </script>

 </footer>

 </body>

</html>

When you load the page, the browser runs through the HTML line by
line. When it gets to the <footer> tag, it notices the external JavaScript
file referenced by the <script> tag. The browser loads that file and then
runs the code in the file, which writes the Copyright message to the
page, as shown in Figure 1-6.

FIGURE 1-6: This page uses an external JavaScript file to display a footer message.

Chapter 2
Understanding Variables

IN THIS CHAPTER
 Getting your head around variables
 Assigning names to variables
 Introducing JavaScript data types
 Figuring out numbers
 Stringing strings together

You should imagine variables as tentacles, rather than boxes. They do
not contain values; they grasp them.

—MARIJN HAVERBEKE
You may have heard about — or perhaps even know — someone who,
through mishap or misfortune, has lost the ability to retain short-term
memories. If you introduce yourself to one of these folks, they’ll be
asking you your name again five minutes later. They live in a perpetual
present, seeing the world anew every minute of every day.

What, I’m sure you’re asking yourself by now, can any of this possibly
have to do with coding? Just that, by default, your JavaScript programs
also live a life without short-term memory. The web browser executes
your code one statement at a time, until no more statements are left to
process. It all happens in the perpetual present. Ah, but notice that I refer
to this lack of short-term memory as the default state of your scripts. You
have the power to give your scripts the gift of short-term memory, by
using handy little chunks of code called variables. In this chapter, you
delve into variables, which is a fundamental and crucial programming
topic. You investigate what variables are, what you can do with them,
and how to wield them in your JavaScript code.

Understanding Variables
Why would a script need short-term memory? Because one of the most
common concepts that crops up when coding is the need to store a
temporary value for use later on. In most cases, you want to use that
value a bit later in the same script. However, you may also need to use it
in some other script, to populate an HTML form, or as part of a larger or
more complex calculation.

For example, your page may have a button that toggles the page text
between a larger font size and the regular font size, so you need some
way to remember that choice. Similarly, if your script performs
calculations, you may need to set aside one or more calculated values to
use later. For example, if you’re constructing a shopping cart script, you
may need to calculate taxes on the order. To do that, you must first
calculate the total value of the order, store that value, and then later take
a percentage of it to work out the tax.

In programming, the way you save a value for later use is by storing it in
a variable. A variable is a small chunk of computer memory set aside for
holding program data. The good news is that the specifics of how the
data is stored and retrieved from memory happen well behind the scenes,
so it isn’t something you ever have to worry about. As a coder, working
with variables involves just three things:

Creating (or declaring) variables
Assigning values to those variables
Including the variables in other statements in your code

The next three sections fill in the details.

Declaring a variable with let
The process of creating a variable is called declaring in programming
terms. All declaring really means is that you’re supplying the variable
with a name and telling the browser to set aside a bit of room in memory
to hold whatever value you end up storing in the variable. To declare a

variable in JavaScript, you use the let keyword, followed by a space,
the name of the variable, and the usual line-ending semicolon. For
example, to declare a variable named interestRate, you'd use the
following statement:

let interestRate;

 Here are a few things to bear in mind when you’re declaring
variables in your scripts:

Declare a variable only once. Although you’re free to use a variable
as many times as you need to in a script, you declare the variable
only once. Trying to declare a variable more than once will cause an
error.
Use a comment to describe each variable. Variables tend to
proliferate to the point where it often becomes hard to remember
what each variable represents. You can make the purpose of each
variable clear by adding a comment right after the variable
declaration, like so:

let interestRate; // Annual interest rate for the loan calculation

Declare each variable before you use it. If you use a variable
before you declare it, you’ll get an error.

 When I say that you’ll “get an error,” I don’t mean that an
error message will pop up on the screen. The only thing you’ll notice
is that your script doesn’t run. To read the error message, you need to
access your browser’s console, as I describe in Book 3, Chapter 1.
For details on JavaScript errors and how to troubleshoot them, refer
to Book 5, Chapter 2.
Declare each variable right before you first use it. You’ll make
your programming and debugging (refer to Book 5, Chapter 2) life

much easier if you follow this one simple rule: Declare each variable
just before (or as close as possible to) the first use of the variable.

 The let keyword was introduced in ECMAScript 2015 (ES6). If
you need to support really old browsers — I’m looking at you
Internet Explorer 11 and earlier —use the var keyword, instead.

Storing a value in a variable
After your variable is declared, your next task is to give it a value. You
use the assignment operator — the equals (=) sign — to store a value in a
variable, as in this general statement:

variableName = value;

Here's an example that assigns the value 0.06 to a variable named
interestRate:

interestRate = 0.06;

Note, too, that if you know the initial value of the variable in advance,
you can combine the declaration and initial assignment into a single
statement, like this:

let interestRate = 0.06;

interestRate = 0.06 / 12;

As a final note about using variable assignment, check out a variation
that often causes some confusion among new programmers. Specifically,
you can set up a statement that assigns a new value to a variable by
changing its existing value. Here's an example:

interestRate = interestRate / 12;

If you’ve never come across this kind of statement before, it probably
looks a bit illogical. How can something equal itself divided by 12? The
secret to understanding such a statement is to remember that the browser
always evaluates the right side of the statement — that is, the expression
to the right of the equals sign (=) — first. In other words, it takes the

current value of interestRate, which is 0.06, and divides it by 12. The
resulting value is what's stored in interestRate when all is said and
done. For a more in-depth discussion of operators and expressions, head
over to Book 3, Chapter 3.

 Because of this evaluate-the-expression-and-then-store-the-
result behavior, JavaScript assignment statements shouldn’t be read
as “variable equals expression” or “variable is the same as
expression.” Instead, it makes more sense to read them as “variable
is set to expression” or “variable assumes the value given by
expression.” Reading assignment statements this way helps to
reinforce the important concept that the expression result is being
stored in the variable.

Declaring a variable another way: const
The word variable implies that the value assigned to a variable is
allowed to vary, which is the case for most variables you declare. Most,
but not all. Sometimes your scripts will need to use a value that remains
constant. For example, suppose you’re building a calculator that
converts miles to kilometers. The conversion factor is 1.60934, and that
value will remain constant throughout your script.

It’s good programming practice to store such values in a variable for
easier reading. However, if you use let for this declaration, you run the
risk of accidentally changing the value somewhere in your code because
variables declared with let can change.

To avoid accidentally changing a value that you want to remain constant,
you can declare the variable using the const (short for constant)
keyword instead. Here's the general syntax:

const variableName = value;

Note that, unlike with let, you must assign a value to the variable when
you declare it with const. Here's an example that declares a variable
named milesToKilometers and assigns it the value 1.60934:

const milesToKilometers = 1.60934;

 Most JavaScript programmers refer to any variable declared
with const as a constant, despite the oxymoronic undertow of the
phrase constant variable.

 Are there any real benefits to using const over let in cases
where a variable's value must never change? Yep, there are two
pretty good ones:

Using the const keyword is a reminder that you're dealing with a
non-changing value, which helps you to remember not to assign the
variable a new value.
If you do try to change the value of a variable declared with const,
you’ll generate an error, which is another way to remind you that the
variable’s value is not to be messed with.

 Given these advantages, many JavaScript programmers use
const by default and use let only for variables that they know will
change. As your code progresses, if you find that a const variable
needs to change, you can go back and change const to let.

Using variables in statements
With your variable declared and assigned a value, you can then use that
variable in other statements. When the browser comes across the
variable, it goes to the computer's memory, retrieves the current value of
the variable, and then substitutes that value into the statement. The
following code presents an example (check out
bk03ch02/example01.html in this book’s example files):

let interestRate = 0.06;

interestRate = interestRate / 12;

console.log(interestRate);

This code declares a variable named interestRate with the value 0.06;
it then divides that value by 12 and stores the result in the variable. The
console.log() statement then displays the current value of the variable,
as shown in Figure 2-1.

FIGURE 2-1: When you use a variable in a statement, the browser substitutes the current
value of that variable.

 To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  
+I in macOS), and then click the Console tab.

Naming Variables: Rules and Best
Practices

If you want to write clear, easy-to-follow, and easy-to-debug scripts (and
who doesn't?), you can go a long way toward that goal by giving careful
thought to the names you use for your variables. This section helps by
running through the rules you need to follow and by giving you some
tips and guidelines for creating good variable names.

Rules for naming variables
JavaScript has only a few rules for variable names:

The first character must be a letter or an underscore (_). You can’t
use a number as the first character.
The rest of the variable name can include any letter, any number, or
the underscore. You can’t use any other characters, including spaces,
symbols, and punctuation marks.
As with the rest of JavaScript, variable names are case sensitive.
That is, a variable named InterestRate is treated as a different
variable than one named interestRate.

There's no limit to the length of the variable name.
You can’t use one of JavaScript’s reserved words as a variable name
(such as let, const, or var). All programming languages have a
supply of words that are used internally by the language and that
can't be used for variable names, because doing so would cause
confusion (or worse). Check out “JavaScript Reserved Words,” later
in this chapter, for a complete list.

Ideas for good variable names
The process of declaring a variable doesn’t take much thought, but that
doesn’t mean you should just type any old variable name that comes to
mind. Take a few extra seconds to come up with a good name by
following these guidelines:

Make your names descriptive. Sure, using names that are just a few
characters long makes them easier to type, but I guarantee that you
won’t remember what the variables represent when you look at the
script down the road. For example, if you want a variable to
represent an account number, use accountNumber or accountNum
instead of, say, acnm or accnum.

 Mostly avoid single-letter names. Although it's best to
avoid single-letter variable names, such short names are accepted in
some places, such as when constructing loops, as described in Book
3, Chapter 4.
Use multiple words with no spaces. The best way to create a
descriptive variable name is to use multiple words. However,
because JavaScript doesn’t take kindly to spaces in names, you need
some way of separating the words to keep the name readable. The
two standard conventions for using multi-word variable names are
camelCase, where you cram the words together and capitalize all but
the first word (for example, lastName), or separating each word with
an underscore (for example, last_name). I prefer the former style, so
I use it throughout this book.
Use separate naming conventions. Use one naming convention for
JavaScript variables and a different one for HTML identifiers and
CSS classes. For example, if you use camelCase for JavaScript
variables, use dashes for id values and class names.

Differentiate your variable names from JavaScript keywords.
Try to make your variable names look as different from JavaScript's
keywords and other built-in terms (such as alert) as possible.
Differentiating variable names helps avoid the confusion that can
arise when you look at a term and can’t remember if it’s a variable or
a JavaScript word.
Don’t make your names too long. Although short, cryptic variable
names are to be shunned in favor of longer, descriptive names, that
doesn’t mean you should be using entire sentences. Extremely long
names are inefficient because they take so long to type, and they’re
dangerous because the longer the name, the more likely you are to
make a typo. Names of 2 to 4 words and 8 to 20 characters should be
all you need.

Understanding Literal Data Types
In programming, a variable’s data type specifies what kind of data is
stored in the variable. The data type is a crucial idea because it
determines not only how two or more variables are combined (for
example, mathematically) but also whether they can be combined at all.
Literals are a special class of data type, and they cover those values that
are fixed (even if only temporarily). For example, consider the following
variable assignment statement:

let todaysQuestion = "What color is your parachute?";

Here, the text What color is your parachute? is a literal string value.
JavaScript supports three kinds of literal data types: numeric, string, and
Boolean. The next three sections discuss each type.

Working with numeric literals
Unlike many other programming languages, JavaScript treats all
numbers the same, so you don't have to do anything special when
working with the two basic numeric literals, which are integers and
floating-point numbers:

Integers: These are numbers that don’t have a fractional or decimal
part. So, you represent an integer using a sequence of one or more
digits, as in these examples:

0

42

2001

-20

Floating-point numbers: These are numbers that do have a
fractional or decimal part. Therefore, you represent a floating-point
number by first writing the integer part, followed by a decimal point,
followed by the fractional or decimal part, as in these examples:

0.07

3.14159

-16.6666667

7.6543e+21

1.234567E-89

Exponential notation
The last two floating-point examples require a bit more explanation.
These two use exponential notation, which is an efficient way to
represent really large or really small floating-point numbers. Exponential
notation uses an e (or E) followed by the exponent, which is a number
preceded by a plus sign (+) or a minus sign (-).

You multiply the first part of the number (that is, the part before the e or
E) by 10 to the power of the exponent. Here's an example:

9.87654e+5;

The exponent is 5, and 10 to the power of 5 is 100,000. So multiplying
9.87654 by 100,000 results in the value 987,654.

Here’s another example:
3.4567e-4;

The exponent is −4, and 10 to the power of −4 is 0.0001. So, multiplying
3.4567 by 0.0001 results in the value .00034567.

JavaScript has a ton of built-in features for performing mathematical
calculations. To get the details on these, head for Book 3, Chapter 9.

 Earlier, I mention that JavaScript treats all numeric literals the
same. But what I really meant was that JavaScript treats the
numeric literals as floating-point values. This is fine (after all,
there’s no practical difference between 2 and 2.0), but it does put a
limit on the maximum and minimum integer values that you can
work with safely. The maximum is 9007199254740992 and the
minimum is -9007199254740992. If you use numbers outside this
range (unlikely, but you never know), JavaScript won’t be able to
maintain accuracy. One solution is to use BigInt values, either by
appending n to the end of a large integer value or by using

BigInt(value), where value is a variable containing a large
integer value.

Hexadecimal integer values
You'll likely deal with the usual decimal (base-10) number system
throughout most of your JavaScript career. However, just in case you
have cause to work with hexadecimal (base-16) numbers, this section
shows you how JavaScript deals with them.

The hexadecimal number system uses the digits 0 through 9 and the
letters A through F (or a through f), where these letters represent the
decimal numbers 10 through 15. So, what in the decimal system would
be 16 is actually 10 in hexadecimal. To specify a hexadecimal number in
JavaScript, begin the number with a 0x (or 0X), as shown in the
following examples:

0x23;

0xff;

0X10ce;

Working with string literals
A string literal is a sequence of one or more letters, numbers, or
punctuation marks, enclosed either in double quotation marks (") or
single quotation marks ('). Here are some examples:

"Web Coding and Development";

'August 23, 2024';

"";

"What's the good word?";

 The string "" (or '' — two consecutive single quotation marks)
is called a null string or an empty string. It represents a string that
doesn't contain any characters.

Using quotation marks within strings
The final example in the preceding section shows that it’s okay to insert
one or more instances of one of the quotation marks (such as ') inside a

string that’s enclosed by the other quotation mark (such as "). Being able
to nest quotation marks comes in handy when you need to embed one
string inside another, which is common (particularly when using bits of
JavaScript in HTML tags). Here's an example:

onsubmit="processForm('testing')";

However, it’s illegal to insert in a string one or more instances of the
same quotation mark that encloses the string, as in this example:

"This is "illegal" in JavaScript.";

Understanding escape sequences
What if you must include, say, a double quotation mark within a string
that’s enclosed by double quotation marks? Having to nest the same type
of quotation mark is rare, but it is possible if you precede the double
quotation mark with a backslash (\), like this:

"The double quotation mark (\") encloses this string.";

The \" combination is called an escape sequence. You can combine the
backslash with a number of other characters to form other escape
sequences, and each one enables the browser to represent a character
that, by itself, would be illegal or not representable otherwise. Table 2-1
lists the most commonly used escape sequences.

TABLE 2-1 Common JavaScript Escape Sequences

Escape Sequence Character It Represents

\' Single quotation mark

\" Double quotation mark

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\\ Backslash

The following code shows an example script that uses the \n escape
sequence to display text on multiple lines with an alert box.

console.log("This is line 1.\nSo what. This is line 2.");

Figure 2-2 shows the result.

FIGURE 2-2: Using the \n escape sequence enables you to format text so that it displays
on different lines.

To learn how to combine two or more string literals, check out Book 3,
Chapter 3. Also, JavaScript has a nice collection of string manipulation
features, which I discuss in Book 3, Chapter 9.

Working with Boolean literals
Booleans are the simplest of all the literal data types because they can
assume only one of two values: true or false. That simplicity may
make it seem as though Booleans aren't particularly useful, but the
capability to test whether a particular variable or condition is true or
false is invaluable in JavaScript programming.

You can assign Boolean literals directly to a variable, like this:
taskCompleted = true;

Alternatively, you can work with Boolean values implicitly using
expressions:

currentMonth === "August"

The comparison expression currentMonth === "August" asks the
following: Does the value of the currentMonth variable equal the string

"August"? If it does, the expression evaluates to the Boolean value true;
if it doesn't, the expression evaluates to false. I discuss much more
about comparison expressions in Book 3, Chapter 3.

JavaScript Reserved Words
As I mention earlier, JavaScript has a bunch of reserved words that you
need to avoid when naming your variables. Table 2-2 presents a list of
the JavaScript reserved words. It’s illegal to use any of these words as
variable or function names.

TABLE 2-2 JavaScript’s Reserved Words
abstract arguments await boolean

break byte case catch

char class const continue

debugger default delete do

double else enum eval

export extends false final

finally float for function

goto if implements import

in instanceof int interface

let long native new

null package private protected

public return short static

super switch synchronized this

throw throws transient true

try typeof var void

volatile while with yield

JavaScript Keywords
Table 2-3 presents the complete list of keywords used in JavaScript and
HTML that you should avoid using for variable and function names. It's
not illegal to use these words, but using them outside their natural
habitat could cause confusion.

TABLE 2-3 JavaScript and HTML Keywords
alert all anchor anchors

area Array assign blur

button checkbox clearInterval clearTimeout

clientInformation close closed confirm

constructor crypto Date decodeURI

decodeURIComponent defaultStatus document element

elements embed embeds encodeURI

encodeURIComponent escape eval event

fileUpload focus form forms

frame frameRate frames function

hasOwnProperty hidden history image

images Infinity innerHeight innerWidth

isFinite isNaN isPrototypeOf layer

layers length link location

Math mimeTypes name NaN

navigate navigator Number Object

offscreenBuffering onblur onclick onerror

onfocus onkeydown onkeypress onkeyup

onload onmousedown onmouseover onmouseup

onsubmit open opener option

outerHeight outerWidth packages pageXOffset

pageYOffset parent parseFloat parseInt

password pkcs11 plugin prompt

propertyIsEnum prototype radio reset

screenX screenY scroll secure

select self setInterval setTimeout

status String submit taint

text textarea top toString

undefined unescape untaint valueOf

window

Chapter 3
Building Expressions

IN THIS CHAPTER
 Understanding what expressions are
 Figuring out numeric expressions
 Tying up string expressions
 Getting the hang of comparison expressions
 Learning about logical expressions

It’s not at all important to get it right the first time. It’s vitally important
to get it right the last time.

—DAVID THOMAS
The JavaScript variables described in the preceding chapter can’t do all
that much by themselves. They don’t become useful members of your
web code community until you give them something productive to do.
For example, you can assign values to them, use them to assign values to
other variables, use them in calculations, and so on.

This productive side of variables in particular, and JavaScript-based web
code in general, is brought to you by a JavaScript feature known as the
expression. When coding in JavaScript, you use expressions constantly,
so it’s vital to understand what they are and to get comfortable with the
types of expressions available to you. Every JavaScript coder is
different, but I can say without fear of contradiction that every good
JavaScript coder is fluent in expressions.

This chapter takes you through everything you need to know about
expressions. You discover some expression basics and then you explore
a number of techniques for building powerful expressions using
numbers, strings, and Boolean values.

Understanding Expression Structure
To be as vague as I can be, an expression is a collection of symbols,
words, and numbers that performs a calculation and produces a result.
That’s a nebulous definition, I know, so I'll make it more concrete.

When your check arrives after a restaurant meal, one of the first things
you probably do is take out your smartphone and use the calculator to
figure out the tip amount. The service and food were good, so you’re
thinking 20 percent is appropriate. With phone in hand, you tap in the
bill total, tap the multiplication button, tap 20%, and then tap Equals.
Voilà! The tip amount appears on the screen and you’re good to go.

A JavaScript expression is something like this kind of procedure because
it takes one or more inputs, such as a bill total and a tip percentage, and
combines them in some way — for example, by using multiplication. In
expression lingo, the inputs are called operands, and they’re combined
by using special symbols called operators:

operand: An input value for an expression. It is, in other words, the
raw data that the expression manipulates to produce its result. It
could be a number, a string, a variable, a function result (refer to
Book 3, Chapter 5), or an object property (refer to Book 3, Chapter
6).
operator: A symbol that represents a particular action performed on
one or more operands. For example, the * operator represents
multiplication, and the + operator represents addition. I discuss the
various JavaScript operators throughout this chapter.

Here's an expression that calculates a tip amount and assigns the result to
a variable:

tipAmount = billTotal * tipPercentage;

The expression is everything to the right of the equals sign (=). Here,
billTotal and tipPercentage are the operands, and the multiplication
sign (*) is the operator.

 Expression results always have a particular data type —
numeric, string, or Boolean. So, when you're working with
expressions, always keep in mind what type of result you need and
then choose the appropriate operands and operators accordingly.

 Another analogy I like to use for operands and operators is a
grammatical one — that is, if you consider an expression to be a
sentence, the operands are the nouns (the things) of the sentence,
and the operators are the verbs (the actions) of the sentence.

Building Numeric Expressions
Calculating a tip amount on a restaurant bill is a mathematical
calculation, so you may be thinking that JavaScript expressions are
going to be mostly mathematical. If I were standing in front of you and
happened to have a box of gold stars on me, I’d certainly give you one
because, yes, math-based expressions are probably the most common
type you’ll come across.

In JavaScript, a mathematical calculation is called a numeric expression,
and it combines numeric operands and arithmetic operators to produce a
numeric result. This section discusses all the JavaScript arithmetic
operators and shows you how best to use them to build useful and handy
numeric expressions.

A quick look at the arithmetic operators
JavaScript’s basic arithmetic operators are more or less the same as those
found in your smartphone’s calculator app or on the numeric keypad of
your computer’s keyboard, plus a couple of extra operators for more
advanced work. Table 3-1 lists the basic arithmetic operators you can use

in your JavaScript expressions. (In subsequent sections I discuss each
one in more detail.)

TABLE 3-1 JavaScript Arithmetic Operators

Operator Name Example Result

+ Addition 10 + 4 14

++ Increment 10++ 11

- Subtraction 10 - 4 6

- Negation -10 -10

-- Decrement 10-- 9

* Multiplication 10 * 4 40

/ Division 10 / 4 2.5

% Modulus 10 % 4 2

JavaScript also comes with a few extra operators that combine some of
the arithmetic operators and the assignment operator, which is the
humble equals sign (=) that assigns a value to a variable. Table 3-2 lists
these arithmetic assignment operators.

TABLE 3-2 JavaScript Arithmetic Assignment
Operators

Operator Example Equivalent

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

^= x ^= y x = x ^ y

%= x %= y x = x % y

Using the addition (+) operator
You use the addition operator (+) to calculate the sum of two operands.
The operands are usually of the numeric data type, which means they
can be numeric literals, variables that store numeric values, or methods
or functions that return numeric values. Here's an example (check out
bk03ch03/example01.html in this book’s example files):

widthMax = widthContent + widthSidebar + 100;

You could use such an expression in a web app when you need to know
the maximum width to assign to the app’s container. In this case, you
take the width of the app’s content (represented by the widthContent
variable), add the width of the app’s sidebar (the widthSidebar
variable), and then add the literal value 100 (which may be a value in
pixels).

Using the increment (++) operator
One of the most common programming operations involves adding 1 to
an existing value, such as a variable. This operation is called
incrementing the value, and the standard way to write such a statement is
as follows:

someVariable = someVariable + 1;

However, JavaScript offers a much more compact alternative that uses
the increment operator (++), which you place immediately after the
variable name (check out bk03ch03/example02.html):

let someVariable = 0;

someVariable++;

After these two statements are executed, the value of someVariable will
be 1.

 It is now considered bad programming practice to use the
increment operator. Why? Most of the reasons are fairly technical,
but the main reason is that this operator is a tad cryptic and makes

code hard to read. Almost all modern code gurus recommend using
the addition assignment operator (+=), instead of the increment
operator (refer to “Using the arithmetic assignment operators,” later
in this chapter).

That is, instead of this:
someVariable++;

use this:
someVariable += 1;

 THE PRE- AND POST-INCREMENT
OPERATORS

JavaScript coders often use the ++ operator as part of an expression that assigns a
value to another variable. Again, I don't recommend using this method, but I thought
you should know about it just in case you come across it in someone else’s code.

The first alternative use of ++ is to increment a variable and then assign this new value
to another variable, using the following form:

someVariable = ++anotherVariable;

This gives the same result as the following two statements:

anotherVariable = anotherVariable + 1;

someVariable = anotherVariable;

Because the ++ appears before the variable, it is often called the pre-increment
operator.

The second alternative use of ++ is called the post-increment operator:

someVariable = anotherVariable++;

In this case, the ++ operator appears after the variable. Big whoop, right? Actually, there
is a subtle but crucial difference. The following two statements do the same thing as the
post-increment operator:

someVariable = anotherVariable;

anotherVariable = anotherVariable + 1;

As you can see, the first variable is set equal to the second variable and then the
second variable is incremented.

Using the subtraction and negation (-) operators
The subtraction operator (-) subtracts the numeric value to the right of
the operator from the numeric value to the left of the operator. For
example, consider the following statements (bk03ch03/example03.html):

const targetYear = 2025;

const birthYear = 1985;

const yearsDifference = targetYear – birthYear;

The third statement subtracts 1985 from 2025 and the result — 40 — is
stored in the yearsDifference variable.

The negation operator (-) is the same symbol, but it works in a totally
different way. You use it as a kind of prefix by appending it to the front
of an operand. The result is a new value that has the opposite sign of the
original value. In other words, applying the negation operator to an
operand is the same as multiplying the operand by -1. This means that
the following two statements are identical:

negatedValue = -originalValue;

negatedValue = originalValue * -1;

Using the decrement (--) operator
Another common programming operation is subtracting 1 from an
existing variable or other operand. This operation is called decrementing
the value, and the usual way to go about this is with a statement like this
one:

thisVariable = thisVariable - 1;

However (you just knew there was going to be a however), JavaScript
offers a much more svelte alternative that takes advantage of the
decrement operator (--), which you place immediately after the variable
name (bk03ch03/example04.html):

let thisVariable = 1;

thisVariable--;

 As with the increment operator, using the decrement operator is
frowned upon these days. Instead, your code will read better if you
use the subtraction assignment operator (-=) instead of the
decrement operator (refer to “Using the arithmetic assignment
operators,” later in this chapter).

That is, instead of this:
thisVariable--;

use this:
thisVariable -= 1;

 THE PRE- AND POST-DECREMENT
OPERATORS

JavaScript programmers often use the -- operator as part of an expression that assigns
a value to another variable. I don't recommend using this method, but you should know
about it just in case you trip over it in someone else’s code.

The first alternative use of -- is to decrement a variable and then assign this new value
to another variable, which is called the pre-decrement form:

thisVariable = --thatVariable;

This has the same effect as the following two statements:

thatVariable = thatVariable – 1;

thisVariable = thatVariable;

The second alternative use of -- is to assign the value of a variable to another variable
and then decrement the first variable, which is called the post-decrement form:

thisVariable = thatVariable--;

Again, the following two statements do the same thing:

thisVariable = thatVariable;

thatVariable = thatVariable – 1;

As you can see, the first variable is set equal to the second variable and then the
second variable is decremented.

Using the multiplication (*) operator
The multiplication operator (*) multiplies two operands. Here's an
example (bk03ch03/example05.html):

const columns = 8;

const columnWidth = 100;

const totalWidth = columns * columnWidth;

You might use this code when you want to calculate the width taken up
by a web page layout that uses multiple columns. This code assigns
literal numeric values to the variables columns and columnWidth. It then
uses a numeric expression to multiply these two values and assign the
result to the totalWidth variable.

Using the division (/) operator
The division operator (/) divides one numeric value by another. You can
show off at parties by remembering that the number to the left of the
slash (/) is called the dividend, and the number to the right of the / is
called the divisor:

dividend / divisor

Here's an example (bk03ch03/example06.html):
const contentWidth = 600;

const windowWidth = 1200;

const contentRatio = contentWidth / windowWidth;

You can use this code to calculate the portion of the browser’s window
width that the page content is currently using. In this code, the
contentWidth and windowWidth variables are assigned literal numeric
values, and then a numeric expression divides the first of the values by
the second, the result of which is stored in the contentRatio variable.

 Whenever you use the division operator, you must guard against
cases where the divisor is 0. If that happens, your script will
produce an Infinity result, which is almost certain to wreak havoc
on your calculations. Before performing any division, your script
should use an if() statement (refer to see Book 3, Chapter 4) to
check whether the divisor is 0 and, if it is, to cancel the division or
perform some kind of workaround.

Using the modulus (%) operator
The modulus operator (%) divides one number by another and then
returns the remainder as the result:

dividend % divisor

For example, the following code stores the value 1 in the myRemainder
variable because 5 (the myDivisor value; also known as the modulus)
divides into 16 (the myDividend value) three times and leaves a
remainder of 1 (bk03ch03/example07.html):

const myDividend = 16;

const myDivisor = 5;

const myRemainder = myDividend % myDivisor;

On a more practical level, suppose that you are trying to come up with a
web-page color scheme and want to use two colors that are complements
of each other. Complementary means that the two hues are on the
opposite side of the color wheel, so one way to calculate the second
color is by adding 180 to the first color's hue value. That approach works
when the hue of the first color is between 0 and 179, which gives second
color hue values between 180 and 359. However, an initial hue of 180,
181, and so on produces a second hue of 360, 361, and so on, which are
illegal values. You can work around that issue by using a modulus
expression like this (bk03ch03/example07.html):

complementaryColor = (originalColor + 180) % 360;

This statement adds 180 to the original color, but then uses % 360 to
return the remainder when divided by 360 to avoid illegal values.

Using the arithmetic assignment operators
Your web coding scripts will often update the value of a variable by
adding to it the value of some other operand. Here’s an example:

totalInterestPaid = totalInterestPaid + monthlyInterestPaid

Coders are an efficiency-loving bunch, so the fact that the
totalInterestPaid variable appears twice in that statement is like
chewing tin foil to your average programmer. The JavaScript brain trust
hates that kind of thing, too, so they came up with the addition
assignment operator (+=), which you use like so
(bk03ch03/example08.html):

totalInterestPaid += monthlyInterestPaid

Yep, this statement does exactly the same thing as the first one, but it
does it with 19 fewer characters. Sweet!

If you need to subtract one operand from another, again you can do it the
old-fashioned way:

principalOwing = principalOwing - monthlyPrincipalPaid

To avoid other coders laughing behind your back at your inefficiency,
use the subtraction assignment operator (-=), which works like this
(bk03ch03/example08.html):

principalOwing -= monthlyPrincipalPaid

 Like the increment and decrement operators, the arithmetic
assignment operators are designed to save wear and tear on your
typing fingers and to reduce the size of your scripts, particularly if
you use long variable names.

Building String Expressions

A string expression is one where at least one of the operands is a string,
and the result of the expression is another string. String expressions are
straightforward in the sense that there is only one operator to deal with:
concatenation (+). You use this operator to combine (or concatenate)
strings within an expression. For example, the expression "Java" +
"Script" returns the string "JavaScript". Note, however, that you can
also use strings with the comparison operators discussed in the next
section.

It's unfortunate that the concatenation operator is identical to the addition
operator because this similarity can lead to some confusion. For
example, the expression 2 + 2 returns the numeric value 4 because the
operands are numeric. However, the expression "2" + "2" returns the
string value 22 because the two operands are strings.

To further complicate matters, JavaScript will often convert numbers
into strings depending on the context:

If the first operand in an expression is a string, JavaScript converts
any number in the expression to a string. For example, the following
expression returns the string 222:

"2" + 2 + 2

 BREAKING UP LONG
STATEMENTS

Each of your JavaScript statements should appear on a single line (refer to
Book 4, Chapter 1). An exception to this rule is any statement that contains a
long expression, which you can break into multiple lines as long as the break
occurs immediately before or after an operator. For example, you can write a
string expression in multiple lines as long as the break occurs immediately
before or after the + operator, as in the following examples:

const message1 = "How did the fool and his money " +

 "get together in the first place?";

const message2 = "Never put off until tomorrow that which you "

 + "can put off until the day after tomorrow.";

If the first two or more operands in an expression are numbers and
the rest of the expression contains a string, JavaScript handles the
numeric part of the expression first and then converts the result into a
string. For example, the following expression returns the string 42
because the result of 2 + 2 is 4, which is then concatenated as a
string to "2":

2 + 2 + "2"

As an example of how this conversion can be a problem, consider the
script in the following code (bk03ch03/example09.html):

const preTipTotal = 10.00;

const tipAmount = preTipTotal * 0.15;

const message1 = "Your tip is ";

const message2 = "
Your total bill is ";

document.write(message1 + tipAmount + message2 + preTipTotal + tipAmount);

The preTipTotal variable stores a total for a restaurant bill, and the
tipAmount variable stores 15 percent of the total. The variables
message1 and message2 are initialized with strings, and then the results
are written to the page. In particular, the expression preTipTotal +
tipAmount is included in the document.write() method to display the
total bill. However, as shown in Figure 3-1, the “total” displayed is
101.5 instead of 11.5 (10 plus 1.5 for the tip).

FIGURE 3-1: Concatenating instead of adding the preTipTotal and tipAmount values.

Because the first part of the expression in the document.write() method
was a string, JavaScript converted the preTipTotal and tipAmount
values to strings and concatenated them instead of adding them.

To fix this problem, you could perform the addition in a separate
statement and then use only this sum in the document.write()
expression. The following code demonstrates this approach
(bk03ch03/example10.html):

const preTipTotal = 10.00;

const tipAmount = preTipTotal * 0.15;

const totalBill = preTipTotal + tipAmount;

const message1 = "Your tip is ";

const message2 = "
Your total bill is ";

document.write(message1 + tipAmount + message2 + totalBill);

A new variable named totalBill is declared and is used to store the
preTipTotal + tipAmount sum. totalBill is then used to display the
sum in the document.write() expression, which, as shown in Figure 3-
2, now displays the correct answer.

FIGURE 3-2: Calculating preTipTotal and tipAmount separately fixes the problem.

Building Comparison Expressions
You use comparison expressions to compare the value of two or more
numbers, strings, variables, properties, or function results. If the
expression is true, the expression result is set to the Boolean value true;
if the expression is false, the expression result is set to the Boolean value
false. You'll use comparisons with alarming frequency in your
JavaScript code, so it’s important to understand what they are and how
you use them.

The comparison operators
Table 3-3 summarizes JavaScript’s comparison operators.

TABLE 3-3 JavaScript Comparison Operators

Operator Name Example ResultOperator Name Example Result

== Equality 10 == 4 false

!= Inequality 10 != 4 true

> Greater than 10 > 4 true

< Less than 10 < 4 false

>= Greater than or equal 10 >= 4 true

<= Less than or equal 10 <= 4 false

=== Strict equality "10" === 10 false

!== Strict inequality "10" !== 10 true

Using the equality (==) operator
You use the equality operator (==) (often also called the equals operator)
to compare the values of two operands. If both have the same value, the
comparison returns true; if the operands have different values, the
comparison returns false.

For example, in the following statements the variables booksRead and
weeksPassed contain the same value, so the expression booksRead ==
weeksPassed returns true (check out Figure 3-3 and
bk03ch03/example11.html):

const booksRead = 48;

const weeksPassed = 48;

const bookAWeek = booksRead == weeksPassed;

document.write("Me: I'm averaging a book a week, amirite?
");

document.write("JavaScript: " + bookAWeek);

FIGURE 3-3: The expression booksRead == weeksPassed returns true.

 One of the most common mistakes made by beginning and
experienced JavaScript programmers alike is to use = instead of ==
in a comparison expression. If your script isn't working properly or
is generating errors, one of the first things you should check is that
your equality operator has two equal signs.

 It's important to understand here that the equality operator
returns true when the two operands have the same value even if the
two operands have different data types. (For an explanation of why
this happens, check out “The comparison operators and data
conversion,” later in this chapter.) For example, in the following
code, the bookAWeek variable still winds up with the value true:

const booksRead = 48;

const weeksPassed = "48";

const bookAWeek = booksRead == weeksPassed;

This might be what you want, but you're more likely to want the
comparison to return false. For that you need to use the strict equality
operator (===), discussed later in this section.

Using the inequality (!=) operator
You use the inequality operator (!=) to compare the values of two
operands, but in the opposite sense of the equality operator. That is, if
the operands have different values, the comparison returns true; if both
operands have the same value, the comparison returns false.

In the following statements, for example, the variables currentFontSize
and defaultFontSize contain different values, so the expression
currentFontSize!= defaultFontSize returns true
(bk03ch03/example12.html):

const currentFontSize = 19;

const defaultFontSize = 16;

const usingCustomFontSize = currentFontSize != defaultFontSize;

 The inequality operator returns false (meaning the two
operands have the same value) even if the two operands have
different data types. This might be what you want, but you're more
likely to want the comparison to return true. For that you need to
use the strict inequality operator (!==), discussed later in this
section.

Using the greater than (>) operator
You use the greater than operator (>) to compare two operands to
determine whether the operand to the left of > has a greater value than
the operand to the right of >. If it does, the expression returns true;
otherwise, it returns false.

In the following statements, the value of the contentWidth variable is
more than that of the windowWidth variable, so the expression
contentWidth > windowWidth returns true
(bk03ch03/example13.html):

const contentWidth = 1000;

const windowWidth = 800;

const tooBig = contentWidth > windowWidth;

Using the less than (<) operator
You use the less than operator (<) to compare two operands to determine
whether the operand to the left of < has a lesser value than the operand to
the right of ≤. If it does, the expression returns true; otherwise, it returns
false.

For example, in the statements that follow, the values of the
kumquatsInStock and kumquatsSold variables are the same, so the
expression kumquatsInStock < kumquatsSold returns false (check out
Figure 3-4 and bk03ch03/example14.html):

const kumquatsInStock = 3;

const kumquatsSold = 3;

const backordered = kumquatsInStock < kumquatsSold;

document.write("Are kumquats on back order? " + backordered);

FIGURE 3-4: The expression kumquatsInStock < kumquatsSold returns false.

Using the greater than or equal (>=) operator
You use the greater than or equal operator (>=) to compare two operands
to determine whether the operand to the left of >= has a greater value
than or an equal value to the operand to the right of >=. If either or both
of those comparisons get a thumbs up, the expression returns true;
otherwise, it returns false.

In the following statements, for example, the value of the score variable
is more than that of the prize1Minimum variable and is equal to that of
the prize2Minimum variable. Therefore, both the expressions score >=
prize1Minimum and score >= prize2Minimum return true
(bk03ch03/example15.html):

const score = 90;

const prize1Minimum = 80;

const prize2Minimum = 90;

const getsPrize1 = score >= prize1Minimum;

const getsPrize2 = score >= prize2Minimum;

Using the less than or equal (<=) operator
You use the less than or equal operator (<=) to compare two operands to
determine whether the operand to the left of <= has a lesser value than or
an equal value to the operand to the right of <=. If either or both of those
comparisons get a nod of approval, the expression returns true;
otherwise, it returns false.

For example, in the following statements, the value of the defects
variable is less than that of the defectsMaximumA variable and is equal to
that of the defectsMaximumB variable. Therefore, both the expressions
defects <= defectsMaximumA and defects <= defectsMaximumB
return true (bk03ch03/example16.html):

const defects = 5

const defectsMaximumA = 10

const defectsMaximumB = 5

const getsBonus = defects <= defectsMaximumA

const getsRaise = defects <= defectsMaximumB

The comparison operators and data conversion
In the examples in the previous sections, I use only numbers to
demonstrate the various comparison operators. However, you can also
use strings and Boolean values. These comparisons are straightforward if
your expressions include only operands of the same data type; that is, if
you compare two strings or two Booleans. (However, refer to my
discussion in the section “Using strings in comparison expressions,” a
bit later in this chapter.)

 Things become less straightforward if you mix data types in a
single comparison expression. In this case, you need to remember
that JavaScript always attempts to convert each operand into a
number before running the comparison. Here's how it works:

If one operand is a string and the other is a number, JavaScript
attempts to convert the string into a number. For example, in the
following statements the string "5" gets converted to the number 5,
so the comparison value1 == value2 returns true:

const value1 = "5";

const value2 = 5;

const result = value1 == value2;

If the string can't be converted to a number (for example, the string
"rutabaga"), the comparison always returns false.

 The null string ("") gets converted to 0.

If one operand is a Boolean and the other is a number, JavaScript
converts the Boolean to a number as follows:

true — This value is converted to 1.

false — This value is converted to 0.
For example, in the following statements, the Boolean true gets
converted to the number 1, so the comparison value1 == value2
returns true:

const value1 = true;

const value2 = 1;

const result = value1 == value2;

If one operand is a Boolean and the other is a string, JavaScript
converts the Boolean to a number as in the preceding item, and
attempts to convert the string into a number. For example, in the
following statements, the Boolean false is converted to the number
0 and the string "0" is converted to the number 0, so the comparison
value1 == value2 returns true:

const value1 = false;

const value2 = "0";

const result = value1 == value2;

If the string can't be converted to a number, the comparison always
returns false.

Using the strict equality (===) operator
The strict equality operator (===) checks whether two operands are
identical, which means that it checks not only that the operands' values
are equal but also that the operands are of the same data type. (This is

why the strict equality operator is sometimes called the identity
operator.)

For example, in the following statements, the albumName variable
contains a string and the albumReleaseDate variable contains a number.
These values are of different data types, so the expression albumName
=== albumReleaseDate returns false (bk03ch03/example17.html):

const albumName = "1984";

const albumReleaseDate = 1984;

const result = albumName === albumReleaseDate;

By comparison, if instead you used the equality operator (==), which
doesn't check the operand data types, the expression albumName ==
albumReleaseDate would return true.

 So, when should you use equality (==) and when should you use
strict equality (===)? Many pro JavaScript coders ignore this
question and just use the strict equality operator all the time. You
should, too.

Using the strict inequality (!==) operator
The strict inequality operator (!==) performs (sort of) the opposite
function of the strict equality operator. That is, it checks to see not only
whether the values of two operands are different but also whether the
operands are of different data types. (This is why the strict inequality
operator is sometimes called the non-identity operator.)

In the following statements, the hasBugs variable contains the Boolean
value true and the totalBugs variable contains a number. These values
are of different data types, so the expression hasBugs !== totalBugs
returns true (bk03ch03/example18.html):

const hasBugs = true;

const totalBugs = 1;

const result = hasBugs !== totalBugs;

Using strings in comparison expressions
Comparison expressions involving only numbers hold few surprises, but
comparisons involving only strings can sometimes raise an eyebrow or
two. The comparison is based on alphabetical order, as you may expect,
so A comes before B and a comes before b. Ah, but this isn't your
father’s alphabetical order. In JavaScript’s world, all the uppercase
letters come before all the lowercase letters, which means that, for
example, B comes before a, so the following expression would return
false:

"a" < "B"

Another thing to keep in mind is that most string comparisons involve
multiple-letter operands. In these situations, JavaScript compares each
string letter-by-letter. For example, consider the following expression:

"Smith" < "Smyth"

The first two letters in each string are the same, but the third letters are
different. The internal value of the i in Smith is less than the internal
value of the y in Smyth, so the preceding comparison would return true.
(Note, too, that after a point of difference is found, JavaScript ignores
the rest of the letters in each string.)

 UNICODE STRING VALUES (OR, WHY
a ISN’T LESS THAN B)

In the "a" < "B" returning false example, what does it mean to say that all the
uppercase letters “come before” all the lowercase letters? The story here is that a
technology called Unicode keeps track of (give or take) every possible character, nearly
150,000 of them as I write this. Each of those characters is given a unique numeric
value. For example, the asterisk (*) has the value 42, whereas the digit 5 has the value
53.

For some reason, Unicode lists the uppercase Latin letters before the lowercase letters.
The letter A is given the value 65, B is 66, and so on to Z, which has the value 90. The

lowercase Latin letters start with a, which is given the value 97, b has 98, and so on up
to z, which has the value 122.

When you use a comparison operator to compare two letters, what JavaScript is
comparing are the letters' Unicode values. That’s why the string "a" (value 97) is
greater than the string "B" (value 66).

Also, a space is a legitimate character for comparison purposes, and its
internal value comes before all other letters and printable symbols. (If
you read the “Unicode string values (or, why a isn't less than B)”
sidebar, you'll understand what I mean when I say that the Unicode value
for the space character is 32.) Consider, then, the following comparison:

"Marge Simpson" > "Margerine"

The expression returns false because the sixth “letter” of the left
operand is a space, whereas the sixth letter of "Margerine" is r.

Using the ternary (?:) operator

 Knowing the comparison operators also enables you to use one
of my favorite expression tools, a complex but oh-so-handy item
called the ternary operator (?:). Here's the basic syntax for using
the ternary operator in an expression:

expression ? result_if_true : result_if_false

The expression is a comparison expression that results in a true or
false value. You can use any variable, function result, or property that
has a true or false Boolean value. The result_if_true is the value
that the expression returns if the expression evaluates to true; the
result_if_false is the value that the expression returns if the
expression evaluates to false.

 In JavaScript, by definition, the following values are the
equivalent of false:

0 (the number zero)

"" (the empty string)

null

undefined (which is, say, the “value” of an uninitialized variable)

Everything else is the equivalent of true.

Here's an example (bk03ch03/example19.html):
const screenWidth = 768;

const maxTabletWidth = 1024;

const screenType = screenWidth > maxTabletWidth ? "Desktop!" : "Tablet!";

The screenWidth variable is initialized to 768, the maxTabletWidth
variable is initialized to 1024, and the screenType variable stores the
value returned by the conditional expression. For the latter, screenWidth
> maxTabletWidth is the comparison expression, "Desktop!" is the
string returned with a true result, and "Tablet!" is the string returned
with a false result. Because screenWidth is less than maxTabletWidth,
the comparison will be false, so "Tablet!" will be the result.

Building Logical Expressions
You use logical expressions to combine or manipulate Boolean values,
particularly comparison expressions. For example, if your code needs to
test whether two different comparison expressions are both true before
proceeding, you can do that with a logical expression.

The logical operators
Table 3-4 lists JavaScript's logical operators.

TABLE 3-4 JavaScript Logical Operators

Operator Name General
Syntax Returned Value

&& AND
expr1 &&

expr2

true if both expr1 and expr2 are true; false otherwise

|| OR
expr1 ||

expr2

true if one or both of expr1 and expr2 are true; false
otherwise

! NOT !expr true if expr is false; false if expr is true

Using the AND (&&) operator
You use the AND operator (&&) when you want to test two Boolean
operands to determine whether they're both true. For example, consider
the following statements (bk03ch03/example20.html):

const finishedDinner = true;

const clearedTable = true;

const getsDessert = finishedDinner && clearedTable;

Because both finishedDinner and clearedTable are true, the logical
expression finishedDinner && clearedTable evaluates to true.

On the other hand, consider these statements:
const haveWallet = true;

const haveKeys = false;

const canGoOut = haveWallet && haveKeys;

In this example, because haveKeys is false, the logical expression
haveWallet && haveKeys evaluates to false. The logical expression
would also return false if just haveWallet were false or if both
haveWallet and haveKeys were false.

Table 3-5 lists the various operands you can enter and the results they
generate (this is called a truth table).

TABLE 3-5 Truth Table for the AND (&&) Operator

left_operand right_operand left_operand && right_operand

left_operand right_operand left_operand && right_operand

true true true

true false false

false true false

false false false

Using the OR (||) operator
You use the OR (||) operator when you want to test two Boolean
operands to determine whether at least one of them is true. For
example, consider the following statements (bk03ch03/example21.html):

const hasFever = true;

const hasCough = false;

const missSchool = hasFever || hasCough;

Because hasFever is true, the logical expression hasFever ||
hasCough evaluates to true because only one of the operands needs to
be true. You get the same result if only hasCough is true or if both
operands are true.

On the other hand, consider these statements:
const salesOverBudget = false;

const expensesUnderBudget = false;

const getsBonus = salesOverBudget || expensesUnderBudget;

In this example, because both salesOverBudget and
expensesUnderBudget are false, the logical expression
salesOverBudget || expensesUnderBudget evaluates to false.

Table 3-6 displays the truth table for the various operands you can enter.

TABLE 3-6 Truth Table for the OR (||) Operator

left_operand right_operand left_operand || right_operand

true true true

true false true

left_operand right_operand left_operand || right_operand

false true true

false false false

Using the NOT (!) Operator
The NOT (!) operator is the logical equivalent of the negation operator
(-) I cover earlier in the chapter. In this case, NOT returns the opposite
Boolean value of an operand. For example, consider the following
statements (bk03ch03/example22.html):

const dataLoaded = false;

const waitingForData = !dataLoaded;

dataLoaded is false, so !dataLoaded evaluates to true.

Table 3-7 displays the truth table for the various operands you can enter.

TABLE 3-7 Truth Table for the NOT (!) Operator

Operand !Operand

true false

false true

Advanced notes on the && and || operators

 I mention earlier that JavaScript defines various values that are
the equivalent of false — including 0 and "" — and that all other
values are the equivalent of true. These equivalences mean that
you can use both the AND operator and the OR operator with non-
Boolean values. However, if you plan on using non-Booleans, you
need to be aware of exactly how JavaScript evaluates these
expressions.

I'll begin with an AND expression:

1. Evaluate the operand to the left of the AND operator.
2. If the left operand’s value is false or is equivalent to false, return

that value and stop; otherwise, continue with Step 3.
3. If the left operand's value is true or is equivalent to true, evaluate

the operand to the right of the AND operator.
4. Return the value of the right operand.

This behavior is quirky, indeed, and there are two crucial concepts you
need to bear in mind:

If the left operand evaluates to false or its equivalent, the right
operand is never evaluated.
The logical expression returns the result of either the left or right
operand, which means the expression might not return true or
false; instead, it might return a value equivalent to true or false.

To try out these concepts out, use the following code
(bk03ch03/example23.html):

const v1 = true;

const v2 = 10;

const v3 = "testing";

const v4 = false;

const v5 = 0;

const v6 = "";

const leftOperand =

 eval(prompt("Enter the left operand (a value or expression):", true));

const rightOperand =

 eval(prompt("Enter the right operand (a value or expression):", true));

const result = leftOperand && rightOperand;

document.write(result);

The script begins by declaring and initializing six variables. The first
three (v1, v2, and v3) are given values equivalent to true and the last
three (v4, v5, and v6) are given values equivalent to false. The script
then prompts for a left operand and a right operand, which are entered
into an AND expression. The key here is that you can enter any value for
each operand, or you can use the v1 through v6 variables to enter a

comparison expression, such as v2 > v5. The use of eval() on the
prompt() result ensures that JavaScript uses the expressions as they're
entered.

The following table lists some sample inputs and the results they
generate:

left_operand right_operand left_operand && right_operand

true true true

true false false

5 10 10

false "Yo" false

v2 v5 0

true v3 testing

v5 v4 0

v2 > v5 v5 == v4 true

Like the AND operator, the logic of how JavaScript evaluates an OR
expression is strange and needs to be understood, particularly if you'll be
using operands that are true or false equivalents:

1. Evaluate the operand to the left of the OR operator.
2. If the left operand's value is true or is equivalent to true, return that

value and stop; otherwise, continue with Step 3.
3. If the left operand's value is false or is equivalent to false, evaluate

the operand to the right of the OR operator.
4. Return the value of the right operand.

Understanding Operator Precedence
Your JavaScript code will often use expressions that are blissfully
simple: just one or two operands and a single operator. Alas, often here

doesn't mean mostly, because many expressions you use will have a
number of values and operators. In these more complex expressions, the
order in which the calculations are performed becomes crucial. For
example, consider the expression 3+5*2. If you calculate from left to
right, the answer you get is 16 (3+5 equals 8, and 8*2 equals 16).
However, if you perform the multiplication first and then the addition,
the result is 13 (5*2 equals 10, and 3+10 equals 13). In other words, a
single expression can produce multiple answers depending on the order
in which you perform the calculations.

To control this ordering problem, JavaScript evaluates an expression
according to a predefined order of precedence. This order of precedence
lets JavaScript calculate an expression unambiguously by determining
which part of the expression it calculates first, which part second, and so
on.

The order of precedence
The order of precedence that JavaScript uses is determined by the
various expression operators that I've covered so far in this chapter.
Table 3-8 summarizes the complete order of precedence used by
JavaScript.

For example, Table 3-8 tells you that JavaScript performs multiplication
before addition. Therefore, the correct answer for the expression 3+5*2
(just discussed) is 13.

TABLE 3-8 JavaScript Order of Precedence for
Operators

Operator Operation Order of
Precedence

Order of
Evaluation

++ Increment First R -> L

-- Decrement First R -> L

— Negation First R -> L

! NOT First R -> L

Operator Operation Order of
Precedence

Order of
Evaluation

*, /, % Multiplication, division, modulus Second L -> R

+, — Addition, subtraction Third L -> R

+ Concatenation Third L -> R

<, <= Less than, less than, or equal Fourth L -> R

>, >= Greater than, greater than, or
equal Fourth L -> R

== Equality Fifth L -> R

!= Inequality Fifth L -> R

=== Strict equality Fifth L -> R

!== Strict inequality Fifth L -> R

&& AND Sixth L -> R

|| OR Sixth L -> R

?: Ternary Seventh R -> L

= Assignment Eighth R -> L

+=, -=,
etc. Arithmetic assignment Eighth R -> L

Note, as well, that some operators in Table 3-8 have the same order of
precedence (for example, multiplication and division). Having the same
precedence means that the order in which JavaScript evaluates these
operators doesn't matter. For example, consider the expression 5*10/2. If
you perform the multiplication first, the answer you get is 25 (5*10
equals 50, and 50/2 equals 25). If you perform the division first, you also
get an answer of 25 (10/2 equals 5, and 5*5 equals 25).

However, JavaScript does have a predefined order for these kinds of
expressions, which is what the Order of Evaluation column tells you. A
value of L -> R means that operations with the same order of precedence
are evaluated from left-to-right; R -> L means the operations are
evaluated from right-to-left.

Controlling the order of precedence
Sometimes you want to take control of the situation and override the
order of precedence. This might seem like a decidedly odd thing to do,
so perhaps an example will help. As you probably know, you calculate
the total cost of a retail item by multiplying the retail price by the tax
rate, and then adding that result to the retail price:

Total Price = Retail Price + Retail Price * Tax Rate

However, what if you want to reverse this calculation? That is, suppose
you know the final price of an item and, given the tax rate, you want to
know the original (that is, pre-tax) price. Applying a bit of algebra to the
preceding equation, it turns out that you can calculate the original price
by dividing the total price by 1 plus the tax rate. So, if the total price is
$11.00 and the tax rate is 10 percent, you divide 11 by 1.1 and get an
answer of $10.00.

Okay, now I'll convert this calculation to JavaScript code. A first pass at
the new equation might look something like this:

retailPrice = totalPrice / 1 + taxRate;

The following code implements this formula and Figure 3-5 shows the
result (bk03ch03/example24.html):

const totalPrice = 11.00;

const taxRate = .1;

const retailPrice = totalPrice / 1 + taxRate;

document.write("The pre-tax price is " + retailPrice);

FIGURE 3-5: The result of our first stab at calculating the pre-tax cost of an item.

As you can see, the result is incorrect. What happened? Well, according
to the rules of precedence, JavaScript performs division before addition,
so the totalPrice value first is divided by 1 and then is added to the
taxRate value, which isn't the correct order.

To get the correct answer, you have to override the order of precedence
so that the addition 1 + taxRate is performed first. You override
precedence by surrounding that part of the expression with parentheses,
as shown in the following code. Using this revised script, you get the
correct answer, as shown in Figure 3-6 (bk03ch03/example25.html):

const totalPrice = 11.00;

const taxRate = .1;

const retailPrice = totalPrice / (1 + taxRate);

document.write("The pre-tax price is " + retailPrice);

FIGURE 3-6: The revised script calculates the pre-tax cost correctly.

 One of the most common mistakes when using parentheses in
expressions is to forget to close a parenthetical term with a right
parenthesis. Most modern code editors will automatically add a
right parenthesis as soon as you type a left one. If your editor
doesn’t do this, you need to make sure you’ve closed each
parenthetical term. One method you can use it to count all the left
parentheses and count all the right parentheses. If these totals don’t
match, you know you’ve left out a parenthesis.

Terms inside parentheses are always calculated first, and terms outside
parentheses are calculated sequentially (according to the order of
precedence). To gain even more control over your expressions, you can
place parentheses inside one another; this is called nesting parentheses,
and JavaScript always evaluates the innermost set of parentheses first.

Using parentheses to determine the order of calculations allows you to
gain full control over JavaScript expressions. This way, you can make
sure that the answer given by an expression is the one you want.

Chapter 4
Controlling the Flow of

JavaScript
IN THIS CHAPTER

 Understanding how you control the flow of JavaScript
 Setting up your code to make decisions
 Understanding code looping
 Setting up code loops
 Avoiding the dreaded infinite loop

A good programmer is someone who always looks both ways before
crossing a one-way street.

— DOUG LINDER
When the web browser comes across a <script> tag, it puts on its
JavaScript hat and starts processing the statements. Not surprisingly, the
browser doesn't just leap randomly around the script, parsing the
statements willy-nilly. That would be silly. No, the browser puts its head
down and starts processing the statements one at a time: the first
statement, the second statement, and so on until there’s no more
JavaScript left to parse.

That linear statement-by-statement progression through the code makes
sense, but it doesn’t fit every situation. Sometimes you want your code
to test some condition and then run different chunks of code depending
on the result of that test. Sometimes you want your code to repeat a
collection of statements over and over again, with some subtle or
significant change occurring with each repetition. Code that runs tests
and code that repeats itself all fall under the rubric of controlling the

flow of JavaScript. In this chapter, you dive into this fascinating and
powerful subject.

Making True/False Decisions with if
Statements

A smart script performs tests on its environment and then decides what
to do next based on the results of each test. For example, suppose you’ve
declared a variable that you later use as a divisor in an expression. You
should test the variable before using it in the expression to make sure
that the variable’s value isn’t 0.

The most basic test is the simple true/false decision (which could also be
thought of as a yes/no or an on/off decision). In this case, your program
looks at a certain condition, determines whether it’s currently true or
false, and acts accordingly. Comparison and logical expressions (covered
in Book 3, Chapter 3) play a big part here because they always return a
true or false result.

In JavaScript, simple true/false decisions are handled by the if
statement. You can use either the single-line syntax:

if (expression) statement;

or the block syntax:
if (expression) {

statement1;

statement2;

 …

}

In both cases, expression is a comparison or logical expression that
returns true or false, and statement(s) represent the JavaScript
statement or statements to run if expression returns true. If
expression returns false, JavaScript skips over the statements.

 This is a good place to note that JavaScript defines the following
values as the equivalent of false: 0, "" (that is, the empty string),
null, and undefined. Everything else is the equivalent of true.

 This is the first time you've encountered JavaScript’s braces ({
and }), so take a second to understand what they do because they
come up a lot. The braces surround one or more statements that you
want JavaScript to treat as a single entity. This entity is a kind of
statement itself, so the whole caboodle — the braces and the code
they enclose — is called a block statement. Also, any JavaScript
construction that consists of a statement (such as if) followed by a
block statement is called a compound statement. And, just to keep
you on your toes, note that the lines that include the braces don't
end with semicolons.

Whether you use the single-line or block syntax depends on the
statements you want to run if the expression returns a true result. If
you have only one statement, you can use either syntax. If you have
multiple statements, use the block syntax.

Consider the following example (check out bk03ch04/example01.html in
this book's example files):

if (totalSales != 0) {

 const grossMargin = (totalSales - totalExpenses) / totalSales;

}

Assume that earlier in the code, the script calculated the total sales and
total expenses, which are stored in the totalSales and totalExpenses
variables, respectively. The code now calculates the gross margin, which
is defined as gross profit (that is, sales minus expenses) divided by sales.
The code uses if to test whether the value of the totalSales variable is
not equal to zero. If the totalSales != 0 expression returns true, the

grossMargin calculation is executed; otherwise, nothing happens. The
if test in this example is useful because it ensures that the divisor in the
calculation — totalSales — is never zero.

 A QUICK LOOK AT BLOCK SCOPE
Now that you've been introduced to JavaScript blocks, I’d like to take a brief foray in a
concept called block scope. I get into this topic in much more detail in Book 3, Chapter
5, but for now just know that scope specifies where a variable is accessible to other
statements in your code. When a variable has block scope, it means that the variable is
accessible only to other statements within that block. When does a variable have block
scope? When the variable is declared using let or const within a block statement.

For example, consider this section's example code once again, with an extra
document.write statement tacked on:

if (totalSales != 0) {

 const grossMargin = (totalSales - totalExpenses) / totalSales;

}

document.write(grossMargin);

Here you see that the grossMargin variable is declared using const within the if
statement's block. This means that grossMargin is not accessible outside the block.
Therefore, the browser doesn’t run the document.write statement because it doesn't
know what to do with this “undefined" grossMargin variable.

Branching with if…else Statements
Using the if statement to make decisions adds a powerful new weapon
to your JavaScript arsenal. However, the simple version of if suffers
from an important limitation: A false result only bypasses one or more
statements; it doesn't execute any of its own. This is fine in many cases,
but there will be times when you need to run one group of statements if
the condition returns true and a different group if the result is false. To
handle these scenarios, you need to use an if…else statement:

if (expression) {

statements-if-true

} else {

statements-if-false

}

The expression is a comparison or logical expression that returns true
or false. statements-if-true represents the block of statements you
want JavaScript to run if expression returns true, and statements-if-
false represents the block of statements you want executed if
expression returns false.

As an example, consider the following code (check out
bk03ch04/example02.html):

let discountRate;

if (currMonth === "December") {

 discountRate = 0.2;

} else {

 discountRate = 0.1;

}

const discountedPrice = regularPrice * (1 – discountRate);

This code calculates a discounted price of an item, where the discount
depends on whether the current month is December. Assume that earlier
in the code, the script set the value of the current month (currMonth) and
the item's regular price (regularPrice). After declaring the
discountRate variable, an if…else statement checks whether
currMonth equals December. If it does, discountRate is set to 0.2;
otherwise, discountRate is set to 0.1. Finally, the code uses the
discountRate value to calculate discountedPrice.

if…else statements are much easier to read when you indent the
statements within each block, as I did in my examples. This
indentation lets you easily identify which block will run if there is a
true result and which block will run if the result is false. I find
that an indent of four spaces does the job, but many programmers
prefer either two spaces or a tab.

The if…else statements are similar to the ternary operator (?:), which I
discuss in Book 3, Chapter 3. In fact, for a specific subset of if…else
statements, the two are identical.

The ?: operator evaluates a comparison expression and then returns one
value if the expression is true or another value if it's false. For
example, if you have a variable named currentHour that contains the
hour part of the current time of day, consider the following statement:

const greeting = currentHour < 12 ? "Good morning!" : "Good day!";

If currentHour is less than 12, the string "Good morning!" is stored in
the greeting variable; otherwise, the string "Good day!" is stored in the
variable. This statement does the same thing as the following if…else
statements:

let greeting;

if (currentHour < 12) {

 greeting = "Good morning!";

} else {

 greeting = "Good day!";

}

The ternary operator version is clearly more efficient, both in terms of
total characters typed and total lines used. So, any time you find yourself
testing a condition only to store something in a variable depending on
the result, use a ternary operator statement instead of if…else.

Making Multiple Decisions
The if…else control structure makes only a single decision. The if part
calculates a single logical result and performs one of two actions.
However, plenty of situations require multiple decisions before you can
decide which action to take.

For example, to calculate the pre-tax price of an item given its total price
and its tax rate, you divide the total price by the tax rate plus 1. In real-
world web coding, one of your jobs as a developer is to make sure you're
dealing with numbers that make sense. What makes sense for a tax rate?
Probably that it’s greater than or equal to 0 and less than 1 (that is, 100

percent). That’s two things to test about any tax rate value in your code,
and JavaScript offers multiple ways to handle this kind of thing.

Using the AND (&&) and OR (||) operators
One solution to a multiple-decision problem is to combine multiple
comparison expressions in a single if statement. As I discuss in Book 3,
Chapter 3, you can combine comparison expressions by using
JavaScript’s AND (&&) and OR (||) operators.

The following code shows an example if statement that combines two
comparison expressions using the && operator
(bk03ch04/example03.html):

if (taxRate >= 0 && taxRate < 1) {

 const retailPrice = totalPrice / (1 + taxRate);

 document.write(retailPrice);

} else {

 document.write("Please enter a tax rate between 0 and 1.");

}

The key here is the if statement:

if (taxRate >= 0 && taxRate < 1);

This tells the browser that only if the taxRate value is greater than or
equal to 0 and less than 1 should the statements in the true block be
executed. If either one is false (or if both are false), the browser writes
the message in the false block instead.

Stringing together multiple if statements
A third syntax for the if…else statement lets you string together as
many logical tests as you need using a multi-block statement (so-called
because it contains multiple if/else blocks):

if (expression1) {

statements-if-expression1-true

} else if (expression2) {

statements-if-expression2-true

}

etc.

else {

statements-if-false

}

JavaScript first tests expression1. If expression1 returns true,
JavaScript runs the block represented by statements-if-expression1-
true and skips over everything else. If expression1 returns false,
JavaScript then tests expression2. If expression2 returns true,
JavaScript runs the block represented by statements-if-expression2-
true and skips over everything else. Otherwise, if all the if tests return
false, JavaScript runs the block represented by statements-if-false.

The following code shows a script that strings together several if
statements (bk03ch04/example04.html):

let greeting;

if (currentHour < 12) {

 greeting = "Good morning!";

} else if (currentHour < 18) {

 greeting = "Good afternoon!";

} else {

 greeting = "Good evening!";

}

document.write(greeting);

Assume that earlier in the script, the current hour value was stored in the
currentHour variable. The first if checks whether currentHour is less
than 12. If so, the string "Good morning!" is stored in the greeting
variable; if not, the next if checks whether currentHour is less than 18
(that is, less than 6:00 p.m.). If so, greeting is assigned the string "Good
afternoon!"; if not, greeting is assigned "Good evening", instead.

Using the switch statement
Performing multiple tests with if…else if is a handy technique — it's a
JavaScript tool you’ll reach for quite often. However, it quickly becomes
unwieldy as the number of tests you need to make gets larger. It’s okay
for two or three tests, but any more than that makes the logic harder to
follow.

When you need to make, say, four or more tests, JavaScript’s switch
statement is a better choice. The idea is that you provide an expression at

the beginning and then list a series of possible values for that expression.
For each possible result — called a case — you provide one or more
JavaScript statements to execute should the case match the expression.
Here’s the syntax:

switch(expression) {

 case Case1:

 Case1 statements

 break;

case Case2:

 Case2 statements

 break;

 etc.

 default:

 Default statements

}

The expression is evaluated at the beginning of the structure. It must
return a value (numeric, string, or Boolean). Case1, Case2, and so on are
possible values for expression. JavaScript examines each case value to
determine whether one matches the result of expression. If expression
returns the Case1 value, the code represented by Case1 statements is
executed, and the break statement tells JavaScript to stop processing the
rest of the switch statement. Otherwise, if expression returns the Case2
value, the code represented by Case2 statements is executed, and
JavaScript stops processing the rest of the switch statement. Finally, the
optional default statement is used to handle situations where none of
the cases matches expression, so JavaScript executes the code
represented by Default statements.

If you do much work with dates in JavaScript, your code is likely to
eventually need to figure out how many days are in any month. No built-
in JavaScript property or method tells you this, so you need to construct
your own code, as shown here (bk03ch04/example05.html):

let daysInMonth;

switch(monthName) {

 case "January":

 daysInMonth = 31;

 break;

 case "February":

 if (yearValue % 4 === 0) {

 daysInMonth = 29;

 }

 else {

 daysInMonth = 28;

 }

 break;

 case "March":

 daysInMonth = 31;

 break;

 case "April":

 daysInMonth = 30;

 break;

case "May":

 daysInMonth = 31;

 break;

 case "June":

 daysInMonth = 30;

 break;

 case "July":

 daysInMonth = 31;

 break;

 case "August":

 daysInMonth = 31;

 break;

 case "September":

 daysInMonth = 30;

 break;

 case "October":

 daysInMonth = 31;

 break;

 case "November":

 daysInMonth = 30;

 break;

 case "December":

 daysInMonth = 31;

}

Assume that earlier in the code, the script set monthName as the name of
the month you want to work with and yearValue as the year. (You need
the latter to know when you're dealing with a leap year.) The switch is
based on the name of the month:

switch(monthName)

Then case statements are set up for each month. For example:

case "January":

 daysInMonth = 31;

 break;

If monthName is "January", this case is true and the daysInMonth
variable is set to 31. All the other months are set up the same, with the
exception of February:

case "February":

 if (yearValue % 4 === 0) {

 daysInMonth = 29;

 }

else {

 daysInMonth = 28;

 }

 break;

Here you need to know whether you're dealing with a leap year, so the
modulus (%) operator checks to determine whether yearValue is
divisible by 4. If so, it's a leap year, so daysInMonth is set to 29;
otherwise, it's set to 28.

 Time geeks will no doubt have their feathers ruffled by my
assertion that a year is a leap year if it’s divisible by 4. In fact, that
works only for the years 1901 to 2099, which should take care of
most people’s needs. The formula doesn’t work for 1900 and 2100
because, despite being divisible by 4, these years aren’t leap years.
The general rule is that a year is a leap year if it’s divisible by 4 and
it's not divisible by 100 unless it’s also divisible by 400.

Understanding Code Looping
Some would say that the only real goal of the programmer should be to
get the job done. As long as the code produces the correct result or
performs the correct tasks in the correct order, everything else is
superfluous. Perhaps, but real programmers know that the true goal of
programming is not only to get the job done but to get it done as

efficiently as possible. Efficient scripts run faster, take less time to code,
and are usually (not always, but usually) easier to read and troubleshoot.

One of the best ways to introduce efficiency into your coding is to avoid
reinventing too many wheels. For example, consider the following code
fragment:

let sum = 0;

let num = prompt("Type a number:", 1);

sum += Number(num);

num = prompt("Type a number:", 1);

sum += Number(num);

num = prompt("Type a number:", 1);

sum += Number(num);

document.write("The total of your numbers is " + sum);

This code first declares a variable named sum. The code prompts the user
for a number (using the prompt method with a default value of 1) that
gets stored in the num variable, adds that value to sum, and then repeats
this prompt-and-sum routine two more times. (Note my use of the
Number function, which ensures that the value returned by prompt is
treated as a number rather than a string.) Finally, the sum of the three
numbers is displayed to the user.

Besides being a tad useless, this code reeks of inefficiency because most
of the code consists of the following two lines appearing three times:

num = prompt("Type a number:", 1);

sum += Number(num);

Wouldn't it be more efficient if you put these two statements just once in
the code and then somehow get JavaScript to repeat these statements as
many times as necessary?

Why, yes, it would, and the good news is that not only is it possible to do
this, but JavaScript also gives you a number of different methods to
perform this looping. I spend the rest of this chapter investigating each
of these methods.

Using while Loops

The most straightforward of the JavaScript loop constructions is the
while loop, which uses the following syntax:

while (expression) {

 statements

}

Here, expression is a comparison or logical expression (that is, an
expression that returns true or false) that, as long as it returns true,
tells JavaScript to keep executing the statements within the block.

Essentially, JavaScript interprets a while loop as follows: “Okay, as long
as expression remains true, I'll keep running through the loop
statements, but as soon as expression becomes false, I'm out of there.”

Here's a closer look at how a while loop works:

1. Evaluate the expression in the while statement.

2. If expression is true, continue with Step 3; if expression is false,
skip to Step 5.

3. Execute each of the statements in the block.
4. Return to Step 1.
5. Exit the loop (that is, execute the next statement that occurs after the

while block).

The following code demonstrates how to use while to rewrite the
inefficient code I presented in the preceding section
(bk03ch04/example06.html):

let sum = 0;

let counter = 1;

let num;

while (counter <= 3) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

 counter += 1;

}

document.write("The total of your numbers is " + sum);

To control the loop, the code declares a variable named counter and
initializes it to 1, which means the expression counter <= 3 is true, so
the code enters the block, does the prompt-and-sum thing, and then
increments counter. This is repeated until the third time through the
loop, when counter is incremented to 4, at which point the expression
counter <= 3 becomes false and the loop is done.

 To make your loop code as readable as possible, always use a
two- or four-space indent for each statement in the while block.
The same applies to the for and do…while loops, which I talk about
later in this chapter.

The while statement isn't the greatest loop choice when you know
exactly how many times you want to run through the loop. For that, use
the for statement, described in the next section. The best use of the
while statement is when your script has some naturally occurring
condition that you can turn into a comparison expression. A good
example is when you're prompting the user for input values. You’ll often
want to keep prompting the user until they click the Cancel button. The
easiest way to set this up is to include the prompt inside a while loop, as
shown here (bk03ch04/example07.html):

let sum = 0;

let num = prompt("Type a number or click Cancel:", 1);

while (num != null) {

 sum += Number(num);

 num = prompt("Type a number or click Cancel:", 1);

}

document.write("The total of your numbers is " + sum);

The first prompt method displays a dialog box like the one shown in
Figure 4-1 to get the initial value, and stores it in the num variable.

FIGURE 4-1: Set up your while expression so that the prompting stops when the user clicks
the Cancel button.

Then the while statement checks the following expression:

num != null

Two things can happen here:

If the user enters a number, this expression returns true and the loop
continues. In this case, the value of num is added to the sum variable,
and the user is prompted for the next number.
If the user clicks Cancel, the value returned by prompt is null, so the
expression becomes false and the looping stops.

Using for Loops
Although while is the most straightforward of the JavaScript loops, the
most common type by far is the for loop. This is slightly surprising
when you consider (as you will shortly) that the for loop's syntax is a bit
more complex than that of the while loop. However, the for loop excels
at one thing: looping when you know exactly how many times you want
to repeat a group of statements. This is common in all types of
programming, so it's no wonder for is so often used in scripts.

Here’s the general syntax used with for loops:

for (initialization; condition; update) {

 statement(s)

}

where:

initialization is an expression that JavaScript evaluates before the
loop starts. You usually use this expression to initialize some feature
(such as a variable) that controls the looping in some way.
condition is a comparison or logical expression that JavaScript
evaluates before each pass through the loop. If condition evaluates
to true, JavaScript runs the statement(s); if condition evaluates to
false, JavaScript skips the statement(s) and terminates the loop.

update is an expression that JavaScript evaluates at the end of each
pass through the loop (and before the next evaluation of condition).
In most cases, you use update to modify some aspect of whatever
you initialized with the initialization expression (such as
incrementing the variable).
statement(s) are the statement or statements you want JavaScript to
execute each time through the loop.

That syntax description is all a bit theoretical, I know, so let me bring
everything down to earth. The happy news about for loops is that
99.9999 percent of them use a specific variation on the preceding
general syntax. The structure of almost every for loop you'll ever see or
code yourself looks like this:

for (let counter = start; counterExpression; counterUpdate) {

 statement(s)

}

There’s a lot going on here, so I’ll take it one bit at a time:

counter: A numeric variable used as a loop counter. The loop
counter is a number that counts how many times the procedure has
gone through the loop. (Note that you need to include let only if this
is the first time you've used the variable in the script.)

start: The initial value of counter. This value is usually 1, but you
can use whatever value makes sense for your script.
counterExpression: A comparison or logical expression that
determines the number of times through the loop. This expression
usually compares the current value of counter to some maximum
value.
counterUpdate: An expression that changes the value of counter.
Most of the time you'll increment the value of counter with the
expression counter += 1.

When JavaScript stumbles upon a for statement that uses the counter
syntax, it changes into its for-loop outfit and follows this seven-step
process:

1. Set counter equal to start.

2. Evaluate the counterExpression in the for statement.

3. If counterExpression is true, continue with Step 4; if
counterExpression is false, skip to Step 7.

4. Execute each of the statements in the block.
5. Use counterUpdate to increment (or whatever) counter.

6. Return to Step 2.
7. Exit the loop (that is, execute the next statement that occurs after the

for block).

As an example, the following code shows how to use for to rewrite the
inefficient code shown earlier in this chapter
(bk03ch04/example08.html):

let sum = 0;

let num;

for (let counter = 1; counter <= 3; counter += 1) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

}

document.write("The total of your numbers is " + sum);

This is the most efficient version yet because the declaring, initializing,
and incrementing of the counter variable all take place in the for
statement.

 It's worth mentioning that every expression inside the for
parentheses – the initialization, the condition, and the update — is
optional. Wait, what? Yep:

You can omit the initialization expression (counter = start in the
earlier syntax) if you initialize the counter variable outside the loop:

let sum = 0;

let num;

let counter = 0;

for (; counter <= 3; counter += 1) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

}

You can omit the condition expression (counterExpression in the
earlier syntax) by including a new condition inside the loop that runs
a break statement (refer to “Exiting a loop using the break
statement,” later in this chapter) when the condition becomes false:

let sum = 0;

let num;

for (let counter = 1; ; counter += 1) {

 if (counter > 3) break;

 num = prompt("Type a number:", 1);

 sum += Number(num);

}

You can omit the update expression (counterUpdate in the earlier
syntax) if you move the update expression inside the loop:

let sum = 0;

let num;

for (let counter = 1; counter <= 3;) {

 num = prompt("Type a number:", 1);

 sum += Number(num);

 counter += 1;

}

You can even omit all three expressions:
let sum = 0;

let num;

let counter = 0;

for (;;) {

 if (counter > 3) break;

 num = prompt("Type a number:", 1);

 sum += Number(num);

 counter += 1;

}

 To keep the number of variables declared in a script to a
minimum, always try to use the same name in all your for loop
counters. The letters i through n traditionally are used for counters
in programming. For greater clarity, you may prefer full words such
as count or counter.

 It's not obvious, but any variable you declare in the for
statement (particularly the counter variable) has scope only within
the for block.

Here's a slightly more complex example (bk03ch04/example09.html):
let sum = 0;

for (let counter = 1; counter < 4; counter += 1) {

 let num;

 let ordinal;

 switch (counter) {

 case 1:

 ordinal = "first";

 break;

 case 2:

 ordinal = "second";

 break;

 case 3:

 ordinal = "third";

 }

 num = prompt("Enter the " + ordinal + " number:", 1);

 sum += Number(num);

}

document.write("The average is " + sum / 3);

The purpose of this script is to ask the user for three numbers and then to
display the average of those values. The for statement is set up to loop
three times. (Note that counter < 4 is the same as counter <= 3.) The
first thing the loop block does is use switch to determine the value of
the ordinal variable: If counter is 1, ordinal is set to "first"; if
counter is 2, ordinal becomes "second"; and so on. These values
enable the script to customize the prompt message with each pass
through the loop (check out Figure 4-2). With each loop, the user enters
a number, and that value is added to the sum variable. When the loop
exits, the average is displayed.

FIGURE 4-2: This script uses the current value of the counter variable to customize the
prompt message.

It's also possible to use for to count down. You do this by using the
subtraction assignment operator instead of the addition assignment
operator:

for (let counter = start; counterExpression; counter -= 1) {

 statements

}

In this case, you must initialize the counter variable to the maximum
value you want to use for the loop counter, and use the
counterExpression to compare the value of counter to the minimum
value you want to use to end the loop.

In the following example (bk03ch04/example10.html), I use a
decrementing counter to ask the user to rank, in reverse order, their top
three CSS colors (refer to Book 3, Chapter 5 for the details on using
colors):

for (let rank = 3; rank >= 1; rank -= 1) {

 let ordinal;

 let color;

 switch (rank) {

 case 1:

 ordinal = "first";

 break;

 case 2:

 ordinal = "second";

 break;

 case 3:

 ordinal = "third";

 }

 color = prompt("What is your " + ordinal + "-favorite CSS color?", "");

 document.write(rank + ". " + color + "
");

}

The for loop runs by decrementing the rank variable from 3 down to 1.
Each iteration of the loop prompts the user to type a favorite CSS color,
and that color is written to the page, with the current value of rank being
used to create a reverse-ordered list, as shown in Figure 4-3.

 There's no reason why the for loop counter has to be only
incremented or decremented. You’re free to use any expression to
adjust the value of the loop counter. For example, suppose you want
the loop counter to run through only the odd numbers 1, 3, 5, 7, and
9. Here’s a for statement that will do that:

for (let counter = 1; counter <= 9; counter += 2)

FIGURE 4-3: The decrementing value of the rank variable is used to create a reverse-
ordered list.

The expression counter += 2 uses the addition assignment operator to
tell JavaScript to increase the counter variable by 2 each time through
the loop.

Using do…while Loops
JavaScript has a third and final type of loop that I've left until the last
because it isn’t one that you’ll use often. To understand when you might
use it, consider this code snippet:

let sum = 0;

let num = prompt("Type a number or click Cancel:", 1);

while (num != null) {

 sum += Number(num);

 num = prompt("Type a number or click Cancel:", 1);

}

The code needs the first prompt statement so that the while loop's
expression can be evaluated. The user may not feel like entering any
numbers, and they can avoid it by clicking Cancel in the first prompt box
so that the loop will be bypassed.

That seems reasonable enough, but what if your code requires that the
user enter at least one value? The following presents one way to change
the code to ensure that the loop is executed at least once:

let sum = 0;

let num = 0;

while (num !== null || sum === 0) {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 sum += Number(num);

}

document.write("The total of your numbers is " + sum);

The changes here are that the code initializes both sum and num as 0.
Initializing both to 0 ensures that the while expression — num !== null
|| sum === 0 — returns true the first time through the loop, so the
loop will definitely execute at least once. If the user clicks Cancel right
away, sum will still be 0, so the while expression — num !== null ||
sum === 0 — still returns true and the loop repeats once again.

This approach works fine, but you can also turn to JavaScript's third loop
type, which specializes in just this kind of situation. It’s called a do…
while loop, and its general syntax looks like this:

do {

 statements

}

while (expression);

Here, statements represents a block of statements to execute each time
through the loop, and expression is a comparison or logical expression
that, as long as it returns true, tells JavaScript to keep executing the
statements within the loop.

This structure ensures that JavaScript executes the loop's statement block
at least once. How? Take a closer look at how JavaScript processes a do…
while loop:

1. Execute each of the statements in the block.
2. Evaluate the expression in the while statement.

3. If expression is true, return to Step 1; if expression is false,
continue with Step 4.

4. Exit the loop.

For example, the following shows you how to use do…while to
restructure the prompt-and-sum code I presented you earlier
(bk03ch04/example11.html):

let sum = 0;

let num;

do {

 num = prompt("Type a number; when you're done, click Cancel:", 1);

 sum += Number(num);

}

while (num !== null || sum === 0);

document.write("The total of your numbers is " + sum);

This code is similar to the while code I showed earlier in this section.
All that's really changed is that the while statement and its expression
have been moved after the statement block so that the loop must be
executed once before the expression is evaluated.

Controlling Loop Execution
Most loops run their natural course and then the procedure moves on.
Sometimes, however, you may want to exit a loop prematurely or skip
over some statements and continue with the next pass through the loop.
You can handle each situation with, respectively, the break and
continue statements.

Exiting a loop using the break statement
You use break when your loop comes across some value or condition
that would prevent the rest of the statements from executing properly or
that satisfies what the loop was trying to accomplish. The following code
demonstrates break with a simple example (bk03ch04/example12.html):

let sum = 0;

for (let counter = 1; counter <= 3; counter += 1) {

 let num = prompt("Type a positive number:", 1);

 if (num < 0) {

 sum = 0;

 break;

 }

 sum += Number(num);

}

if (sum > 0) {

 document.write("The average of your numbers is " + sum / 3);

}

This script sets up a for loop to prompt the user for positive numbers.
For the purposes of this section, the key code is the if test:

if (num < 0) {

 sum = 0;

 break;

}

If the user enters a negative number, the sum variable is reset to 0 (to
prevent the message from being written to the page later in the script).
Also, a break statement tells JavaScript to bail out of the loop altogether.

Here's a more complex example (bk03ch04/example13.html):
const numberToGuess = Math.ceil(Math.random() * 10);

let promptMessage = "Guess a number between 1 and 10:";

let totalGuesses = 1;

do {

 const guess = Number(prompt(promptMessage, ""));

 if (guess === 0) {

 break;

 } else if (guess === numberToGuess) {

 document.write ("You guessed it in " + totalGuesses +

 (totalGuesses === 1 ? " try." : " tries."));

 break;

 } else if (guess < numberToGuess) {

 promptMessage = "Sorry, your guess was too low. Try again:";

 } else {

 promptMessage = "Sorry, your guess was too high. Try again:";

 }

 totalGuesses += 1;

}

while (true);

This script is a game in which a number between 1 and 10 is generated
and the user has to try and guess what it is. The first four lines set up
some variables. The head-scratcher here is the expression for the
numberToGuess variable. This expression uses a couple of methods of
the Math object, which I discuss in Book 3, Chapter 9. For now, suffice it
to say that this expression generates a random integer between (and
including) 1 and 10.

Then a do…while loop is set up with the following structure:

do {

 statements

}

while (true);

This tells JavaScript to run the loop without bothering with a comparison
expression. As you'll learn, the loop itself will take care of exiting the
loop by using the break statement.

Next the user is prompted to enter a guess, which is stored in the guess
variable. The script then checks whether guess equals 0, which would
mean that the user clicked Cancel. (Clicking Cancel returns null, but the
Number function converts null to 0.) If so, then break is used to stop the
game by exiting the loop:

const guess = Number(prompt(promptMessage,""));

if (guess === 0) {

 break;

}

Otherwise, a series of if statements tests the guessed number against the
actual number. The first one checks whether they're the same. If so, a
message is written to the page and then another break statement exits the
loop because the game is finished:

else if (guess === numberToGuess) {

 document.write("You guessed it in " + totalGuesses +

 (totalGuesses === 1 ? " try." : " tries."));

 break;

}

 Note that the document.write statement contains a ternary
operator expression:

totalGuesses === 1 ? " try." : " tries."

This illustrates an extremely common programming situation: You have
to display a word to the user, but that word may be either singular or
plural depending on the value of some variable or expression. In this
case, if totalGuesses equals 1, you want to display the word try (as in

1 try); if totalGuesses is more than 1, you want to display the word
tries (as in 2 tries). This is what the ternary operator does in the
previous code.

The other two tests check whether the guess was lower or higher than
the actual number, and a message to that effect is displayed, as shown in
Figure 4-4.

FIGURE 4-4: If you guess wrong, the script lets you know if your guess was too high or too
low.

Bypassing loop statements using the continue
statement
The continue statement is similar to break, but instead of exiting a loop
entirely, continue tells JavaScript to bypass the rest of the statements in
the loop block and begin a new iteration of the loop.

A good use for continue is when you want the user to enter one or more
values no matter what. If they click Cancel in the prompt box, you want
the script to keep on looping until the user enters the correct number of
values. The following code shows one way to do this
(bk03ch04/example14.html):

let counter = 0;

let sum = 0;

while (counter < 3) {

 const num = prompt("Type a number:", 1);

 if (num === null) {

 continue;

 }

 sum += Number(num);

 counter += 1;

}

document.write("The average of your numbers is " + sum / 3);

Because you don't know in advance how many times the code will have
to run through the loop, a while loop is a better choice than a for loop.
You need to count the number of values entered, however, so a variable
named counter is initialized for that purpose. The script requires three
numbers, so the while statement is set up to continue looping as long as
counter is less than 3. The prompt result is stored in the num variable,
which is then tested:

if (num === null) {

 continue;

}

If the user enters a number, the if expression returns false and the rest
of the loop executes: sum is updated and counter is incremented.

However, if the user clicks Cancel, num equals null, so the if expression
returns true. What you want here is to keep looping, but you don't want
the rest of the loop statements to execute. That’s exactly what the
continue statement accomplishes.

Avoiding Infinite Loops
Whenever you use a while, for, or do…while loop, there's always the
danger that the loop will never terminate. This is called an infinite loop,
and it has been the bugbear of programmers for as long as people have
been programming. Here are some notes to keep in mind to help you
avoid infinite loops:

The statements in the for block should never change the value of the
loop counter variable. If they do, your loop may either terminate
prematurely or end up in an infinite loop.
In while and do…while loops, make sure you have at least one
statement within the loop that changes the value of the comparison

variable (that is, the variable you use in the loop's comparison
statement). Otherwise, the statement might always return true and
the loop will never end.
In while and do…while loops, never rely on the user to enter a
specific value to end the loop. They may cancel the prompt box or do
something else that prevents the loop from terminating.
If you have an infinite loop and you're not sure why, insert one or
more debugger and console.log statements in the loop statement
block to enable you to step through the script one statement at a time
and display the current value of the counter or comparison variable.
(Wondering what the heck debugger and console.log might be? I
cover them in Book 5, Chapter 2.) This process enables you to learn
what happens to the variable with each pass through the loop.

Chapter 5
Harnessing the Power of

Functions
IN THIS CHAPTER

 Getting to know JavaScript functions
 Creating and using custom functions
 Passing and returning function values
 Working with anonymous and arrow functions
 Getting to the bottom of variable scope
 Understanding recursive functions

To iterate is human, to recurse divine.

— L. PETER DEUTSCH
As I demonstrate throughout this book, JavaScript comes with a huge
number of built-in features that perform specific tasks. For example,
something called the Math object has a built-in method for calculating
the square root of a number. Similarly, a feature called the String object
has a ready-made method for converting a string value to all lowercase
letters.

Hundreds of these ready-to-roll features perform tasks that range from
the indispensable to the obscure. But JavaScript can't possibly do
everything that you’d like or need it to do. What happens if your web
development project requires a particular task or calculation that isn’t
part of the JavaScript language? Are you stuck? Not even close! The
solution is to roll up your sleeves and then roll your own code that
accomplishes the task or runs the calculation.

This chapter shows you how to create such do-it-yourself code. In the
pages that follow, you explore the powerful and infinitely useful realm
of custom functions, where you craft reusable code that performs tasks
that out-of-the-box JavaScript can’t do.

What Is a Function?
A function is a group of JavaScript statements that are separate from the
rest of the script and that perform a designated task. (Technically, a
function can perform any number of chores, but as a general rule it’s best
to have each function focus on a specific task.) When your script needs
to perform that task, you tell it to run — or execute, in the vernacular —
the function.

Functions are also useful for those times when you need to control
exactly when a particular task occurs (if ever). If you just enter some
statements between your web page’s <script> and </script> tags, the
browser runs those statements automatically when the page loads.
However, the statements within a function aren't executed by the
browser automatically. (Later in the chapter, I mention some exceptions
to that rule.) Instead, the function doesn’t execute until either your code
asks the function to run or some event occurs — such as the user
clicking a button — and you’ve set up your page to run the function in
response to that event.

The Structure of a Function
The basic structure of a function looks like this:

function functionName([arguments]) {

 JavaScript statements

}

where:

function identifies the block of code that follows it as a function.

functionName is a unique name for the function. The naming rules
and guidelines that I outline for variables in Book 3, Chapter 2 also
apply to function names.
arguments are one or more values that are passed to the function and
act as variables within the function. Arguments (or parameters, as
they're sometimes called) are typically one or more values that the
function uses as the raw materials for its tasks or calculations. You
always enter arguments between parentheses after the function name,
and you separate multiple arguments with commas. If you don’t use
arguments, you must still include the parentheses after the function
name.
JavaScript statements are the code that performs the function’s
tasks or calculations.

 When I present the syntax of a function that includes one or
more optional arguments, I surround those arguments with square
brackets — [and] — to let you know.

 Note how the JavaScript statements line in the example is
indented slightly from the left margin. This is a standard and highly
recommended programming practice because it makes your code
easier to read. This example is indented four spaces, which is
enough to do the job but isn't excessive. Some programmers use
two spaces, and others indent using a single tab.

Note, too, the use of braces ({ and }). These are used to enclose the
function’s statements within a block, which tells you (and the browser)
where the function’s code begins and ends. There are only two rules for
where these braces appear:

The opening brace must appear after the function’s parentheses and
before the first function statement.
The closing brace must appear after the last function statement.

No set-in-stone rule exists that specifies exactly where the braces appear.
The positions used in the preceding function syntax are traditional, but
you’re free to try other positions, if you want. For example:

function functionName([arguments])

{

 JavaScript statements

}

Where Do You Put a Function?
For most applications, it doesn’t matter where you put your functions, as
long as they reside in a <script> block. However, one of the most
common uses of functions is to handle events when they’re triggered.
It’s possible that a particular event may fire when the page is loading,
and if that happens before the browser has parsed the corresponding
function, you could get strange results or an error. To prevent that, it’s
good practice to place the script containing all your functions in the
page’s header section (or in an external JavaScript file).

Note, as well, that you can add as many functions as you want in a single
<script> block, but make sure that each function has a unique name. In
fact, all the functions that exist in or are referenced by a page must have
unique names.

Calling a Function
After your function is defined, you'll eventually need to tell the browser
to execute – or call – the function. You can do this in three main ways:

When the browser parses the <script> tag

After the page is loaded

In response to an event, such as the user clicking a button

The next three sections cover each of these scenarios.

Calling a function when the <script> tag is parsed
The simplest way to call a function is to include in your script a
statement consisting of only the function name, followed by parentheses
(assuming for the moment that your function uses no arguments.) The
following code (check out bk03ch05/example01.html in this book’s
example files) provides an example. (I listed the entire page to show you
where the function and the statement that calls it appear in the page
code.)

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function when the <script> tag is parsed</title>

 <script>

 function displayGreeting() {

 const currentHour = new Date().getHours();

 if (currentHour < 12) {

 console.log("Good morning!");

 } else {

 console.log("Good day!");

 }

 }

 displayGreeting();

 </script>

</head>

<body>

</body>

</html>

The <script> tag includes a function named displayGreeting, which
determines the current hour of the day and then writes a greeting to the
console (check out Figure 5-1) based on whether it's currently morning.
The function is called by the displayGreeting statement that appears
just after the function.

FIGURE 5-1: An example of calling a function when the <script> tag is parsed.

 The console is part of each web browser's developer tools. You
use the console to display messages (as in this section’s example),
run JavaScript code on the fly, and look for script error messages.
You learn all about the console in Book 5, Chapter 2.

 To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  
+I in macOS), and then click the Console tab.

Calling a function after the page is loaded
If your function references a page element, calling the function from the
page’s head section won’t work because when the browser parses the
script, the rest of the page hasn’t loaded yet, so your element reference
will fail.

To work around this problem, place another <script> tag at the end of
the body section, just before the closing </body> tag, as shown here
(bk03ch05/example02.html):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function after the page is loaded</title>

 <script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor = "red";

 console.log("The background is now red.");

 }

 </script>

</head>

<body>

 <!-- Other body elements go here -->

 <script>

 makeBackgroundRed();

 </script>

</body>

</html>

The makeBackgroundRed function does two things: It uses
document.body.style.backgroundColor to change the background
color of the body element to red, and it uses console.log to write a
message to that effect on the console.

In the function, document.body is a reference to the body element, which
doesn't exist until the page is fully loaded. If you try to call the function
with the initial script, you’ll get an error. To execute the function
properly, a second <script> tag appears at the bottom of the body
element, and that script calls the function with the following statement:

makeBackgroundRed();

By the time the browser executes that statement, the body element exists,
so the function runs without an error (check out Figure 5-2).

FIGURE 5-2: An example of calling a function after the page has loaded.

Calling a function in response to an event
One of the most common ways that JavaScript functions are called is in
response to some event. Events are such an important topic that I devote
an entire chapter to them later in the book (refer to Book 3, Chapter 7).
For now, check out a relatively straightforward application: executing
the function when the user clicks a button. The following code shows
one way to do it (bk03ch05/example03.html):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Calling a function in response to an event</title>

 <script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor= "red";

 }

 function makeBackgroundWhite() {

 document.body.style.backgroundColor= "white";

 }

 </script>

</head>

<body>

 <button onclick="makeBackgroundRed()">

 Make Background Red

 </button>

 <button onclick="makeBackgroundWhite()">

 Make Background White

 </button>

</body>

</html>

I placed two functions in the script: makeBackgroundRed changes the
page background to red, as before, and makeBackgroundWhite changes
the background color back to white.

The buttons are standard HTML button elements (check out Figure 5-
3), each of which includes the onclick attribute. This attribute defines a
handler — that is, the function to execute — for the event that occurs
when the user clicks the button.

FIGURE 5-3: An example of calling a function in response to an event.

For example, consider the first button:
<button onclick="makeBackgroundRed()">

The onclick attribute says, in effect, “When somebody clicks this
button, call the function named makeBackgroundRed.”

 The example I've used here is a tad old-fashioned in that it
defines the event handler inside an HTML tag, which is now
considered bad programming practice because it mixes HTML and
JavaScript. The modern way is to keep the worlds of HTML and
JavaScript apart by setting up an event listener using a separate
script. I show you a revised version of this example that uses an
event listener later in the chapter (in the “Getting Your Head around
Anonymous Functions” section). I talk more about event listeners
in Book 3, Chapter 7.

Passing Values to Functions
One of the main reasons to use functions is to gain control over when
some chunk of JavaScript code gets executed. The preceding section, for
example, discusses how easy it is to use functions to set things up so that
code doesn’t run until the user clicks a button.

However, another major reason to use functions is to avoid repeating
code unnecessarily. To understand what I mean, consider the two
functions from the preceding section:

function makeBackgroundRed() {

 document.body.style.backgroundColor= "red";

}

function makeBackgroundWhite() {

 document.body.style.backgroundColor= "white";

}

These functions perform the same task — changing the background
color — and the only difference between them is one changes the color
to red and the other changes it to white. When you end up with two or
more functions that do essentially the same thing, you know your code is
inefficient.

So how do you make the code more efficient? That’s where the
arguments mentioned earlier come into play. An argument is a value that
is sent — or passed, in programming terms — to the function. The
argument acts just like a variable, and it automatically stores whatever
value is sent.

Passing a single value to a function
As an example, you can take the previous two functions, reduce them to
a single function, and set up the color value as an argument. Here’s a
new function that does just that:

function changeBackgroundColor(newColor) {

 document.body.style.backgroundColor = newColor;

}

The argument is named newColor and is added between the parentheses
that occur after the function name. JavaScript declares newColor as a

variable automatically, so you don't need a separate let or const
statement. The function then uses the newColor value to change the
background color. So how do you pass a value to the function? The
following code presents a sample file that does so
(bk03ch05/example04.html):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Passing a single value to a function</title>

 <script>

 function changeBackgroundColor(newColor) {

 document.body.style.backgroundColor = newColor;

 }

 </script>

</head>

<body>

 <button onclick="changeBackgroundColor('red')">

 Make Background Red

 </button>

 <button onclick="changeBackgroundColor('white')">

 Make Background White

 </button>

</body>

</html>

The key here is the onclick attribute that appears in both <button> tags.
For example:

onclick="changeBackgroundColor('red')"

The string 'red' is inserted into the parentheses after the function name,
so that value is passed to the function itself. The other button passes the
value 'white', and the function result changes accordingly.

 In the two onclick attributes in the example code, note that the
values passed to the function are enclosed in single quotation marks
('). This is necessary because the onclick value as a whole is
enclosed in double quotation marks (").

Passing multiple values to a function
For more complex functions, you may need to use multiple arguments so
that you can pass different kinds of values. If you use multiple
arguments, separate each one with a comma, like this:

function changeColors(newBackColor, newForeColor) {

 document.body.style.backgroundColor = newBackColor;

 document.body.style.color = newForeColor;

}

In this function, the document.body.style.color statement changes the
foreground color (that is, the color of the page text). The following code
shows a revised page where the buttons pass two values to the function
(bk03ch05/example05.html):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Passing multiple values to a function</title>

 <script>

 function changeColors(newBackColor, newForeColor) {

 document.body.style.backgroundColor = newBackColor;

 document.body.style.color = newForeColor;

 }

 </script>

</head>

<body>

 <h1>Passing Multiple Values to a Function</h1>

 <button onclick="changeColors('red', 'white')">

 Red Background, White Text

 </button>

 <button onclick="changeColors('white', 'red')">

 White Background, Red Text

 </button>

</body>

</html>

 If you define a function to have multiple arguments, you must
always pass values for each of those arguments to the function. If

you don't, the “value” undefined is passed instead, which can cause
problems.

 If you use a variable to pass data to a function, only the current
value of that variable is sent, not the variable itself. Therefore, if
you change the value of the argument within the function, the value
of the original variable isn’t changed. Here’s an example:

let passThis = 10;

function sendMe(acceptThis) {

 acceptThis = 5;

}

sendMe(passThis);

console.log(passThis);

The passThis variable starts off with a value of 10. The sendMe function
is defined to accept an argument named acceptThis and to change the
value of that argument to 5. sendMe is called and the value of the
passThis variable is passed to it. Then a console.log statement
displays the value of passThis. If you run this code, the displayed value
will be 10, the original value of passThis. In other words, changing the
value of acceptThis in the function had no effect on the value of the
passThis variable.

Making an argument optional
In most of your functions, arguments will be required and the function
will fail in some way if it's called without including all arguments.
However, making an argument optional is not unusual. Your function
may still require some kind of value to produce the correct result, but
you can specify a default value to use if the argument isn’t included in
the function call.

For example, the following function calculates a tip:
function calculateTip(preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return tipResult;

}

And here’s an example call:
calculateTip(100, 0.15);

If you usually tip 15 percent, it would be nice if you didn’t have to
always specify the tipPercent argument with each function call. You
can set that up — that is, you can make the tipPercent argument
optional — by setting the tipPercent argument to a default value:

function calculateTip(preTip, tipPercent = 0.15) {

 const tipResult = preTip * tipPercent;

 return tipResult;

}

Now you can call this function like so:
calculateTip(100);

JavaScript notices the missing tipPercent argument, so it uses the
default value of 0.15 for the calculation.

 If your function has multiple optional arguments, how do you
skip one of the middle arguments when you call the function?
Excellent question! Here's an example of such a function where the
second and third arguments are optional:

function addEmUp(argA, argB = 10, argC = 15) {

 return argA + argB + argC;

}

How do you skip just the second argument in a function call? You pass
the undefined value, like this:

addEmUp(100, undefined, 200);

 Specifying a default value to make a function argument optional
is an ES6 (ECMAScript 2015) feature, so avoid it if you have to
support way-past-their-prime browsers such as Internet Explorer 11.

Returning a Value from a Function
So far, I’ve outlined two major advantages of using functions. You can
use them to:

Control when code is executed
Consolidate repetitive code into a single routine

The third major benefit that functions bring to the JavaScript table is that
you can use them to perform calculations and then return the result. As
an example, here's a function that calculates the tip on a restaurant bill
(bk03ch05/example06.html):

function calculateTip(preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return tipResult;

}

const preTipTotal = 100.00;

const tipPercentage = 0.15;

const tipCost = calculateTip(preTipTotal, tipPercentage);

const totalBill = preTipTotal + tipCost;

document.write("Your total bill is $" + totalBill);

The function named calculateTip takes two arguments: preTip is the
total of the bill before the tip, and tipPercent is the percentage used to
calculate the tip. The function then declares a variable named tipResult
and uses it to store the calculation — preTip multiplied by tipPercent.
The key for this example is the second line of the function:

return tipResult;

The return statement is JavaScript's way of sending a value back to the
statement that called the function. That statement comes after the

function:
tipCost = calculateTip(preTipTotal, tipPercentage);

This statement first passes the value of preTipTotal (initialized as
100.00 earlier in the script) and tipPercentage (initialized as 0.15
earlier) to the calculateTip function. When that function returns its
result, the entire expression calculateTip(preTipTotal,
tipPercentage) is replaced by that result, meaning that it gets stored in
the tipCost variable. Then preTipTotal and tipCost are added
together, the result is stored in totalBill, and a document.write
statement displays the final calculation (check out Figure 5-4).

FIGURE 5-4: The output includes the return value of the custom function calculation.

Getting Your Head around
Anonymous Functions

Here's another look at the function syntax from earlier in this chapter:
function functionName([arguments]) {

 JavaScript statements

}

This version of function syntax creates a named function because — you
guessed it — the function has a name.

However, creating a function that doesn’t have a name is also possible:
function ([arguments]) {

 JavaScript statements

}

This variety of function syntax creates an anonymous function because
— that’s right — the function has no name.

Why use anonymous functions? The main reason is to avoid creating a
named object when you don’t need to. Every large web project has a
huge namespace, which refers to the full collection of identifiers you
assign to things such as variables and functions. The larger the
namespace, the greater the chance of a namespace collision, where you
use the same identifier for two different things. Bad news!

 Anonymous functions were introduced in ES6, so don’t use
them if you need to support very old browsers, such as Internet
Explorer 11.

If you have a function that will be used only once in your project, it’s
considered good modern programming practice to make it an
anonymous function so that you have one less identifier in your
namespace.

Okay, I hear you thinking, earlier you said we invoke a function by using
the function name. If an anonymous function has no name, how are we
supposed to run it? Excellent question! There are two main methods to
consider:

Assigning the function to a variable
Replacing a function call with the function itself

Assigning an anonymous function to a variable
Once again, here's the example code from the previous section:

const preTipTotal = 100.00;

const tipPercentage = 0.15;

function calculateTip(preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return tipResult;

}

const tipCost = calculateTip(preTipTotal, tipPercentage);

const totalBill = preTipTotal + tipCost;

document.write("Your total bill is $" + totalBill);

This code defines the named function calculateTip() and later uses the
tipCost variable to store the function result. This is a perfect example of
when a named function is not needed because you use the named
function only to calculate the tipCost value. Adding an identity to the
namespace when you don't have to is called polluting the namespace,
and it’s a big no-no in modern JavaScript programming.

You can rewrite this code to use an anonymous function, instead
(bk03ch05/example07.html):

const preTipTotal = 100.00;

const tipPercentage = 0.15;

// Declare tipCost using an anonymous function

const tipCost = function (preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return tipResult;

};

const totalBill = preTipTotal + tipCost(preTipTotal, tipPercentage);

document.write("Your total bill is $" + totalBill);

The big change here is that now I declare the value of the tipCost
variable to be an anonymous function. That anonymous function is the
same as the calculateTip() named function from before, just without
the name. In the second-last statement, I invoke the anonymous function
by using tipCost(preTipTotal, tipPercentage).

Replacing a function call with an anonymous
function
One of the most common uses for anonymous functions is when you
need to pass a function as an argument to another function. The passed
function is known as a callback function.

First, let's look at an example that uses named functions
(bk03ch05/example08.html):

<body>

 <button id="bgRed">

 Make Background Red

 </button>

 <button id="bgWhite">

 Make Background White

 </button>

<script>

 function makeBackgroundRed() {

 document.body.style.backgroundColor= 'red';

 }

 function makeBackgroundWhite() {

 document.body.style.backgroundColor= 'white';

 }

 document.getElementById('bgRed').addEventListener(

 'click',

 makeBackgroundRed

);

 document.getElementById('bgWhite').addEventListener(

 'click',

 makeBackgroundWhite

);

 </script>

</body>

The script declares two named functions: makeBackgroundRed() and
makeBackgroundWhite(). The code then creates two event listeners. One
of them listens for clicks on the button that has the id value bgRed and,
when a click is detected, runs the makeBackgroundRed() callback
function. The other event listener listens for clicks on the button that has
the id value bgWhite and, when a click is detected, runs the
makeBackgroundWhite() callback function. Refer to Book 3, Chapter 6
to get the details on the document object and the getElementById() and
addEventListener() methods.

Again, we have two functions that don't need to be named, so we can
remove them from the namespace by replacing the callbacks with
anonymous functions. Here’s the revised code
(bk03ch05/example09.html):

<body>

 <button id="bgRed">

 Make Background Red

 </button>

 <button id="bgWhite">

 Make Background White

 </button>

 <script>

 document.getElementById('bgRed').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'red';

 }

);

 document.getElementById('bgWhite').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'white';

 }

);

 </script>

</body>

Moving to Arrow Functions
As you progress in JavaScript, you’ll find yourself using anonymous
functions constantly. When you get to that stage, you’ll be happy to
know that ES6 also offers a simpler anonymous function syntax. That is,
instead of using this:

function ([arguments]) {

 JavaScript statements

}

you can use this:
([arguments]) => {

 JavaScript statements

}

All I did here is remove the function keyword and replace it with the
characters = and > between the arguments and the opening brace. The
characters => look like an arrow (JavaScripters call it a fat arrow), so
this version of the syntax is known as an arrow function.

 Arrow functions are an ES6 invention, so don't use them if you
need to support very old browsers, such as Internet Explorer 11.

 The argument parentheses aren’t required if you’re passing just
one argument to the function:

argA => {

 console.log(argA);

}

For example, here’s an anonymous function from a bit earlier (the
“Assigning an anonymous function to a variable” section):

// Declare tipCost using an anonymous function

const tipCost = function (preTip, tipPercent) {

 const tipResult = preTip * tipPercent;

 return (tipResult);

};

You can rewrite this using an arrow function
(bk03ch05/example10.html):

// Declare tipCost using an arrow function

const tipCost = (preTip, tipPercent) => {

 const tipResult = preTip * tipPercent;

 return (tipResult);

};

If your anonymous function consists of a single statement, you can take
advantage of an arrow function feature called implicit return:

([arguments]) => statement;

Here, JavaScript assumes that a single-statement function means that the
function returns right after executing the statement, so you can leave out
the braces and the return keyword. Here’s an example:

// Declare tipCost using an arrow function with implicit return

const tipCost = (preTip, tipPercent) => preTip * tipPercent;

Similarly, here’s one of the anonymous callback functions from the
previous section:

document.getElementById('bgRed').addEventListener(

 'click',

 function() {

 document.body.style.backgroundColor= 'red';

 }

);

You can rewrite this code as follows to use an arrow function with
implicit return (bk03ch05/example11.html):

document.getElementById('bgRed').addEventListener(

 'click',

 () => document.body.style.backgroundColor= 'red'

);

Running Functions in the Future
In the scripts I’ve presented so far in this book, the code has executed in
one of three ways:

Automatically when the page loads
When your script calls a function
In response to some event, such as the user clicking a button

JavaScript also offers a fourth execution method that’s based on time.
There are two possibilities:

Have some code run once after a specified number of milliseconds.
This is called a timeout.
Have some code run after a specified number of milliseconds, and
then repeat each time that number of milliseconds expires. This is
called an interval.

The next couple of sections show you how to set up both procedures.

Using a timeout to perform a future action once

To set up a JavaScript timeout, use the setTimeout method:

setTimeout(function, delay, arg1, arg2, …);

where:

function is the anonymous or named function that you want
JavaScript to run when the timeout expires. Instead of a function,
you can also use a JavaScript statement, surrounded by quotation
marks.
delay is the number of milliseconds that JavaScript waits before
executing function.

arg1, arg2, … are optional arguments to pass to function.

Note that setTimeout returns a value that uniquely identifies the
timeout. You can store this value just in case you want to cancel the
timeout (as described later in this section).

Here's some code that shows how setTimeout works
(bk03ch05/example12.html):

// Create a message

const str = "Hello World!";

// Set the timeout

const timeoutId = setTimeout(function (msg) {

 document.write(msg);

}, 5000, str);

The script begins by creating a message string and storing it in the str
variable. Then the setTimeout method tells JavaScript to run an
anonymous function after five seconds (5,000 milliseconds) have
elapsed, and to pass the str variable to that function. The anonymous
function takes the msg argument and displays it on the page with
document.write.

If you've set up a timeout and then decide that you don’t want the code
to execute after all for some reason, you can cancel the timeout by
running the clearTimeout method:

clearTimeout(id)

where id is the name of the variable used to store the setTimeout
method's return value.

For example, suppose you set a timeout with the following statement:
const timeoutId = setTimeout(function (msg) {

 document.write(msg);

}, 5000, str);

You could then cancel the timeout using the following statement:
clearTimeout(timeoutId);

Using an interval to perform a future action
repeatedly
Running code once after a specified number of seconds is an
occasionally useful procedure. A much more practical skill is being able
to repeat code at a specified interval. Doing so enables you to set up
countdowns, timers, animations, image slide shows, and more. To set up
an interval, use the setInterval method:

setInterval(function, delay, arg1, arg2, …);

where:

function is the anonymous or named function that you want
JavaScript to run at the end of each interval. Instead of a function,
you can also use a JavaScript statement, surrounded by quotation
marks.
delay is the number of milliseconds in each interval, after which
JavaScript executes function.

arg1, arg2, … are the optional arguments to pass to function.

As with setTimeout, the setInterval method returns a value that
uniquely identifies the interval. You could use that value to cancel the
interval with the clearInterval method:

clearInterval(id);

where id is the name of the variable used to store the setInterval
method's return value.

For example, suppose you set an interval with the following statement:
const intervalId = setInterval(countdown, 5000);

You’d then cancel the interval using the following statement:
clearInterval(intervalId);

Note that although the clearTimeout method is optional with
setTimeout, you should always use clearInterval with setInterval.
Otherwise, the interval will just keep executing.

The following code demonstrates both setInterval and clearInterval
(bk03ch05/example13.html):

let counter = 10;

// Set the interval

const intervalId = setInterval(function () {

 // Display the countdown and then decrement the counter

 document.open();

 document.write(counter);

 counter -= 1;

 // Cancel the interval after we hit 0

 if (counter < -1) {

 clearInterval(intervalId);

 document.open();

 document.write("All done!");

 }

}, 1000);

The purpose of this script is to display a countdown from 10 to 0 on the
page. The script begins by declaring a variable named counter and
initializing it to 10. Then the setInterval method sets up an anonymous
function to run at intervals of one second (1,000 milliseconds). The
anonymous function clears the page using document.open, displays the
current value of counter on the page, and decrements counter. Then an
if test checks the value of counter. If it's negative, it means that

counter was just 0, so it's done. The clearInterval method cancels the
interval, and then a final message is written to the page.

Understanding Variable Scope
In programming, the scope of a variable defines where in the script a
variable can be used and where it can’t be used. To put it another way, a
variable’s scope determines which statements and functions can access
and work with the variable. You need to be concerned with scope for two
main reasons:

You may want to use the same variable name in multiple
functions. If these variables are otherwise unrelated, you’ll want to
make sure that there is no confusion about which variable you’re
working with. In other words, you’ll want to restrict the scope of
each variable to the block or function in which it is declared.
You may need to use the same variable in multiple blocks or
functions. For example, a function may use a variable to store the
results of a calculation, and other functions may also need to use that
result. In this case, you’ll want to set up the scope of the variable so
that it’s accessible to multiple functions.

JavaScript lets you establish three types of scope for your variables:

Block scope
Function scope
Global scope

The next three sections describe each type in detail.

Working with block scope
When a variable has block scope, the variable was declared using let or
const inside a statement block — that is, between a set of braces: { and
} — and the only statements that can access the variable are the ones

within that same block. Statements outside the block and statements in
other blocks can't access the variable (bk03ch05/example14.html):

if (true) {

 const myMessage = "I'm in the scope!";

 console.log("Inside the if block: " + myMessage);

}

console.log("Outside the if block: " + myMessage);

This code uses an if construction to create a statement block. Inside that
block, the code declares a variable named myMessage, sets its value to a
text string, and uses JavaScript's console.log method to display the
string in the console.

After the if block, another console.log statement attempts to display
the myMessage variable. However, as shown in Figure 5-5, JavaScript
generates an error that says myMessage is not defined. Why? Because
the scope of the myMessage variable extends only to the if block.
Statements outside that block can't “see” the myMessage variable, so it
has nothing to display. In fact, after the if statement finishes executing,
JavaScript removes the myMessage variable from memory, so that's why
the myMessage variable referred to in the final line is undefined.

FIGURE 5-5: Attempting to display the myMessage variable outside of the if block results in
an error.

Working with function scope

When a variable has function scope (often also known as local scope),
the variable was declared inside a function and the only statements that
can access the variable are the ones in that same function. Statements
outside the function and statements in other functions can't access the
variable.

The following code demonstrates function scope
(bk03ch05/example15.html):

function A() {

 const myMessage = "I'm in the scope!";

 console.log("Function A: " + myMessage);

}

function B() {

 console.log("Function B: " + myMessage);

}

A();

B();

There are two functions here, named A and B. Function A declares a
variable named myMessage, sets its value to a text string, and uses
JavaScript's console.log method to display the string in the console.

Function B also uses console.log to attempt to display the myMessage
variable. As shown in Figure 5-6, JavaScript generates an error that says
myMessage is not defined. Why? Because the scope of the myMessage
variable extends only to function A; function B can't “see” the myMessage
variable, which was removed from memory as soon as function A
finished executing.

FIGURE 5-6: Trying to use the myMessage variable in function B generates an error.

The same result occurs if you attempt to use the myMessage variable
outside any function, as in the following code:

function A() {

 const myMessage = "I'm in the scope!";

 console.log("Function A: " + myMessage);

}

A();

// The following statement generates an error:

console.log(myMessage);

Working with global scope
What if you want to use the same variable in multiple functions or even
in multiple script blocks within the same page? In that case, you need to
use global scope, which makes a variable accessible to any statement or
function on a page. (That's why global scope is also called page-level
scope.) To set up a variable with global scope, declare it outside any
block or function. The following code gives this a whirl
(bk03ch05/example16.html):

const myMessage = "I've got global scope!";

if (true) {

 console.log("Inside the if block: " + myMessage);

}

function C() {

 console.log("Function C: " + myMessage);

}

C();

console.log("Outside any block or function: " + myMessage);

The script begins by declaring the myMessage variable and setting it
equal to a string literal. Then an if block uses a console.log statement
to attempt to display the myMessage value. Next, a function named C is
created and displays a console message that attempts to display the value
of myMessage. After the function is called, another console.log
statement attempts to display the myMessage value outside any block or
function. Figure 5-7 shows the results: All three console.log statements
display the value of myMessage without a problem.

FIGURE 5-7: When you declare a global variable, you can access its value both inside and
outside any block or function.

Using Recursive Functions
One of the stranger things you can do with a function is have it execute
itself. That is, you place a statement within the function that calls the
function. This is called recursion, and such a function is called a
recursive function.

Before trying out a practical example, here's a simple script that
demonstrates the basic procedure (bk03ch05/example17.html):

let counter = 0;

addOne();

function addOne() {

 counter += 1;

 if (confirm("counter is now " + counter + ". Add another one?")) {

 addOne();

 }

}

document.write("Counter ended up at " + counter);

The script begins by declaring a variable named counter and initializing
it to 0. Then a function named addOne is called. This function increments
the value of counter. It then displays the current value of counter and
asks if you want to add another. If you click OK, the addOne function is
called again, but this time it's called from within addOne itself! This just

means that the whole thing repeats itself until you eventually click
Cancel in the dialog box. After the function is exited for good, a
document.write statement shows the final counter total.

What possible use is recursion in the real world? That's a good question.
Consider a common business problem: calculating a profit-sharing plan
contribution as a percentage of a company’s net profits. This isn’t a
simple multiplication problem, because the net profit is determined, in
part, by the profit-sharing figure. For example, suppose that a company
has sales of $1,000,000 and expenses of $900,000, which leaves a gross
profit of $100,000. The company also sets aside 10 percent of net profits
for profit sharing. The net profit is calculated with the following
formula:

Net Profit = Gross Profit - Profit Sharing Contribution;

That looks straightforward enough, but it’s really not because the Profit
Sharing Contribution value is derived with the following formula:

Profit Sharing Contribution = Net Profit * 10%;

In other words, the Net Profit value appears on both sides of the
equation, which complicates things considerably.

One way to solve the Net Profit formula is to guess at an answer and
calculate how close you come. For example, because profit sharing
should be 10 percent of net profits, a good first guess may be 10 percent
of gross profits, or $10,000. If you plugged this number into the Net
Profit formula, you get a value of $90,000. This wouldn't be right,
however, because you’d end up with a profit sharing value — 10 percent
of $90,000 — of $9,000. Therefore, the original profit-sharing guess
would be off by $1,000.

So, you can try again. This time, use $9,000 as the profit-sharing
number. Plugging this new value into the Net Profit formula returns a
value of $91,000. This number translates into a profit-sharing
contribution of $9,100. This time you’re off by only $100, so you’re
getting closer.

If you continue this process, your profit-sharing guesses will get closer
to the calculated value. (This process is called convergence.) When the
guesses are close enough (for example, within a dollar), you can stop
and pat yourself on the back for finding the solution.

The process of calculating a formula and then continually recalculating it
using different values is what recursion is all about.

 AVOIDING INFINITE RECURSION
If you’re trying to call a function recursively, you may get error messages such as Stack
overflow or Too much recursion. These error messages indicate that you have no
brakes on your recursive function so, if not for the errors, it would call itself forever. This
is called infinite recursion. The maximum number of recursive calls depends on the
browser and operating system and how much memory your device has installed.

In any case, it's important to build in some kind of test to ensure that the function will
stop calling itself after a certain number of calls:

The addOne function avoids infinite recursion by asking users if they want to
continue or stop.

The calculateProfitSharing function avoids infinite recursion by testing the
sum of netProfit and profitSharing to determine if this sum is equal to
grossProfit. (Although note that you may not know in advance whether the
calculation converges, so some other way of limiting the recursion may be
needed at first. For example, you could declare a global counter variable that is
incremented with each recursive function call and is tested within the function
to ensure that it doesn't exceed some maximum value.)

If you don’t have a convenient or obvious method for stopping the recursion, you can
set up a counter that tracks the number of function calls. When that number hits a
predetermined maximum, the script should bail out of the recursion process. The
following code presents such a script (bk03ch05/example19.html):

let currentCall = 1;

const maximumCalls = 3;

recursionTest();

function recursionTest() {

 if (currentCall <= maximumCalls) {

 console.log(currentCall);

 currentCall += 1;

 recursionTest();

 }

}

The currentCall variable is the counter, and the maximumCalls variable specifies the
maximum number of times the recursive function can be called. In the function, the
following statement compares the value of currentCall and maximumCalls:

if (currentCall <= maximumCalls)

If currentCall is less than or equal to maximumCalls, all is well and the script can
continue. In this case, a console message displays the value of currentCall, that value
is incremented, and the recursionTest function is called again. When currentCall
becomes greater than maximumCalls, the function exits and the recursion is done.

Now it's time to show you how to go about writing a script that runs
recursively. Check out the following code (bk03ch05/example18.html):

const profitSharingPercent = 0.1;

const grossProfit = 100000;

let netProfit;

// Here's the initial guess

let profitSharing = grossProfit * profitSharingPercent;

calculateProfitSharing(profitSharing);

function calculateProfitSharing(guess) {

 // First, calculate the new net profit

 netProfit = grossProfit - guess;

 // Now use that to guess the profit-sharing value again

 profitSharing = Math.ceil(netProfit * profitSharingPercent);

 // Do we have a solution?

 if ((netProfit + profitSharing) != grossProfit) {

 // If not, plug it in again

 calculateProfitSharing(profitSharing);

 }

}

// Write the solution

document.write("Gross Profit: " + grossProfit +

 "
Net Profit: " + netProfit +

 "
Profit Sharing: " + profitSharing);

The grossProfit variable is initialized at 100000, the netProfit
variable is declared, the profitSharingPercent variable is set to 0.1
(10 percent), and the profitSharing variable is set to the initial guess of
10 percent of gross profits. Then the calculateProfitSharing function
is called, and the profitSharing guess is passed as the initial value of
the guess argument.

The function first calculates the netProfit and then uses that value to
calculate the new profitSharing number. Remember your goal here is
to end up with the sum of netProfit and profitSharing equal to
grossProfit. The if statement tests that, and if the sum is not equal to
grossProfit, the calculateProfitSharing function is called again
(here's the recursion), and this time the new profitSharing value is
passed. When the correct values are finally found, the function exits and
displays the results, as shown in Figure 5-8.

FIGURE 5-8: Using recursion to calculate a profit sharing value.

 Note that all the variables in previous example are declared as
globals. That’s because if you declared them within the
calculateProfitSharing function, they would get wiped out and
reset with each call, which is not what you want when doing
recursion.

Chapter 6
Playing with the Document

Object Model
IN THIS CHAPTER

 Understanding objects
 Messing with object properties and methods
 Specifying elements by ID, tag, class, and selector
 Taking a deep dive into the Document Object Model
 Programming parents, children, siblings, and other family

members

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. Few media of creation are so flexible, so
easy to polish and rework, so readily capable of realizing grand
conceptual structures.

— FRED BROOKS
I talk a lot of JavaScript in the past few chapters, but in a very real sense
all that talk has been the programming equivalent of noshing on a few
appetizers. Now it’s time to sit down for the main course: programming
the Document Object Model. I explain what that is shortly, but for now
it’s enough to know that it means taking control over every aspect of the
web page. Want to change some web page text on the fly? JavaScript can
do that. Want to add an element to the page? JavaScript’s up to the task.
Want to modify an element’s CSS? JavaScript’s all over that. Want to
perform some action based on the user clicking something or pressing a
key combination? JavaScript raises its hand and says, “Ooh, ooh, pick
me, pick me!”

In this chapter, you explore the fascinating world of the Document
Object Model. You learn lots of powerful coding techniques that enable
you to make your web pages do almost anything you want them to do.
You learn, too, that this is where web coding becomes fun and maybe
just a little addictive (in a good way, I promise).

Working with Objects
Before I talk about the Document Object Model, you need to get familiar
with what is arguably the most important word in that name: object.
Over the next few pages, you learn what objects are, what you can do
with them, and why they’re important.

What is an object, anyway?
Only the simplest JavaScript programs do nothing but assign values to
variables and calculate expressions. To go beyond these basic
programming beginnings — that is, to write truly useful scripts — you
have to do what JavaScript was designed to do from the start: manipulate
the web page that it’s displaying. That’s what JavaScript is all about, and
that manipulation can come in many different forms:

Add text and HTML attributes to an element.
Modify a CSS property of a class or other selector.
Store some data in the browser’s internal storage.
Validate a form’s data before submitting it.

The bold items in this list are examples of the “things” you can work
with, and they’re special for no other reason than they’re programmable.
In JavaScript parlance, these “programmable things” are called objects.

You can work with objects in JavaScript in any of the following three
ways:

You can read and make changes to the object’s properties.

You can make the object perform a task by activating a method
associated with the object.
You can define a procedure that runs whenever a particular event
happens to the object.

To help you understand objects and their properties, methods, and
events, I’ll put them in real-world terms. Specifically, consider your
computer as though it were an object:

If you wanted to describe your computer as a whole, you’d mention
things like the name of the manufacturer, the price, the size of the
hard drive, and the amount of RAM. Each of these items is a
property of the computer.
You also can use your computer to perform tasks such as writing
letters, crunching numbers, and coding web pages. These are the
methods associated with your computer.
A number of things happen to the computer that cause it to respond
in predefined ways. For example, when the On button is pressed, the
computer runs through its Power On Self-Test, initializes its
components, and so on. The actions to which the computer responds
automatically are its events.

These properties, methods, and events give you an overall description of
your computer.

But your computer is also a collection of objects, each with its own
properties, methods, and events. The hard drive, for example, has
various properties, including its speed and data-transfer rate. The hard
drive’s methods are actions such as storing and retrieving data. A hard
drive event may be a scheduled maintenance task, such as checking the
drive for errors.

In the end, you have a complete description of the computer: its
appearance (its properties), how you interact with it (its methods), and to
what actions it responds (its events).

Manipulating object properties
All JavaScript objects have at least one property, and some of them have
a couple dozen or more. What you do with these properties depends on
the object, but you generally use them for the following tasks:

Gathering information about an object’s current settings: With
an element object (such as a div or p element), for example, you can
use the textContext property to get whatever text is currently in the
element.
Changing an object's current settings: For example, you can use
the document object’s location property to send the web browser to
a different URL.
Changing an object's appearance: With an element’s style object,
for example, you can use the fontSize property to change the size of
the element's text.

Referencing a property
Whatever the task, you refer to a property by using the syntax in the
following generic expression:

object.property

where:

object is the object that has the property.

property is the name of the property you want to work with.

The dot (.) in between is called the property access operator.

For example, consider the following expression:
document.location

This expression refers to the document object's location property,
which holds the address of the document (usually a web page) currently
displayed in the browser window. (In conversation, you’d pronounce this
expression as “document dot location.”) The following code (check out

bk03ch06/example01.html in this book’s example files) shows a simple
one-line script that displays this property in the console, as shown in
Figure 6-1.

console.log(document.location);

FIGURE 6-1: This script displays the document.location property in a console message.

 To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  
+I in macOS), and then click the Console tab.

Because the property always contains a value, you're free to use property
expressions in just about any type of JavaScript statement and as an
operand in a JavaScript expression. For example, the following
statement assigns the current value of the document.location property
to a variable named currentUrl:

const currentUrl = document.location;

Similarly, the following statement includes document.location as part
of a string expression:

const message = "The current address is " + document.location + ".";

Realizing that some properties are objects
Just to keep you on your toes when you're working with objects, you’ll
constantly come across a common but mystifying notion: Some
properties pull double-duty as full-fledged objects! This property/object

double identity is one of the most confusing aspects of the relationship
between objects and properties, but it’s also one of the most important,
so I’ll dive into this a bit deeper to make sure you understand what’s
going on.

The basic idea is that the value returned by a property is usually a literal
(which is programmer-speak for “it is what it is”) such as a string or
number, but sometimes it’s an object. An example of the latter is the
document object’s location property, which actually returns a Location
object. Because location is an object, it also has its own properties. For
example, it has a hostname property that references just the host name
part of the address (for example, paulmcfedries.com). To work with
this property, you extend the expression syntax accordingly:

document.location.hostname

Changing the value of a property
Some properties are read only, which means your code can only read the
current value and can't change it. However, many properties are
read/write, which means you can also change their values. To change the
value of a property, use the following generic syntax:

object.property = value

where:

object is the object that has the property.

property is the name of the property you want to change.

value is a literal value (such as a string or number) or an expression
that returns the value to which you want to set the property.

Here's an example (bk03ch06/example02.html):
const newAddress = prompt("Enter the address you want to surf to:");

document.location = newAddress;

This script prompts the user for a web page address and stores the result
in the newAddress variable. This value is then used to change the

http://paulmcfedries.com/

document.location property, which in this case tells the browser to
open the specified address.

Working with object methods
Every JavaScript object has at least one or two methods that you can
wield to make the object do something. These actions generally fall into
the following categories:

Simulate a user's action: For example, the form object’s submit()
method submits a form to the server just as though the user clicked
the form's submit button.
Perform a calculation: For example, the Math object’s sqrt()
method calculates the square root of a number.
Manipulate an object: For example, the String object's
toLowerCase() method changes all of a string’s letters to lowercase.

To run a method, begin with the simplest case, which is a method that
takes no arguments:

object.method()

where:

object is the object that has the method you want to work with.

method is the name of the method you want to execute.

For example, consider the following statement:
history.back();

This runs the history object's back() method, which tells the browser
to go back to the previously visited page. The following code shows this
method at work (bk03ch06/example03.html):

const goBack = confirm("Do you want to go back?");

if (goBack === true) {

 history.back();

}

The user is first asked whether they want to go back. If the user clicks
OK, the Boolean value true is stored in the goBack variable and the
comparison expression goBack === true becomes true, so the
history.back() method runs.

I mention in Book 3, Chapter 5 that you can define a function so that it
accepts one or more arguments, and these arguments are then used as
input values for whatever calculations or manipulations the function
performs. Methods are similar in that they can take one or more
arguments and use those values as raw data.

If a method requires arguments, you use the following generic syntax:
object.method (argument1, argument2, …)

For example, consider the confirm() method, used in the following
statement, which takes a single argument — a string that specifies the
text to display to the user:

confirm("Do you want to go back?")

Finally, as with properties, if the method returns a value, you can assign
that value to a variable (as I do with the confirm() method in the earlier
example) or you can incorporate the method into an expression.

Rolling your own objects
Although you'll mostly deal with prefab objects such as those built in to
JavaScript or exposed by a Web API (refer to the next section), you can
also create objects. Why would you ever want to do that? There are lots
of reasons, but for our purposes here the biggest reason is that a custom
object enables you to store multiple, related values in a single data
structure.

For example, suppose your script needs to work with the following user
preferences for the styles that get applied to your page when the user
visits: background color, text color, text size, and typeface. You could
store these preferences in separate variables:

const userBgColor = "darkolivegreen";

const userTextColor = "antiquewhite";

const userTextSize = "1.25em";

const userTypeface = "Comic Sans";

This approach isn’t terrible, but it feels a bit unwieldy, and it would
definitely get unwieldy if you had to store this info for multiple users or
if the number of preferences you had to store increased to 10 or 15 or
more. Hey, it can happen!

A much easier and more flexible way to deal with such a collection of
related data is to pour everything into a custom object using the
following syntax:

const objectName = {

 propertyName1: value1,

 propertyName2: value2,

 …

 propertyNameN: valueN

}

where:

objectName is the variable name of the object.

propertyName1 through propertyNameN are the names of the object's
properties.
value1 through valueN are the values assigned to the properties.
Each value can be a literal value (such as a string, number, or
Boolean), an array, a function result, a variable name (assuming the
variable has already been declared and initialized), or even another
object literal.

This data structure is called an object literal. Here's how you’d use an
object literal to store the user preferences from earlier:

const userPrefs = {

 bgColor: "darkolivegreen",

 textColor: "antiquewhite",

 textSize: "1.25em",

 typeface: "Comic Sans"

};

You can then reference a property’s value using the standard
property.value syntax:

document.body.style.backgroundColor = userPrefs.bgColor;

You can also change a property value in the usual way:
userPrefs.textColor = "papayawhip";

 Wait, what!? I declared userPrefs with const and then I
changed a property value? How is this possible? This common
question strikes at the heart of what it means to declare a variable
with const. In this case, const is binding userPrefs to a particular
object, and you can't change that binding. However, you’re free to
change the contents of that object.

What about custom object methods? Yep, you can add them, as well:
const objectName = {

 propertyName1: value1,

 propertyName2: value2,

 …

 propertyNameN: valueN,

 methodName: function([arguments]) {

 code

 }

};

where:

methodName is the name of the method.

arguments is an optional (comma-separated) list of the arguments
taken by the method.
code is the JavaScript code to run when the method is invoked.

 Instead of methodName: function(arguments), you can
alternatively use methodName(arguments).

Here's an example (bk03ch06/example04.html):

const userPrefs = {

 bgColor: "darkolivegreen",

 textColor: "antiquewhite",

 textSize: "1.25em",

 typeface: "Comic Sans",

 resetDefaults: function() {

 document.body.style.backgroundColor = 'white';

 document.body.style.color = 'black';

 document.body.style.fontSize = '1em';

 document.body.style.fontFamily = 'initial';

 }

};

This code defines a resetDefaults() method that, when run, resets the
background color, text color, text size, and typeface to their default
values. Your code would invoke this method as follows:

userPrefs.resetDefaults();

Introducing the web APIs
JavaScript has its own set of built-in objects, including the String, Date,
and Math objects, which are the subject of Book 3, Chapter 9. However,
a huge collection of objects exists outside JavaScript, and these objects
are available to your scripts. This collection consists of the web
application programming interfaces, or web APIs, for short.

To understand how the web APIs work, consider your car (if you have
one; if not, consider someone else's car). The engine inside the car is a
monumentally complex piece of engineering, but you don’t have to
worry about any of that to start the car. Instead, all you have to do is
insert the key (or fob, or whatever) into the ignition and turn (or push the
button, or whatever). The complexity of the engine and its startup
process is hidden from you and is reduced to putting the key (or fob or
whatever) into the ignition.

From a programming point of view, the car engine is an object and the
ignition is what’s known as an interface: that is, a way of accessing the
properties and methods of the object (such as the “method” of starting
the engine).

In the simplest terms, an application programming interface (API) is a
way for your JavaScript code to access a hidden (and presumably
complex) object by exposing that object’s properties and methods.
Fortunately, many web APIs are built right into the web browser, so your
JavaScript code can access many sophisticated objects right out of the
box.

A good example is the Web Storage API, which enables your JavaScript
code to store and retrieve data within the user’s web browser. It’s an
extremely handy API, which is why I devote an entire chapter to it (refer
to Book 3, Chapter 10).

Other web APIs enable you to access a device’s battery state (Battery
API), the clipboard (Clipboard API), server data (Fetch API),
geolocation data (Geolocation API), audio (Web Audio API), and
notifications (Web Notifications API).

However, for this chapter's purposes (and, indeed, for pretty much the
rest of this book) the Big Kahuna API is the Document Object Model,
which I turn to next.

Getting to Know the Document
Object Model

Here’s some source code for a simple web page:
<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header>

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main>

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

One way to examine this code is hierarchically. That is, the html element
is the topmost element because every other element is contained within
it. The next level down in the hierarchy contains the head and body
elements. The head element contains a title element, which contains
the text So Many Kale Recipes. Similarly, the body element contains a
header element and a main element. The header element contains an h1
element with the text Above and Beyond the Kale of Duty, while the
main element contains a p element with the text Do you love to cook
with kale?.

Hierarchies are almost always more readily grasped in visual form, so
Figure 6-2 graphs the page elements hierarchically.

FIGURE 6-2: The web page code as a hierarchy.

 When speaking of object hierarchies, if object P contains object
C, object P is said to be the parent of object C, and object C is said
to be the child of object P. In Figure 6-2, the arrows represent
parent-to-child relationships. Also, elements on the same level —
such as the header and main elements — are known as siblings.

You have several key points to consider here:

Every box in Figure 6-2 represents an object.
Every object in Figure 6-2 is one of three types: element, text, or
attribute.
Every object in Figure 6-2, regardless of its type, is called a node.
The page as a whole is represented by the document object.

Therefore, this hierarchical object representation is known as the
Document Object Model, or the DOM as it's usually called. The DOM is
a web API that enables your JavaScript code to access the complete
structure of an HTML document. This access is the source of one of
JavaScript’s most fundamental features: the capability it offers you as a
web developer to read and change the elements of a web page, even after
the page is loaded. To that end, this section presents a quick tour of some
extremely useful and powerful JavaScript techniques for dealing with
the DOM and the document object.

To get you started, Table 6-1 describes a few common properties of the
document object.

TABLE 6-1 Useful Properties of the document Object

Property What It Returns

activeElement
An object that represents the element that currently has the focus
on the current web page

body An object that represents the current web page's body element

Property What It Returns

childElementCount The number of child elements in the current web page

children A collection that contains all the current web page's elements

forms A collection that contains all the current web page's form elements

head An object that represents the current web page's head element

images A collection that contains all the current web page's img elements

lastModified The date and time the current web page was last changed

links A collection that contains all the current web page's a elements

location An object that represents the URL of the current web page

title An object that represents the current web page's title element

URL A string that contains the URL of the current web page

Specifying Elements
Elements represent the tags in a document, so you'll be using them
constantly in your code. This section shows you several methods for
referencing one or more elements.

Specifying an element by ID
If you want to work with a specific element in your script, you can
reference the element directly by first assigning it an identifier using the
id attribute:

<header id="page-banner">

With that done, you can then refer to the element in your code by using
the document object's getElementById() method:

document.getElementById(id)

where id is a string representing the id attribute of the element you want
to work with.

For example, the following statement (refer to
bk03ch06/example05.html) returns a reference to the previous <div> tag

(the one that has id=" kale-quotations"):

document.getElementById("page-banner")

 When you're coding the document object, don’t put your
<script> tag in the web page's head section (that is, between the
<head> and </head> tags). If you place your code there, the web
browser will run the code before it has had a chance to create the
document object, which means your code will fail, big time.
Instead, place your <script> tag at the bottom of the web page, just
before the </body> tag.

Specifying elements by tag name
Besides working with individual elements, you can work also with
collections of elements. One such collection is the set of all elements in a
page that use the same tag name. For example, you could reference all
the <a> tags or all the <div> tags. This is a handy way to make large-
scale changes to these tags (such as by changing all the target attributes
in your links).

The mechanism for returning a collection of elements that have the same
tag is the getElementsByTagName() method:

document.getElementsByTagName(tag)

where tag is a string representing the HTML name used by the tags you
want to work with.

This method returns an array-like collection that contains all the
elements in the document that use the specified tag. (Refer to Book 3,
Chapter 8 to find out how arrays work. Also check out “Working with
collections of elements,” later in this chapter.) For example, to return a
collection that includes all the p elements in the current page, you'd use
the following statement (bk03ch06/example05.html):

const paragraphs = document.getElementsByTagName("p");

Specifying elements by class name
Another collection you can work with is the set of all elements in a page
that use the same class. The JavaScript tool for returning all the elements
that share a specific class name is the getElementsByClassName()
method:

document.getElementsByClassName(class)

where class is a string representing the class name used by the elements
you want to work with.

This method returns an array-like collection that contains all the
elements in the document that use the specified class name. The
collection order is the same as the order in which the elements appear in
the document. Here's an example (bk03ch06/example06.html):

const keywords = document.getElementsByClassName("keyword");

Specifying elements by selector
In Book 2, Chapter 2, I discuss CSS selectors, including the id, tag, and
class selectors, the descendant, child, and subsequent-sibling
combinators, pseudo-classes, and pseudo-elements. You can use those
same selectors in your JavaScript code to reference page elements by
using the document object’s querySelector() and querySelectorAll()
methods:

document.querySelector(selector)

document.querySelectorAll(selector)

where selector is a string representing the selector for the element or
elements you want to work with.

The difference between these methods is that querySelectorAll()
returns a collection of all the elements that match your selector, whereas
querySelector() returns only the first element that matches your
selector.

For example, the following statement returns the collection of all p
elements that are direct children of a main element
(bk03ch06/example07.html):

const main_paragraphs = document.querySelectorAll("main > p");

 Rather than use three distinct document object methods to
reference page elements by id, tag, and class — that is,
getElementById(), getElementsByTagName(), and
getElementsByClassName() — many web developers prefer the
more generic approach offered by querySelector() and
querySelectorAll().

Working with collections of elements
The getElementsByTagName(), getElementsByClassName(), and
querySelectorAll() methods each return an array-like collection that
contains all the elements in the document that use the specified tag,
class, or selector, respectively. The collection order is the same as the
order in which the elements appear in the document. For example,
consider the following HTML code (bk03ch06/example08.html):

<div id="div1">

 This, of course, is div 1.

</div>

<div id="div2">

 Yeah, well this is div 2!

</div>

<div id="div3">

 Ignore those dudes. Welcome to div 3!

</div>

Now consider the following statement:
divs = document.getElementsByTagName("div");

In the resulting collection, the first item (divs[0]) will be the <div>
element with id equal to div1; the second item (divs[1]) will be the
<div> element with id equal to div2; and the third item (divs[2]) will
be the <div> element with id equal to div3.

You can also refer to elements directly by using their id values. For
example, the following statements are equivalent:

const firstDiv = divs[0];

const firstDiv = divs.div1;

To learn how many items are in a collection, use the length property:

const totalDivs = divs.length;

To perform one or more operations on each item in the collection, you
can use a for…of loop to run through the collection one item at a time. In
the JavaScript trade, this is known as iterating over the collection. Here's
the syntax to use:

for (const item of collection) {

 statements

}

where:

item is a variable that holds an item in the collection. The first time
through the loop, item is set to the first element in the collection; the
second time through the loop, item is set to the second element; and
so on.
collection is the collection of elements you want to iterate over.

statements is the JavaScript code you want to use to manipulate (or
view, or whatever) item.

For example, here's some code that iterates over the preceding div
elements and displays each item’s id value in the console (refer to Book
5, Chapter 2 for details on the console), as shown in Figure 6-3
(bk03ch06.example08.html):

divs = document.getElementsByTagName("div");

for (const d of divs) {

 console.log(d.id);

}

FIGURE 6-3: The output of the script that iterates over the div elements.

 The for…of loop is an ECMAScript 2015 (ES6) addition. If you
need to support ancient browsers such as Internet Explorer 11, you
can use a regular for loop, instead:

for (var i = 0; i < collection.length; i += 1) {

 statements

 // Use collection[i] to refer to each item

}

Traversing the DOM
One common task in JavaScript code is working with the children,
parent, or siblings of some element in the page. This is known as
traversing the DOM because you're using these techniques to move up,
down, and along the DOM hierarchy.

In the sections that follow, I use the following HTML code for each
example technique (bk03ch06/example09.html):

<html lang="en">

 <head>

 <title>So Many Kale Recipes</title>

 </head>

 <body>

 <header id="page-banner">

 <h1>Above and Beyond the Kale of Duty</h1>

 </header>

 <main id="page-content">

 <p>

 Do you love to cook with kale?

 </p>

 </main>

 </body>

</html>

Getting the children of a parent element
When you’re working with a particular element, it’s common to want to
perform one or more operations on that element’s children. Every parent
element offers several properties that enable you to work with all or just
some of its child nodes:

All the child nodes
The first child node
The last child node

Getting all the child nodes
To return a collection of all the child nodes of a parent element, use the
childNodes property:

parent.childNodes

where parent is the parent element you're working with.

For example, the following statement stores all the child nodes of the
body element in a variable:

const bodyChildren = document.body.childNodes;

The result is a NodeList object, which is a collection of nodes. If you
were to use the console (refer to Book 5, Chapter 2) to display the value
of bodyChildren, you'd get the output shown in Figure 6-4.

FIGURE 6-4: The value of the bodyChildren variable displayed in the console.

 If you need to iterate over a NodeList collection, you can use the
for…of loop, which I talk about earlier in this chapter (head back to
“Working with collections of elements”).

Here's the output shown in the console:
NodeList(5) [#text, header#page-banner, #text, main#page-content, #text]

The (5) part tells you there are five items in the NodeList, and from the
values within the square brackets you know that the nodes consist of the
header and main elements, as expected, but also three text nodes. Where
did those text nodes come from? They represent (in this example) the
whitespace between the elements. For example, the first text node is the
carriage return and eight spaces that appear between the end of the
<body> tag and the start of the <header> tag. The other text nodes
represent the whitespace between the </header> and <main> tags and
between the </main> and </body> tags.

If what you really want is the collection of child nodes that are elements,
you need to turn to a different property:

parent.children

where parent is the parent element.

For example, the following statement stores all the child element nodes
of the body element in a variable:

const bodyChildElements = document.body.children;

The result is an HTMLCollection object, which is an array-like
collection of element nodes. If you were to use the console (refer to
Book 5, Chapter 2) to display the value of bodyChildElements, you'd
get the output shown in Figure 6-5.

FIGURE 6-5: The value of the bodyChildElements variable displayed in the console.

Here’s the output:
HTMLCollection { 0: header#page-banner, 1: main#page-content, length: 2 }

The numbers 0 and 1 are the index numbers of each child. For example,
you could use bodyChildElements[0] to refer to the first element in the
collection, which in this example is the header element.

Getting the first child node
If you use a parent element's childNodes or children property to return
the parent's child nodes, as I describe in the preceding section, you can
refer to the first item in the resulting collection by tacking [0] on to the
collection’s variable name. For example:

bodyChildren[0]

bodyChildElements[0]

However, the DOM offers a more direct route to the first child node:

parent.firstChild

where parent is the parent element.

For example, suppose you want to work with the first child node of the
main element from the HTML example at the beginning of this section.
Here's some code that’ll do the job (bk03ch06/example10.html):

const content = document.getElementById("page-content");

const firstContentChildNode = content.firstChild;

In this example, the resulting node is a text node (the whitespace
between the <main> and <p> tags. If you want the first child element
node, use the firstElementChild property, instead:

parent.firstElementChild

where parent is the parent element.

To get the first child element node of the main element from the code at
the beginning of this section, you'd do something like this
(bk03ch06/example11.html):

const content = document.getElementById("page-content");

const firstContentChildElement = content.firstElementChild;

In this example, this code returns the p element.

Getting the last child node
If your code needs to work with the last child node, use the lastChild
property of the parent element:

parent.lastChild

where parent is the parent element.

For example, suppose you want to work with the last child node of the p
element from the HTML example at the beginning of this section. The
following code will do the job (bk03ch06/example12.html):

const para = document.querySelector("main > p");

const lastParaChildNode = para.lastChild;

In this example, the resulting node is a text node representing the
question mark (?) and the whitespace to the </p> tag. If you want the

last child element node, use the lastElementChild property, instead:

parent.lastElementChild

where parent is the parent element.

To get the last child element node of the p element from the code at the
beginning of this section, you could do this (bk03ch06/example13.html):

const para = document.querySelector("main > p");

const lastParaChildElement = para.lastElementChild;

In the example, this code returns the a element.

Getting the parent of a child element
If your code needs to work with the parent of a child element, use the
child element's parentNode property:

child.parentNode

where child is the child element.

For example, suppose you want to work with the parent element of the
h1 element from the HTML example at the beginning of this section.
This code does the job (bk03ch06/example14.html):

const childElement = document.querySelector("h1");

const parentElement = childElement.parentNode;

Getting the siblings of an element
It's often important to work with an element’s siblings in your code.
Recall that an element’s siblings are those elements in the DOM that
share the same parent element.

A parent’s child nodes appear in the DOM in the same order that they
appear in the HTML code, which means the siblings also appear in the
order they appear in the HTML code. Therefore, for a given child
element, there are two sibling possibilities:

Previous sibling: This is the sibling that appears in the DOM
immediately before the child element you’re working with. If the
child element is the first sibling, it will have no previous sibling.

Next sibling: This is the sibling that appears in the DOM
immediately after the child element you’re working with. If the child
element is the last sibling, it will have no next sibling.

Getting the previous sibling
To return the previous sibling of a particular element, use the
previousElementSibling property:

element.previousElementSibling

where element is the element you're working with.

For example, the following statement stores the previous sibling of the
main element in a variable (bk03ch06/example15.html):

const currElement = document.querySelector("main");

const prevSibs = currElement.previousElementSibling;

Getting the next sibling
To return the next sibling of a particular element, use the
nextElementSibling property:

element.nextElementSibling

where element is the element you're working with.

For example, the following statement stores the next sibling of the
header element in a variable (bk03ch06/example16.html):

const currElement = document.querySelector("header");

const nextSibs = currElement.nextElementSibling;

Manipulating Elements
Once you have a reference to one or more elements, you can use code to
manipulate those elements in various ways, as shown in this section.

Adding an element to the page
One of the most common web development chores is to add elements to
a web page on the fly. When you add an element, you always specify the
parent element to which it will be added, and then you decide whether

you want the new element added to the end or to the beginning of the
parent's collection of children.

To add an element to the page, you follow three steps:

1. Create an object for the type of element you want to add.
2. Add the new object from Step 1 as a child element of an existing

element.
3. Insert some text and tags into the new object from Step 1.

Step 1: Creating the element
For Step 1, you use the document object's createElement() method:

document.createElement(elementName)

where elementName is a string containing the HTML element name for
the type of the element you want to create.

This method creates the element and then returns it, which means you
can store the new element in a variable. Here's an example:

const newArticle = document.createElement("article");

Step 2: Adding the new element as a child
With your element created, Step 2 is to add it to an existing parent
element. You have four choices:

Append the new element to the end of the parent’s collection of
child elements: Use the append() method:

parent.append(child)

where:
parent is a reference to the parent element to which the new
element will be appended.
child is a reference to the child element you're appending.
Note that you can append multiple elements at the same time
by separating each element with a comma. The child
parameter can also be a text string.

Prepend the new element to the beginning of the parent’s
collection of child elements: Use the prepend() method:

parent.prepend(child)

where:
parent is a reference to the parent element to which the new
element will be prepended.
child is a reference to the child element you're prepending.
Note that you can prepend multiple elements at the same time
by separating each element with a comma. The child
parameter can also be a text string.

Insert the new element just after an existing child element of the
parent: Use the after() method:

child.after(sibling)

where:
child is a reference to the child element after which the new
element will be inserted.
sibling is a reference to the new element you're inserting.
Note that you can insert multiple elements at the same time by
separating each element with a comma. The sibling
parameter can also be a text string.

Insert the new element just before an existing child element of
the parent: Use the before() method:

child.before(sibling)

where:
child is a reference to the child element before which the new
element will be inserted.
sibling is a reference to the new element you're inserting.
Note that you can insert multiple elements at the same time by
separating each element with a comma. The sibling
parameter can also be a text string.

Here’s an example that creates a new article element and then appends
it to the main element (bk03ch06/example17.html):

const newArticle = document.createElement("article");

document.querySelector("main").append(newArticle);

Here's an example that creates a new nav element and then prepends it to
the main element:

const newNav = document.createElement("nav");

document.querySelector("main").prepend(newNav);

Step 3: Adding text and tags to the new element
With your element created and appended or prepended to a parent, the
final step is to add some text and tags using the innerHTML property:

element.innerHTML = text

where:

element is a reference to the new element within which you want to
add the text and tags.
text is a string containing the text and HTML tags you want to
insert.

 Whatever value you assign to the innerHTML property
completely overwrites an element's existing text and tags, so use
caution when wielding innerHTML. Check out the next section to
learn how to insert text and tags rather than overwrite them.

In this example, the code creates a new nav element, prepends it to the
main element, and then adds a heading (bk03ch06/example17.html):

const newNav = document.createElement("nav");

document.querySelector("main").prepend(newNav);

newNav.innerHTML = "<h2>Navigation</h2>";

Inserting text or HTML into an element

You can use an element's innerHTML property to overwrite that element’s
tags and text, as I describe in the preceding section. However, it’s often
the case that you want to keep the element’s existing tags and text and
insert new tags and text. Each element offers a couple of methods that
enable you to do this:

To insert just text into an element: Use the insertAdjacentText()
method:

element.insertAdjacentText(location, text)

where:
element is a reference to the element into which the new text
will be inserted.
location is a string specifying where you want the text
inserted. I outline your choices for this argument below.
text is a string containing the text you want to insert.

To insert tags and text into an element: Use the
insertAdjacentHTML() method:

element.insertAdjacentHTML(location, data)

where:
element is a reference to the element into which the new tags
and text will be inserted.
location is a string specifying where you want the tags and
text inserted. I outline your choices for this argument shortly.
data is a string containing the tags and text you want to insert.

For both methods, you can use one of the following strings for the
location argument:

"beforebegin": Inserts the data outside of and just before the
element

"afterbegin": Inserts the data inside the element, before the
element's first child
"beforeend": Inserts the data inside the element, after the element's
last child
"afterend": Inserts the data outside of and just after the element

For example, suppose your document has the following element:
<h2 id="nav-heading">Navigation</h2>

If you want to change the heading to Main Navigation, the following
code will do the job (bk03ch06/example18.html):

const navHeading = document.getElementById("nav-heading");

navHeading.insertAdjacentText("afterbegin", "Main ");

Removing an element
If you no longer require an element on your page, you can use the
element's remove() method to delete it from the DOM:

element.remove()

For example, the following statement removes the element with an id
value of temp-div from the page:

document.getElementById("temp-div").remove();

Modifying CSS with JavaScript
Although you specify your CSS rules in a static stylesheet (.css) file,
that doesn't mean the rules themselves have to be static. With JavaScript
on the job, you can work with and modify an element’s CSS in a number
of ways. You can

Read the current value of a CSS property.
Change the value of a CSS property.
Add or remove a class.

Toggle a class on or off.

Why would you want to make these changes to your CSS? You already
know that a big part of a well-designed web page is a strong CSS
component that uses typography, colors, and spacing to create a page
that’s easily readable, sensibly navigable, and pleasing to the eye. But all
that applies to the initial page displayed to the user. In the sorts of
dynamic web apps that you’re learning how to build, your page will
change in response to some condition changing, such as the user clicking
a button or pressing a key. This dynamic behavior needs to be matched
with dynamic changes to the page, including changes to the CSS to
highlight or reflect what’s happening.

Changing an element’s styles
Most HTML tags can have a style attribute that you use to set inline
styles. Because standard attributes all have corresponding element object
properties (as I explain a bit later in the “Tweaking HTML Attributes
with JavaScript” section), you won’t be surprised to learn that most
elements also have a style property that enables you to get and modify
a tag's styles. It works like this: The style property actually returns a
style object that has properties for every CSS style. When referencing
these style properties, you need to keep two things in mind:

For single-word CSS properties (such as color and visibility), use
all-lowercase letters.
For multiple-word CSS properties, drop the hyphen and use
uppercase for the first letter of the second word and for each
subsequent word if the property has more than two. For example, the
font-size and border-left-width CSS properties become the
fontSize and borderLeftWidth style object properties,
respectively.

Here's an example (bk03ch06/example19.html):
const pageTitle = document.querySelector("h1");

pageTitle.style.fontSize = "64px";

pageTitle.style.color = "maroon";

pageTitle.style.textAlign = "center";

pageTitle.style.border = "1px solid black";

This code gets a reference to the page’s first <h1> element. With that
reference in hand, the code then uses the style object to style four CSS
properties of the heading: font-size, color, text-align, and border.

Adding a class to an element
If you have a class rule defined in your CSS, you can apply that rule to
an element by adding the class attribute to the element's tag and setting
the value of the class attribute equal to the name of your class rule. You
can manipulate these classes using JavaScript.

First, you can get a list of an element’s assigned classes by using the
classList property:

element.classList

where element is the element you're working with.

The returned list of classes is an array-like object that includes an add()
method that you can use to add a new class to the element’s existing
classes:

element.classList.add(class)

where:

element is the element you're working with.

class is a string representing the name of the class you want to add
to element. You can add multiple classes by separating each class
name with a comma.

Here's an example (bk03ch06/example20.html), and Figure 6-6 shows
the result.

HTML:
<div id="my-div">

 Hello World!

</div>

CSS:
.my-class {

 display: flex;

 justify-content: center;

 align-items: center;

 border: 6px dotted black;

 font-family: Verdana, serif;

 font-size: 2rem;

 background-color: lightgray;

}

JavaScript:
document.getElementById('my-div').classList.add('my-class');

FIGURE 6-6: This code uses the add() method to add the class named my-class to the
<div> tag.

 If the class attribute doesn't exist in the element, the
addClass() method inserts it into the tag. So, in the preceding
example, after the code executes, the <div> tag would appears like
this:

<div id="my-div" class="my-class">

Removing a class

To remove a class from an element's class attribute, the classList
object offers the remove() method:

element.classList.remove(class)

where:

element is the element you're working with.

class is a string representing the name of the class you want to
remove from element. You can remove multiple classes by
separating each class name with a comma.

Here's an example:
document.getElementById('my-div').classList.remove('my-class');

Toggling a class
One common web development scenario is switching a web page
element between two different states. For example, you may want to
change an element’s styles depending on whether a check box is selected
or deselected, or you may want to alternate between showing and hiding
an element’s text when the user clicks the element’s heading.

One way to handle switching between two states is to use the classList
object’s add() method to add a particular class when the element is in
one state (for example, the user clicks the element's header for the first
time) and then use the remove() method to remove that class when the
element is in the other state (for example, the user clicks the element’s
header for a second time).

That approach would work, but your code would have to check the
element’s current state, using something like this pseudo-code:

if (the element has the class applied) {

 remove the class

} else {

 add the class

}

That’s a lot of extra work, but fortunately it isn’t work you have to worry
about because your old friend the classList object has got your back on
this one. The toggle() method does the testing for you. That is, it
checks the element for the specified class. If the class is there, JavaScript
removes it; if the class isn't there, JavaScript adds it. Sweet! Here’s the
syntax:

element.classList.toggle(class)

where:

element is the element you’re working with.

class is a string representing the name of the class you want to
toggle for element.

Here's an example:
document.getElementById('my-div').classList.toggle('my-class');

Tweaking HTML Attributes with
JavaScript

One of the key features of the DOM is that each tag on the page
becomes an element object. You may be wondering, do these element
objects have any properties? Yep, they have tons. In particular, if the tag
included one or more attributes, those attributes become properties of the
element object.

For example, consider the following tag:

<img id="header-image"

 src="mangosteen.png"

 alt="Drawing of a mangosteen">

This tag has three attributes: id, src, and alt. In the DOM's
representation of the tag, these attributes become properties of the
img element object. Here's some JavaScript code that references the img
element (bk03ch06/example21.html):

const headerImage = document.getElementById("header-image");

The headerImage variable holds the img element object, so your code
could now reference the img element's attribute values with any of the
following property references:

headerImage.id

headerImage.src

headerImage.alt

However, the DOM doesn’t create properties either for custom attributes
or for attributes added programmatically (as I describe in the preceding
section). Fortunately, each element object also offers methods that
enable you to read any attribute, as well as add, modify, or remove the
element’s attributes. The next few sections tell all.

Reading an attribute value
If you want to read the current value of an attribute for an element, use
the element object’s getAttribute() method:

element.getAttribute(attribute)

where:

element is the element you want to work with.

attribute is the name of the attribute you want to read.

Here's an example that gets the src attribute of the element with an id
value of header-image:

const headerImage = document.getElementById("header-image");

const srcHeaderImage = headerImage.getAttribute("src");

Setting an attribute value
To set an attribute value on an element, use the element object's
setAttribute() method:

element.setAttribute(attribute, value);

where:

element is the element you want to work with.

attribute is the name of the attribute you want to set.

value is the string value you want to assign to attribute.

If the attribute already exists, setAttribute overwrites the attribute's
current value; if the attribute doesn’t exist, setAttribute adds it to the
element.

Here’s an example that sets the alt attribute for the element with an id
value of header-image:

const headerImage = document.getElementById("header-image");

headerImage.setAttribute("alt", "Lithograph of a mangosteen");

Removing an attribute
To remove an attribute from an element, use the element object's
removeAttribute() method:

element.removeAttribute(attribute);

where:

element is the element you want to work with.

attribute is a string specifying the name of the attribute you want
to remove from the element.

Here’s an example:
const headerImage = document.getElementById("header-image");

headerImage.removeAttribute("id");

Chapter 7
Building Reactive Pages with

Events
IN THIS CHAPTER

 Getting to know events
 Checking out the different event types
 Setting up event listeners
 Gleaning info about an event
 Trying out a few events

Handle your tools without mittens.

— BENJAMIN FRANKLIN
When you buy a car, no matter how much you paid for it or how
technologically advanced it is, the car just sits there unless you do
something. (If you’re reading this in a future in which all cars are
autonomous, my apologies.) Having a car just sitting there may be fine if
it’s a good-looking car, but you're likely to want the car to do something,
anything. Here’s a short list of actions you can take to achieve that goal:

Start the car.
Put the transmission into gear.
Press the accelerator.
Turn on the radio.

The common denominator for all these actions is that they set up a
situation to which the car must respond in some way: turning on,
engaging the gears, moving, playing sounds. Approached from this

angle, the car is a machine that responds to external stimuli, or, in a
word, events.

Somewhat surprisingly, a web page is also a machine that responds to
external stimuli. Read on to discover what I mean.

What’s an Event?
In web development, an event is an action that occurs in response to
some external stimulus. A common type of external stimulus is when a
user interacts with a web page. Here are some examples:

Surfing to or reloading the page
Clicking a button
Pressing a key
Scrolling the page

How can your web page possibly know when any of these actions occur?
The secret is that JavaScript was built with events in mind. As the
computer science professors would say, JavaScript is an event-driven
language.

So why don’t web pages respond to events automatically? Why do they
just sit there? Because web pages are static by default, meaning they
ignore the events firing all around them. Your job as a web developer is
to change that behavior by making your web pages “listen” for particular
events to occur. You do that by setting up special chunks of code called
event handlers that say, in effect, “Be a dear and watch out for event X
to occur, will you? When it does, be so kind as to execute the code I’ve
placed here for you. Thanks so much.” An event handler consists of two
parts:

Event listener: An instruction to the web browser to watch out
(“listen”) for a particular event occurring on a particular element
Callback function: The code that the web browser executes when it
detects that the event has occurred

In the rest of this chapter, I talk about how to use JavaScript to build
your own event handlers and take your scripts to a more interactive
level.

Understanding the Event Types
Your web page can respond to dozens of possible events, but lucky for
you only a small subset of these events are needed in most day-to-day
web development. I’ll break these down into the following five
categories:

Document: Events that fire in relation to the loading of the
document object. The only event you need to worry about here is
DOMContentLoaded, which fires when the document object has
completed loading.
Mouse: Events that fire when the user does something with the
mouse (or a similar device, such as a trackpad or touchscreen). The
most important events in this category are click (the user clicks the
mouse); dblclick (the user double-clicks the mouse); and
mouseover (the user moves the mouse pointer over an element).

Keyboard: Events that fire when the user interacts with the
keyboard. The main event in this category is keydown, which fires
when a key is pressed, but not yet released, which is great for
creating keyboard shortcuts (a technique I describe in Book 6,
Chapter 2). (If you need to monitor when the user releases a pressed
key, use the keyup event.)

Form: Events associated with web page forms. The important ones
are focus (an element gains the focus, for example, when the user
tabs to a form control); blur (an element loses the focus); change
(the user changes the value of a form control); and submit (the user
submits the form). Check out Book 6, Chapters 2 and 3 to learn
about forms and form events.

Browser window: Events that fire when the user interacts with the
browser window. The two main events here are scroll, which fires
when the user scrolls the window vertically or horizontally, and
resize, which fires when the user changes the window width or
height.

Listening for an Event
You configure your code to listen for and react to an event by setting up
an event handler using the element object's addEventListener()
method. Here’s the syntax:

element.addEventListener(event, callback)

where:

element is the web page element to be monitored for the event. The
event is said to be bound to the element.
event is a string specifying the name of the event you want the
browser to listen for. For the main events I mention in the preceding
section, use one of the following, enclosed in quotation marks:
DOMContentLoaded, click, dblclick, mouseover, keypress, focus,
blur, change, submit, scroll, or resize.

callback is the callback function that JavaScript executes when the
event occurs. The callback can be an anonymous function or a
reference to a named function.

Here's an example (bk03ch07/example01.html):

HTML:
<div id="my-div"></div>

<button id="my-button">Click to add some text, above</button>

JavaScript:
const myButton = document.getElementById('my-button');

myButton.addEventListener('click', function() {

 const myDiv = document.getElementById('my-div');

 myDiv.innerHTML = '<h1>Hello Click World!</h1>';

});

The HTML code sets up an empty div element and a button element.
The JavaScript code attaches a click event listener to the button, and the
callback function adds the HTML string <h1>Hello Click World!
</h1> to the div. Figure 7-1 shows the resulting page after the button
has been clicked.

FIGURE 7-1: The click event callback function adds some HTML and text to the div
element.

Getting Data about the Event
When an event fires, the DOM creates an Event object, the properties of
which contain info about the event, including the following:

target: The web page element to which the event occurred. For
example, if you set up a click handler for a div element, that div is
the target of the click.
which: A numeric code that specifies the key that was pressed during
a keypress event.

pageX: The distance (in pixels) of the mouse pointer from the left
edge of the browser's content area when the event fired.
pageY: The distance (in pixels) of the mouse pointer from the top
edge of the browser’s content area when the event fired.
metaKey: A Boolean value that equals true if the user had the
Windows key () or the Mac Command key (⌘  ) held down when

the event fired.
shiftKey: A Boolean value that equals true if the user had the Shift
key held down when the event fired.

To access these properties, you insert a name for the Event object as an
argument in your event handler's callback function:

element.addEventListener(event, function(e) {

 This code runs when the event fires

});

where e is a name for the Event object that the DOM generates when the
event fires. You can use whatever name you want, but most coders use e
(although evt and event are also common).

For example, when handling the keydown event, you need access to the
Event object's which property to find out the code for the key the user is
pressing. Here’s an example page that can help you determine which
code value to check for (bk03ch07/example02.html):

HTML:
<div>

 Type a key:

</div>

<input id="key-input" type="text">

<div>

 Here's the code of the key you pressed:

</div>

<div id="key-output">

</div>

JavaScript:
const keyInput = document.getElementById('key-input');

keyInput.addEventListener('keydown', function(e) {

 const keyOutput = document.getElementById('key-output');

 keyOutput.innerHTML = e.which;

});

The HTML code sets up an <input> tag to accept a keystroke and a
<div> tag with id="key-output" to use for the output. The JavaScript
code adds a keydown event listener to the input element, and when the

event fires, the callback function writes e.which to the output div.
Figure 7-2 shows the page in action.

FIGURE 7-2: Type a key in the input box, and the keydown event callback function uses
e.which to write the numeric code of the pressed key to the div element.

Preventing the Default Event Action

 Some events come with default actions that they perform when
the event fires. For example, a link's click event opens the target
URL, whereas a form’s submit event sends the form data to a script
on the server. Most of the time, these default actions are exactly
what you want, but that's not always the case. For example, you
may want to intercept a link click to perform some custom action,
such as displaying a menu. Similarly, rather than let the browser
submit a form, you may prefer to massage the form data and then
send the data via your script (as I demonstrate in Book 6, Chapter
2).

For these and many similar situations, you can tell the web browser not
to perform an event’s default action by running the Event object’s
preventDefault() method:

event.preventDefault();

where event is a reference to the Event object that the DOM creates
when an event fires.

For example, examine the following code (bk03ch07/example03.html):

HTML:
Wiley

ECMAScript 2015 Spec

Web Dev Workbench

<div id="output">

 Link URL:

</div>

JavaScript:
const links = document.getElementsByTagName('a')

for (const link of links) {

 link.addEventListener('click', function(e) {

 e.preventDefault();

 strURL = e.target.href;

 document.getElementById('output').innerHTML = 'Link URL: ' + strURL;

 })

}

The HTML code defines three links (styled as inline blocks, which I
haven't shown here) and a div element. The JavaScript uses a for…of
loop to set up a click event listener for all a elements, and the callback
function does three things:

It uses the e.preventDefault() method to tell the browser not to
navigate to the link address.
It uses e.target.href to get the URL of the link.

It displays that URL in the div element. Figure 7-3 shows an
example.

FIGURE 7-3: You can use e.preventDefault() to stop the browser from navigating to the
link URL.

Example: The DOMContentLoaded
Event

If you want to run some code after the web page document has loaded,
add an event handler to the document object that listens for the
DOMContentLoaded event.

Here's an example (bk03ch07/example04.html):
<head>

 <meta charset="utf-8">

 <title>Running code after the page is loaded</title>

 <script>

 document.addEventListener('DOMContentLoaded', function() {

 //Display a message in the console

 console.log('Yep, the DOM is now loaded!');

 // Access an element

 const output = document.getElementById('output');

 output.innerHTML = `Look, ma, I can access the DOM

 from the <code>head</code>

 element. Awesome!!!`;

 });

 </script>

</head>

<body>

 <div id="output"></div>

</body>

Figure 7-4 shows the result.

 If your eyes are sharp, you might have noticed that the
innerHTML value is a string surrounded by back ticks (`) instead of
the usual quotation marks. This is a trick to enable multiline strings.
I explain these string templates in Book 3, Chapter 9.

FIGURE 7-4: The output of the DOMContentLoaded event handler.

In my coverage of the Document Object Model (DOM) in Book 3,
Chapter 6, I mention that when your JavaScript code needs to reference
a DOM object, you need to place your <script> tag near the bottom of
the HTML file, just above the </body> tag. That way, you can be sure
that the DOM object is loaded before your script tries to access it.

However, in the callback function for the DOMContentLoaded event
listener, notice that even though the script resides in the head element,
the code is still able to reference and work with DOM elements.
JavaScript can access the DOM in this case because the
DOMContentLoaded event fires only after the DOM has completed its
loading chores.

Example: The dblclick Event
The dblclick event fires when the user double-clicks the primary button
of a mouse or double-taps a pointing device such as a trackpad or a
touchscreen.

Here's an example (bk03ch07/example05.html):

HTML:
<p>Double-click an image to expand/shrink it</p>

<div>

</div>

<div>

</div>

<div>

</div>

CSS:
.thumbnail {

 width: 100px;

 height: auto;

}

.full-size {

 width: 100%;

}

JavaScript:
// Get all the img elements

const images = document.getElementsByTagName('img');

// Loop through the images

for (const image of images) {

 // Listen for the dblclick event on each image

 image.addEventListener('dblclick', function(e) {

 // Prevent the default action

 e.preventDefault();

 // Toggle the full-size class on the image

 image.classList.toggle('full-size');

 });

}

The HTML code sets up the page with three images, each of which is
assigned the class thumbnail. In the CSS, that thumbnail class scales
each image down to a width of 100px. The JavaScript first returns the

collection of img elements on the page, and then loops through that
collection to add a listener for the dblclick event to each image. The
callback function prevents the default action and then toggles the full-
size class, which sets the image width to 100%. In practice, double-
clicking (or double-tapping) an image expands it to the width of the
browser window; double-clicking (or double-tapping) the same image
shrinks the image back to its thumbnail size.

Chapter 8
Working with Arrays

IN THIS CHAPTER
 Learning what arrays can do for you
 Declaring an array variable
 Populating an array with data
 Trying out multidimensional arrays
 Working with JavaScript’s Array object

I choose a lazy person to do a hard job. Because a lazy person will find
an easy way to do it.

— BILL GATES
I talk quite a bit about efficient programming in this book because I
believe (okay, I know) that efficient scripts run faster and take less time
to program and debug. Efficiency in programming really means
eliminating unnecessary repetition, whether it’s consolidating statements
into a loop that can be repeated as often as required (refer to Book 3,
Chapter 4) or moving code into a function that can be called as often as
you need (refer to Book 3, Chapter 5).

In this chapter, you take your coding efficiency to an even higher level
by exploring one of JavaScript’s most important concepts: the array.
Arrays are important not only because they’re extremely efficient and
very powerful, but also because after you know how to use them, you’ll
think of a thousand and one uses for them. To make sure you’re ready
for your new array-filled life, this chapter explains what they are and
why they’re so darn useful, and then explores all the fantastic ways that
arrays can make your coding life easier.

What Is an Array?
One common source of unnecessary code repetition involves variables.
For example, consider the following declarations:

const dog1 = "dog-1";

const dog2 = "dog-2";

const dog3 = "dog-3";

const dog4 = "dog-4";

const dog5 = "dog-5";

These are string variables and they store the names of some dog photos.

This code may not seem outrageously inefficient, but what if instead of
five images you had to take 10, 20, or even 100 images into account?
I’m sure the idea of typing 100 const declarations isn't your idea of a
good time.

To understand the solution to this problem, first understand that the
variables dog1 through dog5 all contain related values. That is, each
variable holds part of the filename of a dog photo, which in turn is part
of the full URL for that image. In JavaScript (or, indeed, in just about
any programming language), whenever you have a collection of
variables with related data, you can group them into a single variable
called an array. You can enter as many values as you want into the array,
and JavaScript tracks each value using an index number. For example,
the first value you add is given the index 0. (For obscure reasons,
programmers since time immemorial have started numerical lists with 0
instead of 1.) The second value you put into the array is given the index
1; the third value gets 2; and so on. You can then access any value in the
array by specifying the index number you want.

The next couple of sections flesh out this theory with the specifics of
creating and populating an array.

Declaring an Array
Because an array is a type of variable, you need to declare it before
using it. In fact, unlike regular numeric, string, or Boolean variables that

don't need to be declared (but always should be), an array must be
declared in advance. You use the const (or let) statement, but this time
with a slightly different syntax. Actually, there are four syntaxes you can
use. Here's the syntax that's the most informative:

const arrayName = new Array();

Here, arrayName is the name you want to use for the array variable.

In JavaScript, an array is an object, so what the new keyword is doing
here is creating a new Array object. The Array() part of the statement is
called a constructor because its job is to construct the object in memory.
For example, to create an array named dogPhotos, you'd use the
following statement:

const dogPhotos = new Array();

The second syntax is useful if you know in advance the number of
values (or elements) you’ll be putting into the array:

const arrayName = new Array(num);

where:

arrayName is the name you want to use for the array variable.

num is the number of values you'll be placing into the array.

For example, here’s a statement that declares a new dogPhotos array
with five elements:

const dogPhotos = new Array(5);

If you’re not sure how many elements you need, don’t worry because
JavaScript is happy to let you add elements to and delete elements from
the array as needed, and it will grow or shrink the array to compensate. I
talk about the other two array declaration syntaxes in the next section.

Populating an Array with Data

After your array is declared, you can start populating it with the data
values you want to store. Here’s the general syntax:

arrayName[index] = value;

where:

arrayName is the name of the array variable.

index is the array index number where you want the value stored.

value is the value you're storing in the array.

JavaScript is willing to put just about any type of data inside an array,
including numbers, strings, Boolean values, and even other arrays! You
can even mix multiple data types within a single array.

 You most commonly add new elements to the end of the array.
Happily, the Array object has a special method for doing just that.
It’s called push(), and I talk about it later in this chapter
(specifically, the section “Adding elements to the end of an array:
push()”).

As an example, here are a few statements that declare a new array named
dogPhotos and then enter five string values into the array (check out
bk03ch08/example01.html in this book's example files):

const dogPhotos = new Array(5);

dogPhotos[0] = "dog-1";

dogPhotos[1] = "dog-2";

dogPhotos[2] = "dog-3";

dogPhotos[3] = "dog-4";

dogPhotos[4] = "dog-5";

 When you declare an array using const, it just means that the
variable name is bound to that particular array and that binding

can’t be changed. It doesn’t mean you can’t make changes to the
contents of that array.

To reference an array value (say, to use it in an expression), you specify
the appropriate index:

strURL + dogPhotos[3]

The following code offers a complete example (check out
bk03ch08/example02.html):

HTML:
<div id="output">

</div>

JavaScript:
// Declare the array

const dogPhotos = new Array(5);

// Initialize the array values

dogPhotos[0] = "dog-1";

dogPhotos[1] = "dog-2";

dogPhotos[2] = "dog-3";

dogPhotos[3] = "dog-4";

dogPhotos[4] = "dog-5";

// Display an example

document.getElementById('output').innerHTML = '<img src="images/' +

dogPhotos[0] + '.png" alt="">';

Declaring and populating an array at the same
time
Earlier I mentioned that JavaScript has two other syntaxes for declaring
an array. Both enable you to declare an array and populate it with values
by using just a single statement.

The first method uses the Array() constructor in the following general
format:

const arrayName = new Array(value1, value2, …);

where:

arrayName is the name you want to use for the array variable.

value1, value2, … are the initial values with which you want to
populate the array.

Here's an example:
const dogPhotos = new Array("dog-1", "dog-2", "dog-3", "dog-4", "dog-5");

JavaScript also supports the creation of array literals, which are similar
to string, numeric, and Boolean literals. In the same way that you create,
say, a string literal by enclosing a value in quotation marks, you create
an array literal by enclosing one or more values in square brackets.
Here’s the general format:

const arrayName = [value1, value2, …];

where:

arrayName is the name you want to use for the array variable.

value1, value2, … are the initial values with which you want to
populate the array.

An example:
const dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

Most JavaScript programmers prefer this syntax over using the Array
constructor.

 Including values in the declaration of an array literal is optional,
which means that you can declare an empty array using the
following statement:

const arrayName = [];

Using a loop to populate an array
So far, you probably don't think arrays are all that much more efficient
than using separate variables. That’s because you haven’t yet learned

about the single most powerful aspect of working with arrays: using a
loop and a counter variable to access an array’s index number
programmatically.

For example, here’s a for() loop that replaces the six statements I used
earlier to declare and initialize the dogPhotos array:

const dogPhotos = [];

for (let counter = 0; counter < 5; counter += 1) {

 dogPhotos[counter] = "dog-" + (counter + 1);

}

The statement inside the for() loop uses the counter variable as the
array's index. For example, when counter is 0, the statement looks like
this:

dogPhotos[0] = "dog-" + (0 + 1);

In this case, the expression to the right of the equals sign evaluates to
"dog-1", which is the correct value. The following code shows this loop
technique at work (bk03ch08/example03.html):

HTML:
<div id="output">

</div>

JavaScript:
// Declare the array

const dogPhotos = [];

// Initialize the array values using a loop

for (let counter = 0; counter < 5; counter += 1) {

 dogPhotos[counter] = "dog-" + (counter + 1);

}

// Display an example

document.getElementById('output').innerHTML = '<img src="images/' +

dogPhotos[0] + '.png" alt="">';

Using a loop to insert data into an array works best in two situations:

When the array values can be generated using an expression that
changes with each pass through the loop

When you need to assign the same value to each element of the array

 If you declare your array with a specific number of elements,
JavaScript doesn't mind at all if you end up populating the array
with more than that number.

How Do I Iterate Thee? Let Me
Count the Ways

The problem with using a large number of similar variables isn’t so
much declaring them but working with them in your code. Here’s an
example (bk03ch08/example01.html):

const dog1 = "dog-1";

const dog2 = "dog-2";

const dog3 = "dog-3";

const dog4 = "dog-4";

const dog5 = "dog-5";

const promptNum = prompt("Enter the dog you want to see (1-5):", "");

if (promptNum !== "" && promptNum !== null) {

 const promptDog = "dog-" + promptNum;

 if (promptDog === dog1) {

 document.body.style.backgroundImage = "url('images/" + dog1 +

".png')";

 } else if (promptDog === dog2) {

 document.body.style.backgroundImage = "url('images/" + dog2 +

".png')";

 } else if (promptDog === dog3) {

 document.body.style.backgroundImage = "url('images/" + dog3 +

".png')";

 } else if (promptDog === dog4) {

 document.body.style.backgroundImage = "url('images/" + dog4 +

".png')";

 } else if (promptDog === dog5) {

 document.body.style.backgroundImage = "url('images/" + dog5 +

".png')";

 }

}

In this example, the script has to use five separate if() tests to check the
input value against all five variables.

Arrays can help make your code more efficient by enabling you to
reduce these kinds of long-winded procedures to a much shorter routine
that fits inside a function. These routines are iterative methods of the
Array object, where iterative means that the method runs through the
items in the array, and for each item, a function (known as a callback)
performs some operation on or with the item.

The Array object has 14 iterative methods! I don't cover them all, but
over the next few sections I talk about the most useful methods.

Iterating an array: forEach()
The Array object’s forEach() method runs a callback function for each
element in the array. That callback takes up to three arguments:

value: The value of the element

index: (Optional) The array index of the element

array: (Optional) The array being iterated

You can use any of the following syntaxes:
array.forEach(namedFunction);

array.forEach(function (value[, index][, array]) { code });

array.forEach((value[, index][, array]) => { code });

where:

array is the Array object you want to iterate.

namedFunction is the name of an existing function. This function
should accept the value argument and can accept the optional index
and array arguments.

code is the statements to run during each iteration.

Here's an example (bk03ch08/example04.html):

// Declare the array

const dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

// Iterate the array

dogPhotos.forEach((value, index) => {

 console.log("Element " + index + " has the value " + value);

});

After declaring the array, the code uses forEach() to iterate the array.
During each iteration, console.log() (refer to Book 5, Chapter 2)
displays a string that includes the index and value parameters. Figure 8-
1 shows the results.

FIGURE 8-1: The console messages displayed with each iteration using forEach().

 To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  
+I in macOS), and then click the Console tab.

Iterating an array: for…of
Although you'll usually iterate an array with the forEach() method,
you’ll sometimes need to use a more traditional loop to run through each
array element. That loop type is the for…of loop:

for (element of array) {

code

}

where:

array is the Array object you want to iterate.

element it the current array element during each pass through the
loop.
code is the statements to run during each iteration.

 The for…of loop was introduced in ECMAScript 2015 (ES6), so
don't use it if you need to support ancient browsers, such as Internet
Explorer 11.

Here’s an example (bk03ch08/example04a.html):
// Declare the array

const dogPhotos= ["dog-1", "dog-2", "dog-3", "dog-4", "dog-5"];

// Iterate the array

for (const currentPhoto of dogPhotos) {

 console.log("The current element has the value " + currentPhoto);

}

After declaring the array, the code uses a for…of loop to iterate the array.
During each iteration, console.log() (refer to Book 5, Chapter 2)
displays a string that includes the value of the current element.

Iterating to test an array's elements: every() and
some()
One common array pattern is to check each array element value to
determine whether some or all of the values pass some test. For example,
if you have an array of interest rates as decimal values, you may want to
test that they’re all within a reasonable range (say, between 0.01 and
0.1). Similarly, suppose you have an array of numbers that at some point
in your script will be used as divisors in a calculation. Before getting that
far, you may want to determine if at least one of the numbers in the array
is zero and, if so, whether your script would bypass the calculation.

Testing whether all elements pass a test: every()
To check whether all the elements in an array pass some test, use the
Array object’s every() method. There are three syntaxes you can use:

array.every(namedFunction);

array.every(function (value[, index][, array]) { code });

array.every((value[, index][, array]) => { code });

where:

array is the Array object with the values you want to test.

namedFunction is the name of an existing function that performs the
test on each array value. This function should accept the value
argument and can accept the optional index and array arguments.

code is the statements to run during each iteration to test each value.

In the namedFunction or code, use a return statement to send the result
of the test back to the every() method. If all the array elements pass the
test, every() returns true; otherwise, it returns false.

Here's an example (bk03ch08/example05.html):
// Declare an array of interest rates

const rates = [0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.5];

// Test each rate

const legitRates = rates.every(currentValue => {

 return currentValue >= 0.01 && currentValue <= 0.1;

});

// Output the result

console.log(legitRates);

This code declares an array of interest rates (as decimal values). Then
the every() method iterates the rates array and with each pass tests
whether the current array element value (stored in the currentValue
parameter) is between (or equal to) 0.01 and 0.1. The final result is
stored in the legitRates variable, the value of which is then displayed
in the console, as shown in Figure 8-2. The result is false because the

rates array includes the value 0.5, which means that not every value is
within the allowed range.

FIGURE 8-2: The final result (false, in this case) of the every() method.

 The every() method isn't a true iterative method because it
stops iterating when it comes across the first array element value
that doesn’t pass the test.

Testing whether some elements pass a test: some()
To check whether at least one of the elements in an array passes some
test, use the Array object’s some() method. You can use three syntaxes:

array.some(namedFunction);

array.some(function (value[, index][, array]) { code });

array.some((value[, index][, array]) => { code });

where:

array is the Array object with the values you want to test.

namedFunction is the name of an existing function that performs the
test on each array value. This function should accept the value
argument and can accept the optional index and array arguments.

code is the statements to run during each iteration to test each value.

In the namedFunction or code, use a return statement to send the result
of the test back to the some() method. If at least one array element

passes the test, some() returns true; otherwise, it returns false.

Here's an example (bk03ch08/example06.html):
// Declare an array of divisors

const divisors = [27, 53, 6, 0, 17, 88, 32];

// Test each divisor

const zeroDivisors = divisors.some(currentValue => {

 return currentValue === 0;

});

// Output the result

console.log(zeroDivisors);

This code declares an array of divisors, and then the some() method
iterates the divisors array and with each pass tests whether the current
array element value (stored in the currentValue parameter) equals zero.
The final result is stored in the zeroDivisors variable, the value of
which is then displayed in the console, as shown in Figure 8-3. The
result is true because the divisors array includes the value 0, which
means that at least one value passes the test.

FIGURE 8-3: The final result (true, in this case) of the some() method.

 The some() method isn't a true iterative method because it stops
iterating when it comes across the first array element value that
passes the test.

Iterating to create a new array: map()

When you iterate an array, it’s common to apply some operation to each
element value. In some cases, however, you want to preserve the original
array values and create another array that contains the updated values.

The easiest way to create an array that stores updated values of an
existing array is to use the Array object’s map() method. You can use
three syntaxes:

array.map(namedFunction);

array.map(function (value[, index][, array]) { code });

array.map((value[, index][, array]) => { code });

where:

array is the Array object with the values you want to use.

namedFunction is the name of an existing function that performs the
operation on each array value. This function should accept the value
argument and can accept the optional index and array arguments.

code is the statements to run during each iteration to perform the
operation on each value.

The map() method returns an Array object that contains the updated
values, so be sure to store the result in a variable.

Here's an example (bk03ch08/example07.html):
// Declare an array of Fahrenheit temperatures

const tempsFahrenheit = [-40, 0, 32, 100, 212];

// Convert each array value to Celsius

const tempsCelsius = tempsFahrenheit.map(currentTemp => {

 return (currentTemp - 32) * 0.5556;

});

// Output the result

console.log(tempsCelsius);

This code declares an array of Fahrenheit temperatures, and then the
map() method iterates the tempsFahrenheit array and with each pass
converts the current Fahrenheit value (stored in the currentTemp

parameter) to Celsius. The result is a new array named tempsCelsius,
which is displayed in the console, as shown in Figure 8-4.

Iterating an array down to a value: reduce()
One common iteration pattern is to perform a cumulative operation on
every element in an array to produce a value. For example, you may
want to know the sum of all the values in the array.

FIGURE 8-4: The map() method creates a new array by applying an operation to each value
in the original array.

Iterating an array in this way to produce a value is the job of the Array
object's reduce() method. You can use three syntaxes:

array.reduce(namedFunction, initialValue);

array.reduce(function (accumulator, value[, index][, array]) { code },

initialValue);

array.reduce((accumulator, value[, index][, array]) => { code },

initialValue);

where:

array is the Array object with the values you want to reduce.

namedFunction is the name of an existing function that performs the
reducing operation on each array value. This function should accept
the accumulator and value arguments and can accept the optional
index and array arguments.

accumulator is a parameter that stores the updated value of the
reducing operation. With each iteration, code performs one or more
operations that update the value of accumulator.

code is the statements to run during each iteration to perform the
reducing operation on each value.
initialValue is the starting value of accumulator. If you omit
initialValue, JavaScript uses the value of the first element in
array.

Here's an example (bk03ch08/example08.html):
// Declare an array of product inventory

const unitsInStock = [547, 213, 156, 844, 449, 71, 313, 117];

// Get the total units in stock

const initialUnits = 0;

const totalUnits = unitsInStock.reduce((accumulatedUnits,

currentInventoryValue) => {

 return accumulatedUnits + currentInventoryValue;

}, initialUnits);

// Output the result

console.log("Total units in stock: " + totalUnits);

This code declares an array of product inventory and declares
initialUnits with a value of 0. Then the reduce() method (using
initialUnits as the starting value of the accumulator) iterates the
unitsInStock array and with each pass adds the current product
inventory value (stored in the currentInventoryValue parameter) to the
accumulator (stored in the accumulatedUnits parameter). The resulting
total is stored in the totalUnits variable, which is then displayed in the
console, as shown in Figure 8-5.

FIGURE 8-5: The reduce() method iterates an array's values down to a single value.

Iterating to locate an element: find()
To search within an array for the first element that matches some
condition, use the Array object’s find() method. You can use three
syntaxes:

array.find(namedFunction);

array.find(function (value[, index][, array]) { code });

array.find((value[, index][, array]) => { code });

where:

array is the Array object with the values in which you want to
search.
namedFunction is the name of an existing function that applies the
condition to each array value. This function should accept the value
argument and can accept the optional index and array arguments.

code is the statements to run during each iteration to apply the
condition to each value.

In the namedFunction or code, you set up a logical condition that tests
each element in the array and use a return statement to send the result
of the test back to the find() method. The final value returned by
find() is the first element for which the test is true, or undefined if the
test is false for all the array elements.

Here's an example (bk03ch08/example08a.html):
// Declare an array of product objects

const products = [

 { name: 'doodad', units: 547 },

 { name: 'gizmo', units: 213 },

 { name: 'gimcrackery', units: 156 },

 { name: 'knickknack', units: 844 },

 { name: 'bric-a-brac', units: 449 },

 { name: 'thingamajig', units: 71 },

 { name: 'watchamacallit', units: 313 },

 { name: 'widget', units: 117 }

];

// Query the array

const strQuery = "gizmo";

const stock = products.find((currentProduct) => {

 return currentProduct.name === strQuery;

});

// Output the result

if (stock) {

 console.log("Product " + stock.name + " has " + stock.units + " units in

stock.");

} else {

 console.log("Product " + strQuery + " not found.");

}

This code declares an array of object literals. Then the find() method
iterates the products array and with each pass checks whether the name
property of the current array element value (passed to the callback
function using the currentProduct parameter) is equal to whatever
value is stored in the strQuery variable. The result is stored in the stock
variable. An if test checks the result: If stock is defined, the product
name and inventory are displayed in the console; otherwise, a message
saying the product was not found is displayed.

 If you want to know the index number of the array item that
matches the condition, use findIndex() instead of find().

Creating Multidimensional Arrays
A multidimensional array is one where two or more values are stored in
each array element. For example, if you want to create an array to store
user data, you may need each element to store a first name, a last name,
a username, a password, and more. The bad news is that JavaScript
doesn't support multidimensional arrays. The good news is that you can
use a trick to simulate a multidimensional array.

The trick is to populate your array in such a way that each element is
itself an array. To understand how such an odd idea may work, first
recall the general syntax for an array literal:

[value1, value2, …]

Now recall the general syntax for assigning a value to an array element:
arrayName[index] = value;

In a one-dimensional array, the value is usually a string, number, or
Boolean. Now imagine instead that value is an array literal. For a two-
dimensional array, the general syntax for assigning an array literal to an
array element looks like this:

arrayName[index] = [value1, value2];

As an example, say you want to store an array of background and
foreground colors. Here's how you may declare and populate such an
array:

const colorArray = [];

colorArray[0] = ['white', 'black'];

colorArray[1] = ['aliceblue', 'midnightblue'];

colorArray[2] = ['honeydew', 'darkgreen'];

Alternatively, you can declare and populate the array using only the
array literal notation:

const colorArray = [

 ['white', 'black'],

 ['aliceblue', 'midnightblue'],

 ['honeydew', 'darkgreen']

];

Either way, you can then refer to individual elements using two sets of
square brackets, as in these examples:

colorArray[0][0]; // Returns 'white'

colorArray[0][1]; // Returns 'black'

colorArray[1][0]; // Returns 'aliceblue'

colorArray[1][1]; // Returns 'midnightblue'

colorArray[2][0]; // Returns 'honeydew'

colorArray[2][1]; // Returns 'darkgreen'

The number in the left set of square brackets is the index of the overall
array, and the number in the right set of square brackets is the index of
the element array.

Manipulating Arrays
The Array object comes with a large collection of properties and
methods that enable you to work with and manipulate arrays. The rest of
this chapter takes a look at a few of the most useful of these properties
and methods.

Working with the length property
The Array object has just a couple of properties, but the only one of
these that you'll use frequently is the length property:

array.length

The length property returns the number of elements in the specified
array. This is useful when looping through an array because it means you
don't have to specify a literal as the maximum value of the loop counter.
For example, consider the following for statement:

for (let counter = 0; counter < 5; counter += 1) {

 dogPhotos[counter] = "dog-" + (counter + 1);

}

This statement assumes that the dogPhotos array has five elements,
which may not be the case. To enable the loop to work with any number
of elements, replace 5 with dogPhotos.length:

for (let counter = 0; counter < dogPhotos.length; counter += 1) {

 dogPhotos[counter] = "dog-" + (counter + 1);

}

Note, too, that the loop runs while the counter variable is less
thandogPhotos.length. That's because array indexes run from 0 to the
array’s length value minus 1. In other words, the preceding for loop
example is equivalent to the following:

for (let counter = 0; counter <= dogPhotos.length - 1; counter += 1)

Concatenating to create an array: concat()
The concat() method takes the elements of one or more existing arrays
and concatenates them to an existing array to create another array:

array.concat(array1, array2, …)

where:

array is the name of the array you want to work with.

array1, array2, … are the arrays you want to concatenate to array.
These can also be values.

Note that the original array remains unchanged. The following code
(bk03ch08/example09.html) demonstrates using concat() to
concatenate two arrays into a third array, each element of which is
printed to the page, as shown in Figure 8-6.

// Declare the arrays

const array1 = ["One", "Two", "Three"];

const array2 = ["A", "B", "C"];

// Concatenate them

const array3 = array1.concat(array2);

// Display the concatenated array

console.log(array3);

FIGURE 8-6: Concatenating array1 and array2 produces array3 with the values shown
here.

Creating a string from an array's elements: join()
The join() method enables you to take the existing values in an array
and concatenate them to form a string. Check out the syntax:

array.join([separator])

where:

array is the name of the array you want to work with.

separator is an optional character or string to insert between each
array element when forming the string. If you omit this argument, a
comma is inserted between each element.

In the following code (bk03ch08/example10.html), three arrays are
created and then join() is applied to each array using a space as a
separator in the first array, a null string ("") as a separator in the second,
and no separator in the third. Figure 8-7 shows the resulting page output.

HTML:
<div id="output">

</div>

JavaScript:
// Declare the arrays

const array1 = ["Make", "this", "a", "sentence."];

const array2 = ["antid", "isest", "ablis", "hment", "arian", "ism"];

const array3 = ["John", "Paul", "George", "Ringo"];

//Join them to strings

const string1 = array1.join(" ");

const string2 = array2.join("");

const string3 = array3.join();

// Display the results

document.getElementById('output').innerHTML = string1 + '
' + string2 +

'
' + string3;

FIGURE 8-7: Joining the arrays with a space, null string (""), and default comma.

 The Array object's toString() method performs a similar
function to the join() method. Using array.toString() takes the
values in array, converts them all to strings, and then concatenates
them into a single, comma-separated string. In other words,
array.toString() is identical to array.join(","), or just
array.join().

 You can use the Array object's from() method to perform the
opposite operation: create an array from a string, where the array
elements are the individual string characters:

Array.from("Boo!") // Returns ["B", "o", "o", "!"]

Removing an array’s last element: pop()
The pop() method removes the last element from an array and returns
the value of that element. Here's the syntax:

array.pop()

For example, consider the following statements:
const myArray = ["First", "Second", "Third"];

const myString = myArray.pop();

The last element of myArray is "Third", so myArray.pop() removes that
value from the array and stores it in the myString variable.

 After you run the pop() method, JavaScript reduces the value of
the array's length property by one.

Adding elements to the end of an array: push()

The push() method is the opposite of pop(): It adds one or more
elements to the end of an array. Here's the syntax to use:

array.push(value1, value2, …)

where:

array is the name of the array you want to work with.

value1, value2, … are the values you want to add to the end of
array. A value can also be another array.

push() differs from the concat() method in that it doesn't return a new
array. Instead, it changes the existing array by adding the new values to
the end of the array. For example, consider the following statements:

const myArray = ["First", "Second", "Third"];

const pushArray = ["Fourth", "Fifth", "Sixth"];

for (let i = 0; i < pushArray.length; i += 1) {

 myArray.push(pushArray[i]);

}

After these statements, myArray contains six values: "First", "Second",
"Third", "Fourth", "Fifth", and "Sixth". Why didn't I just add the
entire pushArray in one fell swoop? That is, like so:

myArray.push(pushArray);

That’s perfectly legal, but myArray would contain the following four
elements: "First", "Second", "Third", and pushArray, which means
you've created a kind of hybrid multidimensional array, which is
probably not what you want in this situation.

 After you run the push() method, JavaScript increases the value
of the array’s length property by the number of new elements
added.

Reversing the order of an array's elements:
reverse()
The reverse() method takes the existing elements in an array and
reverses their order: The first moves to the last, the last moves to the
first, and so on. The syntax takes just a second to show:

array.reverse()

The following code (bk03ch08/example11.html) puts the reverse()
method to work, and Figure 8-8 shows what happens.

const myArray = ["Show", "Place", "Win"];

myArray.reverse();

console.log(myArray);

FIGURE 8-8: Use the reverse() method to reverse the order of elements in an array.

Removing an array's first element: shift()
The shift() method removes the first element from an array and returns
the value of that element:

array.shift()

For example, consider the following statements:
const myArray = ["First", "Second", "Third"];

const myString = myArray.shift();

The first element of myArray is "First", so myArray.shift() removes
that value from the array and stores it in the myString variable.

 After you run the shift() method, JavaScript reduces the value
of the array's length property by one.

Returning a subset of an array: slice()
The slice() method returns a new array that contains a subset of the
elements in an existing array. Here's the syntax:

array.slice(start, [end]);

where:

array is the name of the array you want to work with.

start is a number that specifies the index of the first element in
array that you want to include in the subset. If this number is
negative, the subset starting point is counted from the end of array
(for example, −1 is the last element of the array). If you leave out
this value, JavaScript uses 0 (that is, the first element of the array).
end is an optional number that specifies the index of the element in
arraybefore which you want the subset to end. If you leave out this
value, the subset includes all the elements in array from start to the
last element. This value can be negative.

 A quick way to make a copy of an array is to use slice()
without any parameters:

const thisArray = ["alpha", "beta", "gamma"];

const thatArray = thisArray.slice();

// thatArray() is ["alpha", "beta", "gamma"];

 You can also quickly copy an array by using the spread operator
(…); as described in Book 3, Chapter 11:

const thisArray = ["alpha", "beta", "gamma"];

const thatArray = […thisArray];

// thatArray() is ["alpha", "beta", "gamma"];

The following code (bk03ch08/example12.html) defines an array and
then tries out various values for the slice() arguments. The results are
shown in Figure 8-9.

HTML:
<div id="output">

</div>

JavaScript:
const myArray = ["A", "B", "C", "D", "E", "F"];

const array1 = myArray.slice(0, 4);

const array2 = myArray.slice(3);

const array3 = myArray.slice(-3, -1);

let str = "array1: " + array1 + "
";

str += "array2: " + array2 + "
";

str += "array3: " + array3;

document.getElementById('output').innerHTML = str;

FIGURE 8-9: The slice() method creates a new array from a subset of another array.

Ordering array elements: sort()
The sort() method is an easy way to handle a common programming
problem: rearranging an array's elements to put them in alphabetical,

numerical, or some other order. You can use four syntaxes:
array.sort()

array.sort(namedFunction)

array.sort(namedFunction (a, b) { code });

array.sort((a, b) => { code });

where:

array is the name of the array you want to sort.

namedFunction is the name of an existing function that performs the
sorting operation by comparing the array items two at a time, where
the first array item in the comparison is passed as argument a and the
second array item in the comparison is passed as argument b.

code is the statements to run during each iteration to perform the
sorting operation on each value.

Using sort() without an argument gives you a straightforward
alphabetical sort:

myArray.sort();

If you want to sort the array based on some other criterion, you need to
create a function to define the sort order. Your function must be set up as
follows:

The function must accept two arguments that represent two array
values to be compared so that they can be sorted relative to each
other. For the purposes of this list, I'll call these arguments a and b.

Using these arguments, the function must define an expression that
returns a numeric value.
For those cases where you want a sorted before b, the function must
return a negative value.
For those cases where you want a sorted after b, the function must
return a positive value.
For those cases where you want a and b to be treated equally, the
function must return zero.

The following code (bk03ch08/example13.html) shows a function
named numericSort that you can use if you want a numeric sort from
lowest to highest. Figure 8-10 displays the original array and then the
sorted array.

HTML:
<div id="output">

</div>

JavaScript:
// This function sorts numbers from highest to lowest

function numericSort(a, b) {

 return (b - a);

}

const myArray = [3, 5, 1, 6, 2, 4];

// Write the array before sorting it

let str = "myArray (before sorting): " + myArray + "
";

// Sort the array

myArray.sort(numericSort);

// Write the array after sorting it

str+= "myArray (after sorting): " + myArray;

document.getElementById('output').innerHTML = str;

FIGURE 8-10: Using sort() and a function to sort items numerically from highest to lowest.

 To get a numeric sort from lowest to highest, either use sort()
without an argument or use the following return expression:

return a - b;

 What if you want a reverse alphabetical sort? Just chain sort()
with reverse():

myArray.sort().reverse();

Removing, replacing, and inserting elements:
splice()
The splice() method is a complex function that comes in handy in all
kinds of situations. First, here's the syntax:

array.splice(start, [elementsToDelete][, value1, value2, …])

where:

array is the name of the array you want to work with.

start is a number that specifies the index of the element where the
splice takes place.
elementsToDelete is an optional number that specifies how many
elements to delete from array beginning at the start position. If
you don't include this argument, elements are deleted from start to
the end of the array.
value1, value2, … are the optional values to insert into array
beginning at the start position.

With splice() at your side, you can perform one or more of the
following tasks:

Deletion: If elementsToDelete is greater than zero or unspecified
and no insertion values are included, splice() deletes elements
beginning at the index start. The deleted elements are returned in a
separate array.

Replacement: If elementsToDelete is greater than zero or
unspecified and one or more insertion values are included, splice()
first deletes elements beginning at the index start. It then inserts the
specified values at index start.

Insertion: If elementsToDelete is 0, splice() inserts the specified
values at index start.

The following code (bk03ch08/example14.html) demonstrates all three
tasks, and the results are shown in Figure 8-11.

HTML:
<div id="output">

</div>

JavaScript:
const array1 = ["A", "B", "C", "D", "E", "F"];

const array2 = ["A", "B", "C", "D", "E", "F"];

const array3 = ["A", "B", "C", "D", "E", "F"];

// DELETION

// In array1, start at index 2 and delete to the end

// Return the deleted elements to the delete1 array

const delete1 = array1.splice(2);

// Write array1

let str = "array1: " + array1 + "
";

// Write delete1

str += "delete1: " + delete1 + "
";

// REPLACEMENT

// In array2, start at index 3 and delete 2 elements

// Insert 2 elements to replace them

// Return the deleted elements to the delete2 array

const delete2 = array2.splice(3, 2, "d", "e");

// Write array2

str += "array2: " + array2 + "
";

// Write delete2

str += "delete2: " + delete2 + "
";

// INSERTION

// In array3, start at index 1 and insert 3 elements

array3.splice(1, 0, "1", "2", "3")

// Write array3

str += "array3: " + array3;

document.getElementById('output').innerHTML = str;

FIGURE 8-11: The splice() method can delete, replace, and insert array elements.

Inserting elements at the beginning of an array:
unshift()
The unshift() method is the opposite of the shift() method: It inserts
one or more values at the beginning of an array. When it's done,
unshift() returns the new length of the array. Here's the syntax:

array.unshift(value1, value2, …)

where:

array is the name of the array you want to work with.

value1, value2, … are the values you want to add to the beginning
of array.

For example, consider the following statements:
const myArray = ["First", "Second", "Third"];

const newLength = myArray.unshift("Fourth", "Fifth", "Sixth");

After these statements, myArray contains six values — "Fourth",
"Fifth", and "Sixth", "First", "Second", and "Third" — and the
value of newLength is 6.

Chapter 9
Manipulating Strings, Dates,

and Numbers
IN THIS CHAPTER

 Manipulating strings
 Working with dates and times
 Performing math calculations

First learn computer science and all the theory. Next develop a
programming style. Then forget all that and just hack.

— GEORGE CARRETTE
Although your JavaScript code will spend much of its time dealing with
web page knickknacks such as HTML tags and CSS properties, it will
also perform lots of behind-the-scenes chores that require manipulating
strings, dealing with dates and times, and performing mathematical
calculations. To help you through these tasks, in this chapter you explore
three of JavaScript’s built-in objects: the String object, the Date object,
and the Math object. You investigate the most important properties of
each object, master the most used methods, and encounter lots of useful
examples along the way.

Manipulating Text with the String
Object

I've used dozens of examples of strings so far in this book. These include
not only string literals (such as "Web Coding and Development For
Dummies") but also methods that return strings (such as the prompt()

method). So it should be clear by now that strings play a major role in all
JavaScript programming, and it will be a rare script that doesn't have to
deal with strings in some fashion.

For this reason, it pays to become proficient at manipulating strings,
which includes locating text within a string and extracting text from a
string. You learn about all that and more in this section.

Any string you work with — whether it’s a string literal or the result of a
method or function that returns a string — is a String object. So, for
example, the following two statements are equivalent:

const bookName = new String("Web Coding and Development For Dummies");

const bookName = "Web Coding and Development For Dummies";

This means you have quite a bit of flexibility when applying the
properties and methods of String objects. For example, the String
object has a length property that I describe a bit later (refer to
“Determining the length of a string”). The following are all legal
JavaScript expressions that use this property:

bookName.length;

"Web Coding and Development For Dummies".length;

prompt("Enter the book name:").length;

myFunction().length;

The last example assumes that myFunction() returns a string value.

Working with string templates
Before diving in to the properties and methods of the String object, take
a second to examine a special type of string that's designed to solve three
string-related problems that will come up again and again in your coding
career:

Handling internal quotation marks: String literals are surrounded
by quotation marks, but what do you do when you need the same
type of quotation mark inside the string?
One solution is to use a different type of quotation mark to delimit
the string. For example, this is illegal:

'There's got to be a better way to do this.'

But this is fine:
"There's got to be a better way to do this."

A second solution is to escape the internal quotation mark with a
slash, like so:

'There\'s got to be a better way to do this.'

These solutions work fine, but remembering to use them is harder
than you may think!
Incorporating variable values: When you need to use the value of
a variable inside a string, you usually end up with something
ungainly such as the following:

const adjective = "better";

const lament = "There's got to be a " + adjective + " way to do

this.";

Multiline strings: It’s often useful to define a string using multiple
lines. However, if you try the following, you’ll get a string
literal contains an unescaped line break error:

const myHeader = '

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>'

You can solve all three problems by using a string template (also called a
template literal), which is a kind of string literal where the delimiting
quotation marks are replaced by back ticks (`):

`Your string goes here`

 String templates were introduced as part of ECMAScript 2015
(ES6), so use them only if you don't need to support ancient web
browsers such as Internet Explorer 11.

Here’s how you can use a string template to solve each of the three
problems just described:

Handling internal quotation marks: You’re free to plop any
number of single or double quotation marks inside a string template:

`Ah, here's the better way to do this!`

Incorporating variable values: String templates support something
called variable interpolation, which is a technique for referencing a
variable value directly within a string. Here’s an example:

const adjective = "better";

const paean = `Ah, here's the ${adjective} way to do this!`;

Within any string template, using ${variable} inserts the value of
variable, no questions asked. Actually, you don't have to stick to
just variables. String templates can also interpolate any JavaScript
expression, including function results.
Multiline strings: String templates are happy to work error-free with
strings that are spread over multiple lines:

const myHeader = `

 <nav class="banner">

 <h3 class="nav-heading">Navigation</h3>

 <ul class="nav-links">

 Home

 Away

 In Between

 </nav>`

Determining the length of a string
The only inherent property of a String object is its length, which tells
you how many characters are in the string:

string.length

All characters within the string — including spaces and punctuation
marks — are counted towards the length. The only exceptions are escape
sequences (such as \n), which count as one character. The following
code grabs the length property value for various String object types:

function myFunction() {

 return "filename.htm";

}

const bookName = "Web Coding and Development For Dummies";

length1 = myFunction().length; // Returns 12

length2 = bookName.length; // Returns 37

length3 = "123\n5678".length; // Returns 8

What the String object lacks in properties it more than makes up for in
methods. There are dozens, and they enable your code to perform many
useful tasks, from converting between uppercase and lowercase letters,
to finding text in a string, to extracting parts of a string.

Searching for substrings
A substring is a portion of an existing string. For example, some
substrings of the string “JavaScript” would be “Java”, “Script”, “vaSc”,
and “v”. When working with strings in your scripts, you'll often have to
determine whether a given string contains a given substring. For
example, if you’re validating a user’s email address, you should check
that it contains an @ symbol.

Table 9-1 lists the several String object methods that find substrings
within a larger string.

TABLE 9-1 String Object Methods for Searching for
Substrings

Method What It Does

string.endsWith(substring,

position)

Tests whether substring appears at the end of
string

Method What It Does

string.includes(substring,

position)

Tests whether substring appears in string

string.indexOf(substring,

position)

Searches string for the first instance of
substring

string.lastIndexOf(substring,

position)

Searches string for the last instance of substring

string.startsWith(substring,

position)

Tests whether substring appears at the beginning
of string

You'll use each of these methods quite often in your scripts, so I take a
closer look at them in the sections that follow.

The startsWith(), includes(), and endsWith() methods
If you just want to know whether a particular substring exists within a
larger string, use one of the following methods:

string.startsWith(substring[, position])

string.includes(substring[, position])

string.endsWith(substring[, position])

where:

string is the string in which you want to search.

substring is the substring that you want to search for in string.

position is an optional numeric value that defines either the starting
character position for the search (for the startsWith() and
includes() methods) or the ending character position for the search
(for the endsWith() method). If you omit this argument, JavaScript
starts the search from the beginning of the string (for the
startsWith() and includes() methods) or the end of the string (for
the endsWith() method).

The search is case sensitive. These methods return true if they find
substring in string; otherwise, they return false. Here are some

examples (check out bk03ch09/example01.html in this book's example
files):

const bookName = "Web Coding and Development For Dummies";

console.log(bookName.startsWith("Web")); // Returns true

console.log(bookName.startsWith("Coding", 4)); // Returns true

console.log(bookName.includes("Development")); // Returns true

console.log(bookName.includes("And")); // Returns false

console.log(bookName.endsWith("Dummies")); // Returns true

console.log(bookName.endsWith("Coding", 10)); // Returns true

On a more practical note, the following code (check out
bk03ch09/example02.html) presents a simple validation script that uses
includes():

let emailAddress = "";

do {

 emailAddress = prompt("Enter a valid email address:");

 if (emailAddress === null) {

 break;

 }

}

while (!emailAddress.includes("@"));

The script prompts the user for a valid email address, which is stored in
the emailAddress variable. Any valid address will contain the @
symbol, so the while() portion of a do…while() loop checks to
determine whether the entered string contains @:

while (!emailAddress.includes("@"));

If not (that is, if emailAddress.includes("@") returns false), the loop
continues and the user is prompted again. If the user clicks Cancel in the
prompt box, then emailAddress === null returns true and the loop
quits.

 The startsWith(), endsWith(), and includes() methods were
introduced as part of ECMAScript 2015 (ES6), so use them only if
you don't need to support ancient web browsers such as Internet
Explorer 11.

The indexOf() and lastIndexOf() methods
When you want to find the first instance of a substring, or if all you want
to know is whether a string contains a particular substring, use the
indexOf() method; if you need to find the last instance of a substring,
use the lastIndexOf() method:

string.indexOf(substring[, start])

string.lastIndexOf(substring[, start])

where:

string is the string in which you want to search.

substring is the substring that you want to search for in string.

start is an optional character position from which the search begins.
If you omit this argument, JavaScript starts the search from the
beginning of the string.

Here are some notes you should keep in mind when using indexOf() or
lastIndexOf():

Each character in a string is given an index number, which is the
same as the character's position in the string.
Strings, like arrays, are zero-based, which means that the first
character has index 0, the second character has index 1, and so on.
Both methods are case-sensitive. For example, if you search for B,
neither method will find any instances of b.

If either method finds substring, they return the index position of
the first character of substring.

If either method doesn't find substring, they return −1.

The following code (bk03ch09/example03.html) tries out these methods
in a few different situations:

HTML:

<pre>

Web Coding and Development For Dummies

01234567890123456789012345678901234567

</pre>

<div id="output"></div>

JavaScript:
const bookName = "Web Coding and Development For Dummies";

let str = `

 "C\" is at index ${bookName.indexOf("C")}

 "v" is at index ${bookName.indexOf("v")}

 The first space is at index ${bookName.indexOf(" ")}

 The first "D" is at index ${bookName.indexOf("D")}

 The last "D" is at index ${bookName.lastIndexOf("D")}

 The first "e" after index 2 is at index ${bookName.indexOf("e", 2)}

 The substring "Develop" begins at index ${bookName.indexOf("Develop")}

`;

document.getElementById("output").innerHTML = str;

As shown in Figure 9-1, the numbers show you the index positions of
each character in the script.

FIGURE 9-1: The indexOf() and lastIndexOf() methods search for substrings within a
string.

Methods that extract substrings
Finding a substring is one thing, but you'll often have to extract a
substring, as well. For example, if the user enters an email address, you
may need to extract just the username (the part to the left of the @ sign)
or the domain name (the part to the right of @). For these kinds of
operations, JavaScript offers six methods, listed in Table 9-2.

TABLE 9-2 String Object Methods for Extracting
Substrings

Method What It Returns

string.charAt(index)

The character in string that's at the index position specified
by index

string.charCodeAt(index)

The code of the character in string that's at the index
position specified by index

string.slice(start, end)

The substring in string that starts at the index position
specified by start and ends immediately before the index
position specified by end

string.split(separator,

limit)

An array where each item is a substring in string, where
those substrings are separated by the separator character

string.substr(start,

length)

The substring in string that starts at the index position
specified by start and is length characters long

string.substring(start,

end)

The substring in string that starts at the index position
specified by start and ends immediately before the index
position specified by end

The charAt() method
You use the charAt() method to return a single character that resides at
a specified position in a string:

string.charAt(index)

where:

string is the string that contains the character.

index is the position in string of the character you want.

Here are some notes about this method:

To return the first character in string, use the following:
string.charAt(0)

To return the last character in string, use this:
string.charAt(string.length - 1)

If the index value is negative or is greater than or equal to
string.length, JavaScript returns the empty string ("").

The following code presents an example (bk03ch09/example04.html):

HTML:
<div id="output"></div>

JavaScript:
// Set up an array of test strings

const stringArray = [];

stringArray[0] = "Not this one.";

stringArray[1] = "Not this one, either.";

stringArray[2] = "1. Step one.";

stringArray[3] = "Shouldn't get this far.";

// Loop through the array

for (const currentString of stringArray) {

 // Get the first character of the string

 const firstChar = currentString.charAt(0);

 // Is it a number?

 if (!isNaN(firstChar)) {

 // If so, display the string because that's the one we want

 document.getElementById("output").innerHTML = `Here's the one:

"${currentString}"`;

 // We're done here, so break out of the loop

 break;

 }

}

The idea here is to examine a collection of strings and find the one that
starts with a number. The collection is stored in the stringArray array,
and a for…of loop is set up to run through each item in the array. The
charAt() method is applied to each array item (stored in the
currentString variable) to return the first character, which is stored in
the firstChar variable. In the if test, the logical expression
!isNaN(firstChar) returns true if the firstChar value is a number
(the isNaN(value) function returns true if value is not a number), at
which point the correct string is displayed in the web page and the loop
breaks.

 Each character in a JavaScript string has an index number, where
the first character is index 0, the second character is index 1, and so
on. You specify a particular character using square bracket notation.
For example, the expression myString[5] references the character
at index 5 of whatever string is stored in the myString variable.

Therefore, an alternative to using charAt() is to reference the character
you want by its index number. For example, the following two
expressions reference the same character:

currentString.charAt(0)

currentString[0]

The slice() method
Use the slice() method to carve out a piece of a string:

string.slice(start[, end])

where:

string is the string you want to work with.

start is the position within string of the first character you want to
extract.

end is an optional position in string immediately after the last
character you want to extract. If you leave out this argument,
JavaScript extracts the substring that runs from start to the end of
the string. Also, this argument can be negative, in which case it
specifies an offset from the end of the string.

To be clear, slice() extracts a substring that runs from the character at
start up to, but not including, the character at end.

The following code (bk03ch09/example05.html) runs through a few
examples (check out Figure 9-2):

HTML:
<pre>

Web Coding and Development For Dummies

01234567890123456789012345678901234567

</pre>

<div id="output"></div>

JavaScript:
const bookName = "Web Coding and Development For Dummies";

let str = `

 slice(0, 3) = ${bookName.slice(0, 3)}

 slice(4, 10) = ${bookName.slice(4, 10)}

 slice(15) = ${bookName.slice(15)}

 slice(0, -12) = ${bookName.slice(0, -12)}

`;

document.getElementById("output").innerHTML = str;

FIGURE 9-2: Some examples of the slice() method in action.

The split() method
The split() method breaks up a string and returns an array that stores
the pieces:

string.split(separator[,limit])

where:

string is the string you want to work with.

separator is the character used to mark the positions at which
string is split. For example, if separator is a comma, the splits will
occur at each comma in string.

limit is an optional value that sets the maximum number of items to
store in the array. For example, if limit is 5, split() stores the first
five pieces in the array and then ignores the rest of the string.

 If you want each character in the string stored as an individual
array item, use the empty string ("") as the separator value.

The split() method is useful for those times when you have a well-
structured string. This means that the string contains a character that acts
as a delimiter between each string piece that you want to set up as an
array item. For example, it's common to have to deal with comma-
delimited strings:

string1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday";

Handily, each day in the string is separated by a comma, which makes
using the split() method a no-brainer:

const string1Array = string1.split(",");

When you run this statement, string1Array[0] will contain "Sunday",
string1Array[1] will contain "Monday", and so on. Note, too, that
JavaScript sets up the array for you automatically. You don't have to
declare the array using new Array().

The following code (bk03ch09/example06.html) tries out split() with a
couple of example strings:

HTML:
<div id="output"></div>

JavaScript:
const string1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday";

const string2 = "ABCDEF";

let str = "";

const string1Array = string1.split(",");

string1Array.forEach((value, index) => {

 str += `string1Array[${index}] = ${value}
`;

});

const string2Array = string2.split("", 4);

string2Array.forEach ((value, index) => {

 str += `string2Array[${index}] = ${value}
`;

});

document.getElementById("output").innerHTML = str;

After string1 is split into string1Array, that array's forEach() method
runs through the array and writes the items to the global str variable.

For string2, the empty string is used as the separator and a limit of 4 is
placed on the size of the string2Array. Again, that array's forEach()
methods writes the array values to the str variable. The script closes by
writing str to the page. Figure 9-3 shows what happens.

FIGURE 9-3: Some examples of the split() method.

The substr() method
If you want to extract a substring and you know how long you want that
substring to be, the substr() method is often the best approach:

string.substr(index, length)

where:

string is the string you want to work with.

index is the position in string of the first character you want to
extract.
length is an optional value that specifies the length of the substring.
If you omit this argument, JavaScript extracts all the way to the end

of the string.

The following code (bk03ch09/example07.html) runs substr() through
some examples; the results appear in Figure 9-4.

HTML:
<pre>

Web Coding and Development For Dummies

01234567890123456789012345678901234567

</pre>

<div id="output"></div>

JavaScript:
const bookName = "Web Coding and Development For Dummies";

let str = `

 substr(0, 10) = ${bookName.substr(0, 10)}

 substr(15, 11) = ${bookName.substr(15, 11)}

 substr(27) = ${bookName.substr(27)}

`;

document.getElementById("output").innerHTML = str;

FIGURE 9-4: Some examples of the substr() method.

The substring() method
Use the substring() method to extract a substring from a string:

string.substring(start[, end])

where:

string is the string you want to work with.

start is the position in string of the first character you want to
extract.
end is an optional value that specifies the position in string
immediately after the last character you want to extract. If you don't
include this argument, JavaScript extracts the substring that runs
from start to the end of the string.

The following code (bk03ch09/example08.html) gives the substring()
method a whirl, and the results are shown in Figure 9-5.

HTML:
<pre>

Web Coding and Development For Dummies

01234567890123456789012345678901234567

</pre>

<div id="output"></div>

JavaScript:
const bookName = "Web Coding and Development For Dummies";

let str = `

 substring(0, 10) = ${bookName.substring(0, 10)}

 substring(11, 14) = ${bookName.substring(11, 14)}

 substring(31) = ${bookName.substring(31)}

`;

document.getElementById("output").innerHTML = str;

FIGURE 9-5: Some examples of the substring() method.

Understanding the differences between splice(), substr(), and
substring()
The splice(), substr(), and substring() methods are similar and
often confused by even experienced JavaScript programmers. Here are
some notes to help you understand the differences between these three
string extraction methods:

The splice() and substring() methods perform the same task. The
only difference is that splice() enables you to use a negative value
for the end argument. This feature is handy if you want to leave out a
certain number of characters from the end of the original string. For
example, if you want to extract everything but the last three
characters, you'd use this:

string.splice(0, -3)

Use either splice() or substring() when you're not sure how long
the extracted string will be. In this situation, usually you’ll use the
indexOf() and lastIndexOf() methods to find particular characters
that mark the starting and ending points of the substring you want.
You then use those values as the start and end arguments of
splice() or substring(). For example, suppose you have a string
of the form www.domain.com and you want to extract just the domain
part. Here's a short routine that will do it:

https://www.domain.com/

const hostName = "www.domain.com";

const firstDot = hostName.indexOf(".");

const lastDot = hostName.lastIndexOf(".");

const domainName = hostName.substring(firstDot + 1, lastDot);

 This technique for extracting the domain name is illustrative
but woefully inefficient. Here’s a one-liner that takes advantage of
the split() method (which I discuss earlier in this chapter; check
out “The split() method”):

const domainName = hostName.split('.')[1];

On the other hand, if you know in advance how long the extracted
string must be, use the substr() method.

Dealing with Dates and Times
Dates and times seem like the kind of things that ought to be
straightforward programming propositions. After all, there are only 12
months in a year, 28 to 31 days in a month, 7 days in a week, 24 hours in
a day, 60 minutes in an hour, and 60 seconds in a minute. Surely
something so set in stone couldn't get even the least bit weird, could it?

You’d be surprised. Dates and times can get strange, but they are much
easier to deal with if you remember three crucial points:

JavaScript time is measured in milliseconds, or thousandths of a
second. More specifically, JavaScript measures time by counting the
number of milliseconds that elapsed between January 1, 1970 and
the date and time in question. So, for example, you may come across
the date January 1, 2001 and think, “Ah, yes, the start of the new
millennium.” JavaScript, however, comes across that date and thinks
“978307200000.”
In the JavaScript world, time began on January 1, 1970, at midnight
Greenwich Mean Time. Dates before that have negative values in
milliseconds.

Since your JavaScript programs run inside a user’s browser, dates
and times are almost always the user’s local dates and times. That is,
the dates and times your scripts will manipulate will not be those of
the server on which your page resides. This means you can never
know what time the user is viewing your page.

Arguments used with the Date object
Before getting to the nitty-gritty of the Date object and its associated
methods, I’ll take a second to run through the various arguments that
JavaScript requires for many date-related features. Doing so will save
me from repeating these arguments tediously later. Table 9-3 has the
details.

Working with the Date object
Whenever you work with dates and times in JavaScript, you work with
an instance of the Date object. More to the point, when you deal with a
Date object in JavaScript, you deal with a specific moment in time,
down to the millisecond. A Date object can never be a block of time, and
it's not a kind of clock that ticks along while your script runs. Instead,
the Date object is a temporal snapshot that you use to extract the
specifics of the time it was taken: the year, month, date, hour, and so on.

TABLE 9-3 Arguments Associated with the Date Object

Argument What It Represents Possible Values

date A variable name A Date object

yyyy The year Four-digit integers

yy The year Two-digit integers

month The month
The full month name from "January" to
"December"

mth The month Integers from 0 (January) to 11 (December)

dd The day of the month Integers from 1 to 31

hh The hour of the day Integers from 0 (midnight) to 23 (11:00 PM)

Argument What It Represents Possible Values

mm The minute of the hour Integers from 0 to 59

ss The second of the minute Integers from 0 to 59

ms
The milliseconds of the
second Integers from 0 to 999

Specifying the current date and time
The most common use of the Date object is to store the current date and
time. You do that by invoking the Date() function, which is the
constructor function for creating a new Date object. Here's the general
format:

const dateToday = new Date();

Specifying any date and time
If you need to work with a specific date or time, you need to use the
Date() function’s arguments. There are five versions of the Date()
function syntax (refer to the list of arguments near the beginning of this
section):

const date = new Date("month dd, yyyy hh:mm:ss");

const date = new Date("month dd, yyyy");

const date = new Date(yyyy, mth, dd, hh, mm, ss);

const date = new Date(yyyy, mth, dd);

const date = new Date(ms);

The following statements give you an example for each syntax:
const myDate = new Date("August 23, 2024 3:02:01");

const myDate = new Date("August 23, 2024");

const myDate = new Date(2024, 8, 23, 3, 2, 1);

const myDate = new Date(2024, 8, 23);

const myDate = new Date(1727064000000);

Extracting information about a date
When your script just coughs up whatever Date object value you stored
in the variable, the results aren't particularly appealing. If you want to
display dates in a more attractive format, or if you want to perform
arithmetic operations on a date, you need to dig a little deeper into the

Date object to extract specific information such as the month, year, hour,
and so on. You do that by using the Date object methods listed in Table
9-4.

TABLE 9-4 Date Object Methods That Extract Date
Values

Method Syntax What It Returns

date.getFullYear() The year as a four-digit number (1999, 2000, and so on)

date.getMonth() The month of the year; from 0 (January) to 11 (December)

date.getDate() The date in the month; from 1 to 31

date.getDay() The day of the week; from 0 (Sunday) to 6 (Saturday)

date.getHours() The hour of the day; from 0 (midnight) to 23 (11:00 PM)

date.getMinutes() The minute of the hour; from 0 to 59

date.getSeconds() The second of the minute; from 0 to 59

date.getMilliseconds() The milliseconds of the second; from 0 to 999

date.getTime() The milliseconds since January 1, 1970 GMT

One of the ways you can take advantage of these methods is to display
the time or date to the user using any format you want. Here's an
example (bk03ch09/example09.html):

HTML:
<div id="output"></div>

JavaScript:
const timeNow = new Date();

const hoursNow = timeNow.getHours();

const minutesNow = timeNow.getMinutes();

let message = "It's ";

let hoursText;

if (minutesNow <= 30) {

 message += minutesNow + (minutesNow === 1 ? " minute past " : " minutes

past ");

 hoursText = hoursNow;

} else {

 message += (60 - minutesNow) + ((60 - minutesNow) === 1 ? " minute before

" : " minutes before ");

 hoursText = hoursNow + 1;

}

if (hoursNow == 0 && minutesNow <= 30) {

 message += "midnight.";

} else if (hoursNow == 11 && minutesNow > 30) {

 message += "noon.";

} else if (hoursNow < 12) {

 message += hoursText + " in the morning.";

} else if (hoursNow == 12 && minutesNow <= 30) {

 message += "noon.";

} else if (hoursNow < 18) {

 message += parseInt(hoursText - 12) + " in the afternoon.";

} else if (hoursNow == 23 && minutesNow > 30) {

 message += "midnight.";

} else {

 message += parseInt(hoursText - 12) + " in the evening.";

}

document.getElementById("output").innerHTML = message;

This script begins by storing the user’s local time in the timeNow
variable. Then the current hour is extracted using getHours() and stored
in the hoursNow variable, and the current minute is extracted using
getMinutes() and stored in the minutesNow variable. A variable named
message is initialized and will be used to store the message displayed in
the web page. The hoursText variable will hold the nonmilitary hour
(for example, 4 instead of 16).

Then the value of minutesNow is checked to determine whether it's less
than or equal to 30 because this determines the first part of the message
as well as the value of hoursText. Here are two examples of how the
message will appear:

It's 20 minutes past 10 // minutesNow is less than or equal to 30 (10:20)

It's 1 minute to 11 // minutesNow is greater than 30 (10:59)

Then the script checks the value of hoursNow:

If it equals 0 and minutesNow is less than or equal to 30, the string
midnight is added to the message.

If it equals 11 and minutesNow is greater than 30, the string noon is
added to the message.
If it's less than 12, the value of hoursText and the string in the
morning are added to the message.

If it equals 12 and minutesNow is less than or equal to 30, the string
noon is added to the message.

If it's less than 18 (6:00 PM), the result of hoursText - 12 and the
string in the afternoon are added.

If it equals 23 and minutesNow is greater than 30, the string midnight
is added to the message.
Otherwise, hoursText - 12 and the string in the evening are
added.

Finally, the result is written to the page, as shown in Figure 9-6.

FIGURE 9-6: The results of the script.

Extracting the month name from a date
If you want to use the month in a nicer format than the standard Date
object display, you have one problem. The getMonth() method returns a
number instead of the name of the month: 0 for January, 1 for February,
and so on. If you prefer to use the name, you need to extract the name
from the Date object.

The easiest way to extract the month name from a date is to use the
toLocaleDateString() method, which returns a string that corresponds
to the portion (such as the month) of a specified date. Here's the syntax:

date.toLocaleDateString(locale, options)

where:

date is the Date object from which you want to extract the month
name.
locale is a string specifying the language to use such as en-us. Use
default for the current language.

options is a JavaScript object that specifies the method output. The
object can contain one or more key-value pairs, where the key can be
the weekday, day, month, or year keyword and the value is a string
that specifies the format of the property. For weekday and month, use
the short or long strings; for day or year, use the numeric string.
For example, to extract just the month name, use the { month: 'long'
} object.

Here's an example (bk03ch09/example10.html):

HTML:
<div id="output"></div>

JavaScript:
const dateNow = new Date();

document.getElementById("output").innerHTML =

 `The date is ${dateNow}

 The month name is ${dateNow.toLocaleDateString('default', { month: 'long'

})}`;

 To extract information about a time, use the
toLocaleTimeString() method:
date.toLocaleTimeString(locale, options). Again, options is
a JavaScript object containing one or more key-value pairs, where
the key can be the hour, minute, or second keyword and the value
is the numeric string. For example, to extract just the hour, use the
{ hour:'numeric'} object.

Extracting the day name from a date
You face a similar problem with getDay() as you do with getMonth():
converting the returned number into a friendly name, such as, in this
case, Sunday for 0, Monday for 1, and so on. The solution, as you can
imagine, is also similar: Use the toLocaleDateString() method, but
this time specify the { weekday: 'long' } object as the options
parameter. Here's an example (bk03ch09/example11.html):

HTML:
<div id="output"></div>

JavaScript:
const dateNow = new Date();

document.getElementById("output").innerHTML =

 `The date is ${dateNow}

 The day name is ${dateNow.toLocaleDateString('default', { weekday: 'long'

})}`;

Setting the date
When you perform date arithmetic, you often have to change the value
of an existing Date object. For example, an e-commerce script may have
to calculate a date that is 90 days from the date that a sale occurs. It’s
usually easiest to create a Date object and then use an expression or
literal value to change the year, month, or some other component of the
date. You do that by using the Date object methods listed in Table 9-5.

TABLE 9-5 Date Object Methods That Set Date Values

Method Syntax What It Sets

date.setFullYear(yyyy) The year as a four-digit number (1999, 2000, and so on)

date.setMonth(mth) The month of the year; from 0 (January) to 11 (December)

date.setDate(dd) The date in the month; from 1 to 31

date.setHours(hh) The hour of the day; from 0 (midnight) to 23 (11:00 PM)

date.setMinutes(mm) The minute of the hour; from 0 to 59

date.setSeconds(ss) The second of the minute; from 0 to 59

Method Syntax What It Sets

date.setMilliseconds(ms) The millisecond of the second; from 0 to 999

date.setTime(ms) The milliseconds since January 1, 1970 GMT

The following code (bk03ch09/example12.html) tries out some of these
methods:

HTML:
<div>

 <label for="user-year">Enter a year:</label>

 <input type="text" id="user-year" size="4" value="2024">

</div>

<div>

 <label for="user-month">Enter a month (1-12):</label>

 <input type="text" id="user-month" size="2" value="1">

</div>

<div>

 <label for="user-day">Enter a day (1-31):</label>

 <input type="text" id="user-day" size="2" value="1">

</div>

<div id="output"></div>

JavaScript:
// Get the inputs

const inputs = document.querySelectorAll('input');

// Add a 'change' event listener to each input

inputs.forEach(input => {

 input.addEventListener('change', makeDate);

});

// Run this function each time an input changes

function makeDate() {

 // Get the year, month (minus 1), and day

 const userYear = document.querySelector('#user-year').value;

 const userMonth = document.querySelector('#user-month').value - 1;

 const userDay = document.querySelector('#user-day').value;

 // Create a new Date object

 const userDate = new Date();

 // Set the year, month, and date

 userDate.setFullYear(userYear);

 userDate.setMonth(userMonth);

 userDate.setDate(userDay);

 // Convert the date info to strings

 const dateString = userDate.toLocaleDateString('default', { month:

'long', day: 'numeric', year: 'numeric' });

 const dayName = userDate.toLocaleDateString('default', { weekday: 'long'

});

 // Display the message

 document.getElementById("output").innerHTML =

 `The date entered is: ${dateString}

 The day of the week is: ${dayName}`;

}

// Run the function as soon as the page loads

makeDate();

The HTML code defines three input elements that gather the year,
month, and day of the month. The JavaScript stores the input elements
in the inputs node list and then loops through the elements, adding a
change event handler to each element, which defines makeDate as the
callback function.

The makeDate() callback function stores the value of each input element
in a variable. Note that the script subtracts 1 from the month value to get
a proper month number for JavaScript to use.

The next four statements are the keys to this example. A new Date
object is stored in the userDate variable. Then the script runs the
setFullYear(), setMonth(), and setDate() methods.

At this point, the userDate variable contains a new date that corresponds
to the supplied date. This means you can use the toLocaleDateString
method to convert the date into whatever string you need. The script first
defines string (dateString) for the full date and then defines a string
(dayName) for just the weekday name. Then the script displays the date
and the day of the week that it corresponds to (check out Figure 9-7).

 All the set methods also return values. Specifically, they return
the number of milliseconds from January 1, 1970 GMT to whatever
new date is the result of the method. Therefore, you can use the
return value of a set method to create a new Date object:

newDate = new Date(userDate.setFullYear(userYear))

FIGURE 9-7: The script displays the day of the week for a given year, month, and day.

Performing date calculations
Many of your date-related scripts will need to make arithmetic
calculations. For example, you may need to figure out the number of
days between two dates, or you may need to calculate the date that's six
weeks from today. The methods you’ve learned so far, and the way
JavaScript represents dates internally, serve to make most date
calculations straightforward.

The simplest calculations are those that involve whole numbers of the
basic JavaScript date and time units: years, months, days, hours,
minutes, and seconds. For example, suppose you need to calculate a date

that’s five years from the current date. Here’s a code snippet that will do
it:

const myDate = new Date();

const myYear = myDate.getFullYear() + 5;

myDate.setFullYear(myYear);

You use getFullYear() to get the year, add 5 to it, and then use
setFullYear() to change the date.

Determining a person's age
As a practical example, the following code presents a script that
calculates a person’s age (bk03ch09/example13.html):

HTML:
<label for="date-picker">Select your birth date:</label>

<input type="date" id="date-picker" value="2000-01-01">

<div id="output"></div>

JavaScript:
// Add a 'change' event listener to the date picker

const datePicker = document.querySelector('#date-picker');

datePicker.addEventListener('change', calculateAge);

// Run this function when the date changes

function calculateAge() {

 // Create a new Date object from the date picker value

 const birthDate = new Date(datePicker.value);

 // Store the user's birth year

 const birthYear = birthDate.getFullYear();

 // Make a Date object and set it

 // to the user's birthday this year

 const birthdayDate = new Date();

 birthdayDate.setMonth(birthDate.getMonth());

 birthdayDate.setDate(birthDate.getDate());

 // Store the current date and current year

 const currentDate = new Date();

 const currentYear = currentDate.getFullYear();

 // Calculate the user's age

 let userAge = currentYear - birthYear;

 // Has the birthday occurred yet this year?

 if (currentDate < birthdayDate) {

 // If not, adjust the age down by one year

 userAge -= 1;

 }

 // Output the result

 document.getElementById("output").innerHTML =

 `You are ${userAge} years old.`;

}

The HTML code sets up a date picker to get the user’s birth date. The
JavaScript adds a change event listener to the date picker and runs the
calculateAge() function each time the date picker changes. The
calculateAge() function converts the date picker value to a Date
object, and then extracts the birth year to the birthYear variable.

The script creates a new Date object and stores it in birthdayDate. The
date is changed using setMonth(), which is set to
birthDate.getMonth(), and setDate(), which is set to
birthDate.getDate(), but notsetFullYear(). This gives you the user's
birthday for this year. Then the current date is stored in currentDate and
the year is stored in currentYear.

Now the script calculates the user's age by subtracting birthYear from
currentYear. However, that calculation won't be accurate if the user’s
birthday hasn’t occurred yet this year, so the script compares
currentDate and birthdayDate: If currentDate is less, the user's
birthday hasn’t happened, so the script subtracts 1 from the user’s age.

Performing complex date calculations
Other date calculations are more complex. For example, you may need
to calculate the number of days between two dates. For this kind of
calculation, you need to take advantage of the fact that JavaScript stores
dates internally as millisecond values. They’re stored, in other words, as
numbers, and once you’re dealing with numeric values, you can use
numeric expressions to perform calculations on those values.

The key here is converting the basic date units — seconds, minutes,
hours, days, and weeks — into milliseconds. Here’s some code that will
help:

const ONESECOND = 1000;

const ONEMINUTE = ONESECOND * 60;

const ONEHOUR = ONEMINUTE * 60;

const ONEDAY = ONEHOUR * 24;

const ONEWEEK = ONEDAY * 7;

 In programming, whenever you have variables that are constants
— that is, they have values that will never change throughout the
script — it’s traditional to write them entirely in uppercase letters
(using underscores to separate “words”) to help differentiate them
from regular variables.

Because one second equals 1,000 milliseconds, the ONESECOND variable
is given the value 1000; because one minute equals 60 seconds, the
ONEMINUTE variable is given the value ONESECOND * 60, or 60,000
milliseconds. The other values are derived similarly.

Calculating the days between two dates
A common date calculation involves figuring out the number of days
between any two dates. The following code presents a function that
performs this calculation (bk03ch09/example14.html):

function daysBetween(date1, date2) {

 // Convert both dates to milliseconds

 const date1Ms = date1.getTime();

 const date2Ms = date2.getTime();

 // Calculate the difference in milliseconds

 const differenceMs = Math.abs(date1Ms - date2Ms);

 // The number of milliseconds in one day

 const ONEDAY = 1000 * 60 * 60 * 24;

 // Convert to days and return

 return Math.round(differenceMs/ONEDAY);

}

This function accepts two Date object arguments — date1 and date2.
Note that it doesn't matter which date is earlier or later because this
function calculates the absolute value of the difference between them.
The ONEDAY constant stores the number of milliseconds in a day, and then
the two dates are converted into milliseconds using the getTime()
method. The results are stored in the date1Ms and date2Ms variables.

Next, the following statement calculates the absolute value, in
milliseconds, of the difference between the two dates:

const differenceMs = Math.abs(date1Ms - date2Ms);

This difference is then converted into days by dividing it by the ONEDAY
constant. Math.round() (which I discuss in the next section) ensures an
integer result.

Working with Numbers: The Math
Object

It's a rare JavaScript programmer who never has to deal with numbers.
Most of us have to cobble together scripts that process order totals,
generate sales taxes and shipping charges, calculate mortgage payments,
and perform other number-crunching duties. JavaScript’s numeric tools
aren’t the greatest in the programming world, but they have plenty of
features to keep most scripters happy. This section tells you about those
features, with special emphasis on the Math object.

The first thing to know is that JavaScript likes to keep things simple,
particularly when it comes to numbers. For example, JavaScript is
limited to dealing with just two numeric data types: integers — numbers
without a fractional or decimal part, such as 1, 759, and −50 — and
floating-point numbers — values that have a fractional or decimal part,
such as 2.14, 0.01, and −25.3333.

Converting between strings and numbers
When you’re working with numeric expressions in JavaScript, it’s
important to make sure that all your operands are numeric values. For
example, if you prompt the user for a value, you need to check the result
to make sure it’s not a letter or undefined (the default prompt() value).
If you try to use the latter, for example, JavaScript will report that its
value is NaN (not a number).

Similarly, if you have a value that you know is a string representation of
a number, you need some way of converting that string into its numerical
equivalent.

For these situations, JavaScript offers several techniques to ensure that
your operands are numeric.

The parseInt() function
I begin with the parseInt() function, which you use to convert a string
into an integer:

parseInt(string[,base]);

where:

string is the string value you want to convert.

base is an optional base used by the number in string. If you omit
this value, JavaScript uses base 10.

Note that if the string argument contains a string representation of a
floating-point value, parseInt() returns only the integer portion. Also,
if the string begins with a number followed by some text, parseInt()
returns the number (or, at least, its integer portion). The following table
shows you the parseInt() results for various string values.

string parseInt(string)

"5" 5

"5.1" 5

string parseInt(string)

"5.9" 5

"5 feet" 5

"take 5" NaN

"five" NaN

The parseFloat() function
The parseFloat() function is similar to parseInt(), but you use it to
convert a string into a floating-point value:

parseFloat(string);

Note that if the string argument contains a string representation of an
integer value, parseFloat() returns just an integer. Also, like
parseInt(), if the string begins with a number followed by some text,
parseFloat() returns the number. The following table shows you the
parseFloat() results for some string values.

string parseFloat(string)

"5" 5

"5.1" 5.1

"5.9" 5.9

"5.2 feet" 5.2

"take 5.0" NaN

"five-point-one" NaN

The + operator
For quick conversions from a string to a number, I most often use the +
operator, which tells JavaScript to treat a string that contains a number as
a true numeric value. For example, consider the following code:

const numOfShoes = '2';

const numOfSocks = 4;

const totalItems = +numOfShoes + numOfSocks;

By adding + in front of the numOfShoes variable, I force JavaScript to set
that variable's value to the number 2, and the result of the addition will
be 6.

The Math object’s properties and methods
The Math object is a bit different than most of the other objects you come
across in this book because you never create an instance of the Math
object that gets stored in a variable. Instead, the Math object is a built-in
JavaScript object that you use as is. The rest of this chapter explores
some properties and methods associated with the Math object.

Properties of the Math object
The Math object's properties are all constants that are commonly used in
mathematical operations. Table 9-6 lists all the available Math object
properties.

TABLE 9-6 The Properties of the Math Object

Property Syntax What It Represents Approximate Value

Math.E Euler's constant 2.718281828459045

Math.LN10 The natural logarithm of 10 2.302585092994046

Math.LN2 The natural logarithm of 2 0.6931471805599453

Math.LOG2E Base 2 logarithm of E 1.4426950408889633

Math.LOG10E Base 10 logarithm of E 0.4342944819032518

Math.PI The constant pi 3.141592653589793

Math.SQRT1_2 The square root of 1/2 0.7071067811865476

Math.SQRT2 The square root of 2 1.4142135623730951

Methods of the Math object
The Math object's methods enable you to perform mathematical
operations such as square roots, powers, rounding, and trigonometry.
Many of the Math object’s methods are summarized in Table 9-7.

TABLE 9-7 Some Methods of the Math Object

Method Syntax What It Returns

Math.abs(number)

The absolute value of number (that is, the number without any
sign)

Math.cbrt(number) The cube root of number

Math.ceil(number)

The smallest integer greater than or equal to number (ceil is
short for ceiling)

Math.cos(number)

The cosine of number; returned values range from −1 to 1
radians

Math.exp(number) E raised to the power of number

Math.floor(number) The largest integer that is less than or equal to number

Math.log(number) The natural logarithm (base E) of number

Math.max(number1,

number2)

The larger of number1 and number2

Math.min(number1,

number2)

The smaller of number1 and number2

Math.pow(number1,

number2)

number1 raised to the power of number2

Math.random() A random number between 0 and 1

Math.round(number) The integer closest to number

Math.sin(number) The sine of number; returned values range from −1 to 1 radians

Math.sqrt(number)

The square root of number (which must be greater than or
equal to 0)

Math.tan(number) The tangent of number, in radians

Math.trunc(number) The integer portion of number

For example, to calculate the area of a circle, you use the formula πr2,
where π (pi) is the ratio of the circumference of a circle to its diameter
and r is the radius of the circle. Here's a function that takes a radius value
and returns the area of the circle (bk03ch11/example12.html):

function areaOfCircle(radius) {

 return Math.PI * Math.pow(radius, 2);

}

The code uses Math.PI to represent pi and Math.pow(radius, 2) to
raise the radius value to the power of 2.

Chapter 10
Storing User Data in the

Browser
IN THIS CHAPTER

 Getting the hang of the Web Storage API
 Taking your first look at JSON
 Adding stuff to storage
 Getting stuff from storage
 Removing stuff from storage

Data is like garbage. You’d better know what you are going to do with it
before you collect it.

—ANONYMOUS
One of the hallmarks of a bigtime website is that most of what you as a
site visitor see is data that has been retrieved from a server. This data has
been created and managed by a database specialist, and the code that
asks for the required data and then returns that data to the web browser is
created by a back-end web developer.

Programming the back end is the subject of Book 4, but not every web
page that works with data needs back-end coding. For example, suppose
your web page enables each user to set custom background and text
colors. Setting up a complex back-end edifice to store those two pieces
of data would be like building the Taj Mahal to store a few towels.

Fortunately, you don’t have to embark on a major construction job to
save small amounts of data for each user. Instead, you can take
advantage of a technology called web storage that enables you to store

data for each user right in that person’s web browser. It’s all very
civilized, and you find out everything you need to know in this chapter.

Understanding Web Storage
Web storage is possible via a technology called the Web Storage API
(application programming interface), which defines two properties of the
Window object (the object that references the user's browser window):

localStorage: A storage space created within the web browser for
your domain (meaning that only your local code can access this
storage). Data in this storage can’t be larger than 5MB per domain.
This data resides permanently in the browser until you delete it.
sessionStorage: The same as localStorage, except that the data
persists for only the current browser session. That is, the browser
erases the data when the user closes the last browser tab or window
in which a page from the domain is open.

 Users can also delete web storage data by using their browser's
command for removing website data. If your web page really needs
its user data to be permanent (or, at least, completely under your
control), you need to store it on the server.

Both localStorage and sessionStorage do double duty as objects that
implement several methods that your code can use to add, retrieve, and
delete user data. Each data item is stored as a key-value pair as part of a
JSON object. What on Earth is a “JSON object” you ask? Read on, dear
reader, read on.

Introducing JSON
Long ago, someone with a tall forehead realized that the JavaScript
world needed a straightforward way to move data to and from a script

(from and to a web server, say, or from and to a web browser). The
format needed to be pure text, have a relatively simple syntax, and be an
open standard so that there would be no restrictions on its use.

The result was a data format called JavaScript Object Notation, or JSON
(pronounced “Jason,” like the name), for short. The JavaScript part of
the name tells you that JSON is part of the JavaScript standard, which
includes a JSON object for working with JSON strings. The Object part
of the name tells you that (as I describe in the next section) JSON's
syntax is very much like the syntax used by JavaScript objects.

Learning the JSON syntax
I talk about JavaScript object literals in several places in this book, and if
you know about object literals, JSON objects will look familiar. Here’s
the general syntax:

{

 "property1": value1,

 "property2": value2,

 …

 "propertyN": valueN

}

JSON data looks like an object, but it’s really just text that consists of
one or more property-value pairs with the following characteristics:

Each property name is surrounded by double quotation marks (").

Each value can be one of the following:
A number
A string (in which case the value must be surrounded by
double quotation marks)
A Boolean (true or false)

null (that is, no value)

A JavaScript array literal (comma-separated values
surrounded by square brackets — [and])

A JavaScript object literal (comma-separated property: value
pairs surrounded by braces — { and })

The property-value pairs are separated by commas.
The block of property-value pairs is surrounded by braces ({ and}).

Here's an example:
{

 "account": 853,

 "name": "Alfreds Futterkiste",

 "supplier": false,

 "recentOrders": [28394,29539,30014],

 "contact": {

 "name": "Maria Anders",

 "phone": "030-0074321",

 "email": "m.anders@futterkiste.com"

 }

}

Declaring and using JSON variables
In the next section, I talk about how useful JSON is for getting data to
and from web storage. However, you can also use JSON data in your
non-web-storage code. You begin by declaring a JSON variable (check
out bk03ch10/example01.html in this book’s example files):

const customer = {

 "account": 853,

 "name": "Alfreds Futterkiste",

 "supplier": false,

 "recentOrders": [28394,29539,30014],

 "contact": {

 "name": "Maria Anders",

 "phone": "030-0074321",

 "email": "m.anders@futterkiste.com"

 }

}

You can then refer to any property in the JSON data by using the
variable.property syntax. Here are some examples:

customer.account // Returns 853

customer.name // Returns "Alfreds Futterkiste"

customer.recentOrders[1] // Returns 29539

customer.contact.email // Returns "m.anders@futterkiste.com"

 The JSON syntax can be a bit tricky, so it’s a good idea to check
that your data is valid before using it in your code. The easiest way
to do that is to use the JSONLint (https://jsonlint.com)
validation tool. Copy your JSON code, paste it into the JSONLint
text area, and then click Validate JSON.

Converting a JavaScript object to JSON
Although you can use JSON data directly in your code, you’re more
likely to store your data in a JavaScript object. If you then need to
convert that object to the JSON format, you can stringify the object by
invoking the stringify() method of the JSON object. Here's the
simplified syntax to use:

JSON.stringify(object, replacer[,spaces])

where:

object is the JavaScript object you want to convert to JSON format.

replacer is a function or array that modifies the stringification
process in some way. This parameter is beyond the scope of this
book, so in the examples I set this parameter to null.

spaces is an optional value that specifies the number of spaces you
want your JSON string to be indented for readability. (If you won't
ever look at the resulting JSON string, you can leave off the null
and spaces arguments and use just the object argument.)

Here's an example (check out bk03ch10/example02.html):

HTML:
<pre id="output">

</pre>

JavaScript:

https://jsonlint.com/

// Declare a JavaScript object

const userData = {

 bgColor: "darkolivegreen",

 textColor: "antiquewhite",

 textSize: "1.25em",

 typefaces: ["Georgia", "Verdana", "serif"],

 subscriber: true,

 subscriptionType: 3

};

// Stringify it

const userDataJSON = JSON.stringify(userData, null, " ");

// Display the result

document.querySelector('#output').innerHTML = userDataJSON;

Figure 10-1 shows the output.

FIGURE 10-1: The JavaScript object converted to a JSON string.

Converting a JSON string to a JavaScript object
When your script receives a JSON string (from the server or, for the
purposes of this chapter, from web storage), you’ll usually want to
convert that string to a good, old-fashioned JavaScript object. You make
that conversion by invoking the parse() method of the JSON object:

JSON.parse(json)

where json is the JSON string you want to convert to a JavaScript
object.

Here's an example (bk03ch10/example03.html):
// Declare a JSON string

const userDataJSON = `{

 "bgColor": "darkolivegreen",

 "textColor": "antiquewhite",

 "textSize": "1.25em",

 "typefaces": [

 "Georgia",

 "Verdana",

 "serif"

],

 "subscriber": true,

 "subscriptionType": 3

}`;

// Parse it

const userData = JSON.parse(userDataJSON);

// Display the result

console.log(userData);

Note the use of back tick (`) delimiters in the userDataJSON string,
which enable me to display the JSON data on multiple lines for
readability (as I describe in Book 3, Chapter 9). Figure 10-2 shows the
output in the console (see Book 5, Chapter 2).

FIGURE 10-2: The JSON string converted to a JavaScript object.

 To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+⌘  
+I in macOS), and then click the Console tab.

Adding Data to Web Storage
When you want to store data beyond the current browser session with
localStorage or just for the current browser session with
sessionStorage, you add data to web storage by using the setItem()
method:

localStorage.setItem(key, value)

or:
sessionStorage.setItem(key, value)

where:

key is a string that specifies the key for the web storage item.

value is the value associated with the web storage key. The value
can be a string, a number, a Boolean, or an object. Note, however,
that web storage can store only strings, so any value you specify will
be converted to a string when it's stored.

Here’s an example:
localStorage.setItem('fave-color', '#ba55d3');

It’s common to store a collection of related key-value pairs as a JSON
string. For example, suppose you collect your data into a JavaScript
object:

// Declare a JavaScript object

const userData = {

 bgColor: "darkolivegreen",

 textColor: "antiquewhite",

 textSize: 20,

 typefaces: ["Georgia", "Verdana", "serif"],

 subscriber: true,

 subscriptionType: 3

}

Before you can add such an object to web storage, you have to stringify
it using the JSON.stringify() method (bk03ch10/example04.html):

localStorage.setItem('user-data', JSON.stringify(userData));

 When you’re testing your web page, you may want to check that
your data is being stored correctly. You can just try getting the data
back from storage, as I describe in the next section. Alternatively,
you can open your browser’s web development tools (see Book 5,
Chapter 1) and then display the Application tab (if you’re using
Chrome or Edge) or the Storage tab (for Firefox or Safari). Check
the tab's Local Storage or Session Storage items to see whether
your data was stored correctly (refer to Figure 10-3).

FIGURE 10-3: Viewing local storage data in the web browser’s development tools.

 When you store user data using web storage, that data is
available only to the user in the same web browser running on the
same device. For example, if you save data for a user running, say,
Safari on an iPhone, when that user returns to your site using, say,
Chrome on a desktop computer, that data will not be available to
the user.

Getting Data from Web Storage
After you’ve stored some data, you can retrieve an item from web
storage by using the getItem() method of either the localStorage or
sessionStorage object (use the same storage object that you used to
store the data in the first place):

localStorage.getItem(key)

or:
sessionStorage.getItem(key)

where key is a string that specifies the key for the storage item.

Here's an example:
const userFaveColor = localStorage.getItem('fave-color');

If you stored a JavaScript object as a JSON string, use JSON.parse() to
restore the object (bk03ch10/example05.html):

const userData = JSON.parse(localStorage.getItem('user-data'));

Removing Data from Web Storage
Web storage is limited, so if you’ve stored some data you no longer
need, it’s best to remove it from either the localStorage or
sessionStorage object (depending on where you stored the data
originally).

To delete some data, use the removeItem() method:

localStorage.removeItem(key)

or:
sessionStorage.removeItem(key)

where key is a string that specifies the key for the storage item.

Here's an example:
localStorage.removeItem('fave-color');

If you want to start fresh and delete everything from web storage, use the
clear() method:

localStorage.clear()

or:
sessionStorage.clear()

Chapter 11
More JavaScript Goodies

IN THIS CHAPTER
 Expanding stuff with the spread operator
 Condensing stuff with the rest parameter
 Exporting code
 Importing code

I'm an inveterate fox and not a hedgehog, so I always think you should
try everything.

— CLIFFORD GEERTZ
There’s an old saying that “A jack of all trades is a master of none” and
it means that if you spend all your time learning a little about a lot of
things, you’ll never learn a lot about one thing. However, did you know
that the full saying is “A jack of all trades is a master of none, but
oftentimes better than a master of one”? This expanded version implies
that having a broad base of skills can often be more useful than having a
narrow expertise.

That expanded saying could serve as the unofficial motto for this book.
Here you’re learning not everything there is to know about HTML, CSS,
JavaScript, PHP, or MySQL but everything you need to know about all
of those topics. You’re becoming a jack (or jill) of all these web
development trades which, for all but the largest websites, makes you
more useful than someone who has mastered just one of them.

The chapters in Book 3 provide you with just about everything you need
to know about JavaScript. In this chapter, you complete your JavaScript
education with an exploration of a few useful coding topics, including
the spread operator, the rest parameter, and exporting and importing
code. Note that all these topics are ECMASCript 2015 (ES6)

innovations, so don’t use them if you have to support very old browsers,
such as Internet Explorer 11.

Expanding Arrays and Objects with
the Spread Operator

You can make many JavaScript statements easier to understand and
faster to code by using the spread operator (sometimes called the spread
syntax). The spread operator is three dots (…) appended to a reference to
whatever item you want to apply it to. For example, if you have an array
named myArray, you apply the spread operator like so:

…myArray

You can use the spread syntax with an array, a JavaScript object, or a
string. In each case, the spread operator takes a reference to a single item
(again, an array, an object, or a string) and expands (or “spreads out”)
that single item into its component items, as follows:

Array: The spread operator expands the array into the items stored
in the array.
Object: The spread operator expands the object into the property-
value pairs stored in the object.
String: The spread operator expands the string into the individual
characters of the string.

None of this might strike you as the least bit useful at the moment, but I
hope to convince you otherwise over the next few sections.

Using the spread operator with an array
The spread operator is most commonly used with arrays. Quite a few use
cases demonstrate how the spread operator makes array code easier to
understand and write; the next few sections take you through some of
these cases.

 If you need to get up to speed on JavaScript arrays, Book 3,
Chapter 8 is the place to go.

Copying an array
It's surprisingly hard to copy an array in JavaScript. For example, this
looks like it works:

const thisArray = ["alpha", "beta", "gamma"];

const thatArray = thisArray;

console.log(thatArray); // ["alpha", "beta", "gamma"]

Suppose you then make a change to the original array:
thisArray[0] = "aleph";

console.log(thatArray); // ["aleph", "beta", "gamma"]

Whoa! You changed the value of the first item in thisArray, but the
same change also propagated to thatArray. When you run thatArray =
thisArray, all you're doing is pointing thatArray at the same memory
object as the one thisArray points to. Change one and the other always
changes along with it.

When you need a separate copy of an array, use the spread operator
(check out bk03ch11/example01.html in this book's example files):

// Define the original array

const thisArray = ["alpha", "beta", "gamma"];

// Make a copy using the spread operator

const thatArray = […thisArray];

// Confirm the copy

console.log(thatArray);

// Change something in the original array

thisArray[0] = "aleph";

// Confirm that the copy is unchanged

console.log(thatArray);

The workhorse here is the following line:

const thatArray = […thisArray];

The …thisArray operand says to the browser, in effect, “Excuse me, but
would you mind taking all the items in thisArray and inserting them
here as separate items? Thanks ever so much!” In other words, the
spread operator expands or “spreads out” the items in the specified array.
Since, in this case, those items are expanded into an array literal, the
result is a true copy of the original array.

Figure 11-1 shows that, indeed, the copied array remains unchanged
after the original array was modified.

FIGURE 11-1: The copied array remains the same after the original array was changed.

Concatenating arrays
In Book 3, Chapter 8, you learn that you can combine two or more
arrays by using the concat() method. You can also concatenate an array
by using the spread operator. Here's an example (check out
bk03ch11/example02.html):

// Declare the arrays

const electronics = ["Silent alarm clock", "Electric dog polisher", "Instant

slow cooker"];

const recreation = ["Inflatable dartboard", "One ounce dumbbell", "Stringless

tennis racket"];

const home = ["Banana peel welcome mat", "Sandpaper bathroom tissue", "Flame-

retardant firewood"];

// Combine them with the spread operator

const featuredProducts = […electronics, …home];

// Display the concatenated array

console.log(featuredProducts);

Figure 11-2 shows the displayed concatenated array.

Inserting items into an array literal
Here’s a JavaScript scenario that comes up more often than you might
think. Consider the following array literal:

const myArray = ["tigers", "bears"];

FIGURE 11-2: The concatenated array.

Suppose you want to create a new array literal that has the "lions"
string as the first item, the items of myArray as the next two items, and
then the "oh my!" string as the last item. Here's one way you could do it:

const myFullArray = ["lions"].concat(myArray).concat(["oh my!"]);

This code produces the following array:
["lions", "tigers", "bears", "oh my!"]

That's great, but the two calls of the concat() method make the code
hard to read and unintuitive. You'd think that inserting an existing array
literal into a new array literal would be straightforward!

Well, working with arrays in this way can be made easier and more
intuitive using the spread operator, like so (bk03ch11/example03.html):

// Declare the initial array literal

const myArray = ["tigers", "bears"];

// Use the spread operator (…) to insert the

// array literal into a new array

const myFullArray = ["lions", …myArray, "oh my!"];

// Display the result

console.log(myFullArray);

The statement that creates myFullArray is much easier to understand
than the earlier code that uses all those concat() methods. And Figure
11-3 shows that it works.

 INSERTING AN EXISTING ARRAY
LITERAL INTO ANOTHER ARRAY LITERAL
A complex (but also quite common) scenario is when you have two array literals and
you want to insert one inside the other:

const myArray1 = ["lions", "oh my!"];

const myArray2 = ["tigers", "bears"];

In regular JavaScript, to insert the second array inside the first array after the first item,
you'd use the following code:

myArray1.splice.apply(myArray1, [1, 0].concat(myArray2));

Yuck! The underlying machinations behind this code are so abstruse and technical that
I’m doing you a favor by skipping over them. Here, instead, is the equivalent code using
the spread operator (bk03ch11/example04.html):

myArray1.splice(1, 0, …myArray2);

FIGURE 11-3: The resulting array displayed in the console.

Passing an array’s items as function arguments

The spread operator is also useful if you want to use an array’s elements
as the arguments for a function. Consider the following function
(bk03ch11/example05.html):

function volumeOfPrism(length, width, height) {

 return length * width * height;

}

If you have an array that consists of a particular length, width, and
height, you can apply the spread operator to use the array’s individual
elements as the function’s arguments:

const myPrism = [5, 8, 10];

const myPrismVolume = volumeOfPrism(…myPrism);

Using the spread operator with an object
The spread operator also works with JavaScript objects and can make
object-related code quicker to write and easier to understand. The next
few sections take you through some example use cases.

 To learn about JavaScript objects, refer to Book 3, Chapter 6.

Copying an object
Copying an object isn’t as straightforward as you might think. For
example, this looks like a reasonable approach:

let currentProduct = {

 code: 193721,

 name: "Noise-Canceling Speakers",

 price: 74.99

};

const saleProduct = currentProduct;

console.log(saleProduct);

Here’s the output you’d see:
{code: 193721, name: "Noise-Canceling Speakers", price: 74.99}

Awesome! The saleProduct object appears to be a copy of the
currentProduct object. However, what happens if you change a value
in the copied object? Take a look:

saleProduct.price = 59.99;

console.log(currentProduct);

This code changes the price value in the copied object. Here's what you
get when you display the original object:

{code: 193721, name: "Noise-Canceling Speakers", price: 59.99}

No, your eyes don’t deceive you. Changing something in the copied
object also changed the same thing in the original! Why? Because when
you set saleProduct = currentProduct, you’re pointing
currentProduct at the same memory object as the one saleProduct
points to. Change one object and the other object changes in the same
way.

To get a true copy of an object, use the spread operator
(bk03ch11/example06.html):

// Define the original object

let currentProduct = {

 code: 193721,

 name: "Noise-Canceling Speakers",

 price: 74.99

};

// Make a copy using the spread operator

const saleProduct = {…currentProduct};

// Change the price in the copied object

saleProduct.price = 59.99;

// Display the updated copy

console.log(saleProduct);

// Confirm that the original is unchanged

console.log(currentProduct);

Note, in particular, the following line:
const saleProduct = {…currentProduct};

The…currentProduct operand tells the browser, in effect, “Yoo-hoo,
browser person! Please take all the property-value pairs in
currentProduct and insert them here as separate property-value pairs.
You're a dear!” In other words, the spread operator is expanding or

“spreading out” the property-value pairs in the specified object. Since, in
this case, those property-value pairs are expanded into an object literal,
the result is a true copy of the original object.

Figure 11-4 shows that, indeed, the original object remains unchanged
after the copied object was modified.

FIGURE 11-4: The original object remains the same after changing the copied object.

Merging objects
One common object-related operation is merging two or more objects
into a single object. For example, suppose you have two user-related
objects: one that holds the user’s contact data and one that holds the
user’s shipping info. If you want to combine these into a single object,
you could do something like this:

const userContact = {

 firstName: "Alan",

 lastName: "Milne",

 email: "aa@poohbear.com"

};

const userShipping = {

 street: "321 Main Street",

 city: "Toad Suck",

 state: "AR",

 zip: "12345"

};

const userInfo = {

 firstName: userContact.firstName,

 lastName: userContact.lastName,

 email: userContact.email,

 street: userShipping.street,

 city: userShipping.city,

 state: userShipping.state,

 zip: userShipping.zip

};

Yes, that gets the job done, but it seems like a lot of work to repeat all
those property names when defining the merged object. Imagine if you
wanted to merge four or five objects or objects with a few dozen
properties. Forget it!

A better approach is to use the spread operator, as I do here
(bk03ch11/example07.html):

// Define the user's contact data

const userContact = {

 firstName: "Alan",

 lastName: "Milne",

 email: "aa@poohbear.com"

};

// Define the user's shipping data

const userShipping = {

 street: "321 Main Street",

 city: "Toad Suck",

 state: "AR",

 zip: "12345"

};

// Merge the objects using the spread operator

const userInfo = {

 …userContact,

 …userShipping

};

// Display the merged object

console.log(userInfo);

Figure 11-5 shows the merged object.

FIGURE 11-5: The merged object.

Using the spread operator with a string
When used with a string, the spread operator expands the individual
characters in the string. That expansion makes it easy to populate an
array with a string’s characters. You’d normally populate an array with a
string’s letters using the split() method:

const str = "step on no pets";

const chars = str.split("");

// chars: ["s", "t", "e", "p", " ", "o", "n", " ", "n", "o", "p". "e", "t",

"s"]

That works, but it's not obvious what the split() method is doing here.
You can make this operation a little clearer and a little less verbose by
using the spread operator:

const str = "step on no pets";

const chars = […str];

// chars: ["s", "t", "e", "p", " ", "o", "n", " ", "n", "o", "p". "e", "t",

"s"]

Here's an example (bk03ch11/example08.html) that uses the spread
operator on a string as part of a function that tests whether the string is a
palindrome:

// isPalindrome() checks whether the input string is a palindrome

function isPalindrome(testStr) {

 // Use the spread operator to create an array of the string's characters

 const chars = […testStr];

 // Create a new array with the characters reversed

 const reversedChars = […chars].reverse();

 // Check to see if the strings generated by the two arrays are identical

 return chars.join('') === reversedChars.join('');

}

// Define a string to test

const str = "step on no pets";

// Get the result

const result = isPalindrome(str);

// Display the result message

console.log(`"${str}" ${result ? "is" : "is not"} a palindrome.`);

Figure 11-6 shows the result message from this script.

FIGURE 11-6: Yep: “step on no pets” is a palindrome.

Condensing Arrays with the Rest
Parameter

If you read the preceding section about the spread operator, which is
represented by three dots (…), prepare to be, if not confused, then at the
very least perplexed. Why? Because in this section you learn about
something called the rest parameter, which is represented by — wait for
it — three dots (…)! Why the JavaScript poohbahs decided to use the
same symbol for two different operations is above my pay grade, but I
thought I ought to at least warn you before proceeding. Okay, where
were we?

Most of the time you'll know exactly how many arguments a function
requires, but every now and then you’ll need a bit more flexibility. That
is, a function may take two arguments most of the time, but in certain
situations your script may need to pass three, four, or even more
arguments.

For example, here’s a simple function that creates a DOM element (refer
to Book 3, Chapter 6) and adds a single class to the element:

function createElement(tagName, className) {

 // Create the element

 const element = document.createElement(tagName);

// Add the class

 element.classList.add(className);

 // Return the new element

 return element;

}

// Call the createElement() function

const div = createElement('div', 'container');

// Display the element's HTML

console.log(div.outerHTML);

Running this script displays the following output in the console:
<div class="container"></div>

That’s all good, but it’s easy to imagine scenarios where you might want
to add two or three or even a dozen class names to the new element.
How can you handle these scenarios? By applying the rest parameter (…)
to the last function argument:

function myFunction(argA, argB, …moreArgs) {

JavaScript statements

}

Now consider the following function calls:
myFunction("eeny", "meeny");

myFunction("eeny", "meeny", "miney", "mo");

In the first call, the two passed values are stored as expected in the
function’s argA and argB parameters. In the second call the first two
passed values are stored in the argA and argB parameters, but the next
two are stored in the moreArgs parameter as an array:

// argA = "eeny"

// argB = "meeny"

// moreArgs = ["miney", "mo"]

The following code (bk03ch11/example09.html) creates a new DOM
element and uses the rest parameter to handle adding any number of
class names to the new element:

function createElement(tagName, …classNames) {

 // Create the element

 const element = document.createElement(tagName);

 // Loop through the classNames array to add the classes

 for (const className of classNames) {

 element.classList.add(className);

 }

 // Return the new element

 return element;

}

// Call the createElement() function

const div = createElement('div', 'container', 'grid', 'dark-mode');

// Display the element's HTML

console.log(div.outerHTML);

Figure 11-7 shows the HTML code for the element created by this script.

FIGURE 11-7: Creating a DOM element with any number of class names.

Exporting and Importing Code
As your web development projects expand, so does the footprint of your
JavaScript code:

The smallest projects have all the code between the <script> and
</script> tags in an HTML file.

Small-to-medium projects move the JavaScript code to a separate
.js file that is referenced in each of the project's HTML files:

<script src="code.js"></script>

Medium-to-large projects have the main JavaScript code in one file
and then other code — such as common functions, shopping cart
code, and site-wide utilities — in separate .js files that are
referenced in each of the project's HTML files:

<script src="functions.js"></script>

<script src="shopping-cart.js"></script>

<script src="utilities.js"></script>

<script src="code.js"></script>

 The order of the script elements is important since the web
browser parses these files in the order in which they appear. If, say,
the utilities.js file requires code from the functions.js file,
the <script> tag for the utilities.js file must appear later than
the <script> tag for the functions.js file or you'll get an error.

The last technique of referencing every JavaScript file in every HTML
file works fine, but it's often overkill. For example, what if a script in the
current page requires only a single function from a particular .js file?
Similarly, what if a .js file has a thousand lines of code, but your script
needs to use the values of only two variables from that file?

If you find that you need only certain bits of code from some JavaScript
files, consider turning those files into modules. A module is a standalone

chunk of JavaScript that encapsulates specific logic or functionality.
Modules offer many benefits, but the main one for our purposes is that
you can export specific module items (such as functions or variables)
and then import just what you need within either another JavaScript file
or a <script> tag. The next two sections take you through the specifics
of exporting and importing module code.

Exporting variables, functions, and other
strangers
If you have a JavaScript file that contains code that you want to make
available to your other scripts, turn that file into a module by exporting
the items you want to make available.

Defining named exports
The most straightforward way to export an item is to add the export
keyword to the beginning of the item's declaration. Here are some
examples:

export let myVariable = 42;

export const PI = Math.PI;

export function areaOfCircle(radius) {

 return PI * Math.pow(radius, 2);

}

Alternatively, you can declare the variables and functions normally and
then export them later as a list between braces ({ and }) after the export
keyword (bk03ch11/example10.js):

let myVariable = 42;

const PI = Math.PI;

function areaOfCircle(radius) {

 return PI * Math.pow(radius, 2);

}

export { myVariable as yourVariable, PI, areaOfCircle };

Note in the first exported item the use of the as keyword to specify a
different export name for (in this case) a variable. Why would you want
to export an item under a different name? One reason would be to match
a name already being used in your other code. Similarly, you might not

be able to export the item under its original name because that name
might conflict with an existing name in your other code.

 As I show in the “Importing what you've exported” section,
when you define a named export, you must import the item using
the same name as you used to export it.

Defining a default export
You can make a particular item a bit easier to import by setting up that
item as a module’s default export. Here’s an example that sets up a
function as a module’s default export:

export default function ouncesToGrams(oz) {

 return oz * 28.3495;

}

This example uses a named function, but you can also use an anonymous
function or an arrow function (refer to Book 3, Chapter 5).

You can also use the default export to export an expression rather than a
function. Here’s an example (bk03ch11/example10.js):

const date = new Date();

const days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday',

'Friday', 'Saturday'];

export default days[date.getDay()];

This code creates a date, defines the days array with the days of the
week, and then returns the current day of the week as the module’s
default export.

Importing what you’ve exported
The point of exporting a variable, a function, or an expression is to use
that code elsewhere in your project. You use exported code by importing
it into either another JavaScript file or a <script> tag. Either way, it's
important that you tell the browser that you’re working with a module
and not a regular JavaScript file. You give the browser this info by
adding type="module" to the script tag.

If the code that does the importing resides in a separate JavaScript file,
your HTML file’s <head> tag will need to include a reference to the
export module that looks like this:

<script src="./module.js" type="module"></script>

(Note that the path ./module.js means “the module.js file that resides
in the same directly as the file that contains this <script> tag.” If the
module resides in a subdirectory, you'll need to modify the path
accordingly.)

If the code that does the importing resides in a <script> tag, you'll need
to modify that tag as follows:

<script type="module">

 // JavaScript code goes here

</script>

With that out of the way, the next couple of sections provide the
importing details.

Importing named exports
To import named exports, you use the following syntax:

import { list } from "module";

where list is a comma-separated list of the named exports you want to
import. Note that you must import each item using the same name as you
used when exporting the item. However, if you prefer to use a particular
imported item under a different name, you can import it using the as
keyword to create an alias. For example:

import { yourVariable as myVariable } from "./module.js"

where module is the path and filename of the JavaScript module that
contains the exported code. An alias is useful when you need the
imported item's name to match a name you’re already using in the code
that contains the import statement. Similarly, the original import name
might conflict with an existing name in the code that contains the import
statement, so you need to use an alias, instead.

Here's an example (bk03ch11/example11.html):

// Import the named exports from example10.js

import { yourVariable as myVariable, PI, areaOfCircle } from

"./example10.js";

// Give them a whirl

console.log(`The area of a circle with radius ${myVariable} is

${areaOfCircle(myVariable)}`);

Importing a default export
Here’s the syntax to import a module’s default export:

import defaultExport from "module";

where:

defaultExport is the name you want to apply to the default export.
Even if the export module defined a name for the default export, you
can use any legit JavaScript name here.
module is the path and filename of the JavaScript module that
contains the exported code.

Here’s an example (bk03ch11/example11.html):
// Import the default export from example10.js

import dayOfTheWeek from "./example10.js";

// Display it

console.log(`The current day of the week is ${dayOfTheWeek}`);

Book 4
Coding the Back End: PHP and

MySQL
Contents at a Glance

Chapter 1: Learning PHP Coding Basics
Understanding How PHP Scripts Work

Outputting Text and Tags

Working with PHP Arrays

Controlling the Flow of Your PHP Code

Working with PHP Functions

Working with PHP Objects

Chapter 2: Building and Querying MySQL Databases
What Is MySQL?

Introducing phpMyAdmin

Creating a MySQL Database and Its Tables

Querying MySQL Data

Chapter 3: Using PHP to Access MySQL Data
Understanding the Role of PHP and MySQL in Your Web App

Using PHP to Access MySQL Data

Creating and Running Insert, Update, and Delete Queries

Separating Your MySQL Login Credentials

Chapter 1
Learning PHP Coding Basics

IN THIS CHAPTER
 Getting comfy with PHP
 Building PHP expressions
 Controlling PHP code
 Figuring out functions and objects
 Debugging PHP

In the end, what I think set PHP apart in the early days, and still does
today, is that it always tries to find the shortest path to solving the Web
problem … When you need something up and working by Friday so you
don’t have to spend all weekend leafing through 800-page manuals, PHP
starts to look pretty good.

— RASMUS LERDORF, CREATOR OF PHP
You code the front end of a web project using tools such as HTML and
CSS (see Book 2), and JavaScript (see Book 3). You can build awesome
web pages using just those front-end tools, but if you want to build pages
that are dynamic and applike, you need to bring in the back end and use
it to harness the power of the web server.

For web projects, the back end most often means storing data in a
MySQL database and accessing that data by using the PHP
programming language. I cover all that in Chapters 2 and 3 of this
minibook. For now, you need some background in PHP coding.

In this chapter, you explore PHP from a web developer’s perspective,
and by the time you’re done you’ll know everything you need to know
about PHP variables, expressions, arrays, loops, functions, and objects.
In short, you’ll be ready to join the web coding big leagues by bringing

together the front end and the back end to create truly spectacular and
useful web pages and apps.

Understanding How PHP Scripts
Work

PHP is a server-side programming language, which means that PHP
code executes only on the web server, not in the web browser. Most web
servers today come with a piece of software called a PHP processor, and
it’s the job of the PHP processor to run any PHP code sent its way. That
PHP code can come in two different packages:

As a pure PHP file: This is a file on the web server, usually one
with a filename that uses the .php extension. When I call this a
“pure” PHP file, I mean the file contains nothing but PHP code. Such
files are rarely loaded directly into the web browser. Instead, pure
PHP files are usually called by JavaScript code, most often either to
process form input or to ask for data from a MySQL database.
As part of an HTML file: This is a regular HTML file, but with one
or more chunks of PHP code embedded in the file. On most web
servers, this file requires the .php extension to enable the server to
execute the PHP statements.

Whatever the package, the PHP code is processed as follows:

1. A web browser requests the PHP or HTML file.
2. When the web server sees that the file contains PHP code, it passes

that code along to the PHP processor.
3. The PHP processor parses and executes the PHP code.
4. If the PHP code contains any statements that output text or HTML

tags or both, the PHP processor returns that output to the web server.
5. The web server sends the output from Step 4 to the web browser.

 It's important to understand that, in the end, no PHP code is ever
sent to the web browser. All the browser gets is the output of the
PHP code. Yes, it’s possible to run PHP scripts that don’t output
anything, but in web development the main job of most of your
PHP code will be to return some data to the browser.

Learning the basic syntax of PHP scripts
You tell the web server that you want to run some PHP code by
surrounding that code with the PHP tags:

<?php

 Your PHP statements go here

?>

For example, PHP’s basic output mechanism is the echooutput
command, where output is a string containing text and/or HTML tags:

<?php

 echo "<h1>Hello PHP World!</h1>";

?>

 Note that the echo statement ends with a semicolon. All PHP
statements require a semicolon at the end.

If you place just the preceding code in a .php file (check out
bk04ch01/example01.php in this book’s example files) and load that file
into a web browser, you see the output shown in Figure 1-1.

FIGURE 1-1: The output of PHP's echo command.

Alternatively, you can embed the PHP code in an HTML file, as shown
in the following example (check out bk04ch01/example02.php):

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Book 4, Chapter 1, Example 2</title>

 </head>

 <body>

 <p>

 Here's the output of the PHP script:

 </p>

 <?php

 echo "<h1>Hello PHP World!</h1>";

 ?>

 </body>

</html>

Figure 1-2 shows the result.

FIGURE 1-2: You can also embed PHP output within an HTML file.

Declaring PHP variables
As with JavaScript (see Book 3, Chapter 2), PHP uses variables for
storing data to use in expressions and functions, and PHP supports the
standard literal data types: integers (such as 5 or -17), floating-point
numbers (such as 2.4 or 3.14159), strings (such as "Hello" or 'World'),
and Booleans (TRUE or FALSE).

PHP variable names must begin with a dollar sign ($), followed by a
letter or underscore, and then any combination of letters, numbers, or
underscores. Note that PHP variable names are case-sensitive, so $str
isn't the same variable as $STR.

You don’t need any special keyword (such as JavaScript’s let or const)
to declare a variable. Instead, you declare a variable in PHP by assigning
the variable a value:

$str = "Hello World!";

$interest_rate = 0.03;

$app_loaded = FALSE;

Building PHP expressions
When you build a PHP expression — that is, a collection of symbols,
words, and numbers that performs a calculation and produces a result —
you can use mostly the same operators as in JavaScript (see Book 3,
Chapter 3):

Arithmetic: Addition (+), subtraction (-), multiplication (*), division
(/), modulus (%), and exponentiation (**).

Incrementing and decrementing: Post-increment ($var++), pre-
increment (++$var), post-decrement ($var--), and pre-decrement (-
-$var).

Comparison: Equal (=), not equal (!=), greater than (>), less than
(<), greater than or equal (>=), less than or equal (<=), identity (===),
and non-identity (!==). In PHP you can also use <> as the not equal
operator.
Logical: And (&&), Or (||), and Not (!). In PHP you can also use
and as the And operator and or as the Or operator.

Where PHP differs from JavaScript is with the string concatenation
operator, which in PHP is the dot (.) symbol rather than JavaScript's
plus (+) symbol. Here’s an example (bk04ch01/example03.php):, and
Figure 1-3 shows the result.

<?php

 $str1 = "<h2>Concatenate ";

 $str2 = "Me!</h2>";

 echo $str1 . $str2;

?>

FIGURE 1-3: In PHP, you use the dot (.) operator to concatenate two strings.

Outputting Text and Tags
Your back-end PHP scripts pass data to your web app's front end
(HTML and JavaScript) not by using some complex communications
link but simply by outputting the data. I talk about this in more detail in
Book 4, Chapter 3, but for now let’s look at the mechanisms PHP offers
for outputting data.

PHP’s simplest output tool is the print command:

print output;

where output is a string — which could be a string literal, string
variable, string property value, or the string result of a function — that
you want to output. You can include HTML tags in the output string.

<?php

 print "<h1>Hello World!</h1>";

?>

To output more than one item, you need to use PHP's echo command:

echo output;

where output is one or more strings — which could be string literals,
string variables, string property values, or the string results of a function
— that you want to output. If you include two or more output items,
separate each one with a comma. You can include HTML tags in any of
the output strings:

<?php

 $str1 = "<h2>Concatenate ";

 $str2 = "Me!</h2>";

 echo $str1, $str2;

?>

Adding line breaks
If you use PHP to generate quite a lot of HTML and text for your page,
you need to be careful how you structure the output. To see what I mean,
first check out the following PHP code (bk04ch01/example04.php):

<?php

 $str1 = "<div>What does PHP stand for?</div>";

 $str2 = "<div>It's a <i>recursive acronym</i>:</div>";

 $str3 = "<div>PHP: Hypertext Preprocessor</div>";

 echo $str1, $str2, $str3;

?>

This code declares three strings — all div elements with text — and
uses echo to output them. Figure 1-4 shows two browser windows. In
the upper window, you can see that the output from the preceding code
looks fine. However, the lower window shows the source code for the
page and, as you can see, all the output text and tags appear on a single
line.

To make the source code text easier to read, you should add line breaks
to your PHP output strings. You insert a line break using the newline
character \n (which doesn’t appear on the web page). Here’s the revised
code (with \n added to the end of the $str1 and $str2 variables; refer to
bk04ch01/example05.php), and Figure 1-5 shows that the source code
now appears on multiple lines:

<?php

 $str1 = "<div>What does PHP stand for?</div>\n";

 $str2 = "<div>It's a <i>recursive acronym</i>:</div>\n";

 $str3 = "<div>PHP: Hypertext Preprocessor</div>";

 echo $str1, $str2, $str3;

?>

FIGURE 1-4: When you output tags and text using PHP, the strings run together in a single
line in the web page source code.

FIGURE 1-5: With newlines added to the output strings, the web page source code now
appears on separate lines, making it much easier to read.

 The \n newline code only works in a string that uses double
quotation marks. If you use single quotation marks, PHP outputs
the characters \n instead of creating a newline. For example:

echo 'Ready\nSet\nGo!';

The output of this statement is
Ready\nSet\nGo!

Mixing and escaping quotation marks
You can enclose PHP string literals in either double quotation marks or
single quotation marks, but not both:

$order = "Double espresso"; // This is legal

$book = 'A Singular Man'; // So's this

$weather = 'Mixed precipitation"; // This is not legal

However, mixing quotation mark types is sometimes necessary. Consider
this:

$tag = "";

That statement will cough up an error because PHP thinks the string
ends after the second double quotation mark, so it doesn't know what to
do with the rest of the statement. To solve this problem, swap the outer
double quotation marks for singles:

$tag = '';

That works fine. However, what if you want to add some line breaks, as
I describe in the preceding section:

$tag = '\nWord Spy\n';

Nice try, but newlines (\n) work only when they’re enclosed by double
quotation marks. The preceding statement will not include any line
breaks and will show the link text as \nWord Spy\n. Sigh.

All is not lost, however, because you can convince the PHP processor to
treat a quotation mark as a string literal (instead of a string delimiter), by
preceding the quotation mark with a backslash (\). This process is
known in the trade as escaping the quotation mark. For example, you
can fix the preceding example by enclosing the entire string in double
quotation marks (to get the newlines to work) and escaping the double
quotation marks used for the <a> tag's href value:

$tag = "\nWord Spy\n";

Outputting variables in strings
One very useful feature of PHP strings is that you can insert a variable
name into a string and the PHP processor will handily replace the
variable name with its current value. Here’s an example:

<?php

 $title = "Inflatable Dartboard Landing Page";

 $tag = "<title>$title</title>";

 echo $tag;

?>

The output of this code is
<title>Inflatable Dartboard Landing Page</title>

Some folks call this interpolating the variable, but we’ll have none of
that here.

Alas, variable value substitution works only with strings enclosed by
double quotation marks. If you use single quotation marks, PHP outputs
the variable name instead of its value. For example, this

<?php

 $title = "Inflatable Dartboard Landing Page";

 $tag = '<title>$title</title>';

 echo $tag;

?>

outputs this:
<title>$title</title>

Outputting long strings
If you have a long string to output, one way to do it would be to break up
the string into multiple variables, add newlines at the end of each, if
needed, and output each variable.

That works, but PHP offers a shortcut where you output everything as a
single string but span the string across multiple lines. For example, I can
take the final code from the “Adding line breaks” section and achieve
the same result by rewriting it as follows (bk04ch01/example06.php):

<?php

$str1 = "<div>What does PHP stand for?</div>

<div>It's a <i>recursive acronym</i>:</div>

<div>PHP: Hypertext Preprocessor</div>";

echo $str1;

?>

The implied newlines at the end of the second and third lines are written
to the page, so the page source code will look the same as it does in
Figure 1-5.

Outputting really long strings
For a super-long string, you can use PHP’s here document (or heredoc)
syntax:

<<<terminator

Super-long string goes here

terminator;

where terminator is a label that marks the beginning and end of the
string. The label at the end must appear on a line by itself (except for the
closing semicolon), with no whitespace before or after the label.

This syntax also supports variable names, so if you include a variable in
the string, PHP will substitute the current value of that variable when it
outputs the string.

Here's an example (bk04ch01/example07.html):
<?php

 $author = "Rasmus Lerdorf";

 $str = <<<END_OF_STRING

 <blockquote>

 In the end, what I think set PHP apart in the early

 days, and still does today, is that it always tries

 to find the shortest path to solving the Web

 problem. It does not try to be a general-purpose

 scripting language and anybody who's looking to

 solve a Web problem will usually find a very direct

 solution through PHP. Many of the alternatives that

 claim to solve the Web problem are just too complex.

 When you need something up and working by Friday so

 you don't have to spend all weekend leafing through

 800-page manuals, PHP starts to look pretty good.

 —$author

 </blockquote>

END_OF_STRING;

 echo $str;

?>

Note that I declared a variable named $author, and then I included that
variable name in the string (on the second-to-last line of the string). PHP
treats a heredoc string as though it was enclosed by double quotation
marks, so it substitutes the variable value in the output. Figure 1-6 shows
the result.

FIGURE 1-6: The really long string output to the web browser. Note that the value of the
$author variable — Rasmus Lerdorf — appears instead of the variable name.

Working with PHP Arrays
Let's take a quick look at arrays in PHP. I’m going to skip lightly over
arrays here because I talk about them in detail in Book 3, Chapter 8.

Declaring arrays
PHP gives you a bunch of ways to declare and populate arrays. Probably
the most straightforward method is to assign values to explicit index
numbers:

$array_name[index] = value;

where:

$array_name is the name of the array variable.

index is the optional array index number you want to work with.

value is the value you want to assign to the array index number.

For example, the following statements assign string values to the first
three elements (that is, the elements at array indexes 0, 1, and 2) of an
array named $team_nicknames (bk04ch01/example08.php):

$team_nicknames[0] = 'Banana Slugs';

$team_nicknames[1] = 'Fighting Okra';

$team_nicknames[2] = 'Golden Flashes';

Note in the syntax that I said the index parameter was optional. If you
leave it out, PHP assigns the index numbers automatically. So, as long as
the $team_nicknames variable doesn't already contain elements, the
following code is equivalent to the preceding code
(bk04ch01/example09.php):

$team_nicknames[] = 'Banana Slugs';

$team_nicknames[] = 'Fighting Okra';

$team_nicknames[] = 'Golden Flashes';

To add multiple array values in a single statement, you can use PHP’s
array keyword:

$array_name = array(value1, value1, etc.);

where:

$array_name is the name of the array variable.

value1, value2,and so on are the values you want to assign to the
array.

Here's an example (bk04ch01/example10.php):
<?php

 $team_nicknames = array('Banana Slugs', 'Fighting Okra', 'Golden

Flashes');

 echo $team_nicknames[0];

?>

The output of this code is
Banana Slugs

Giving associative arrays a look
Most PHP arrays use numeric index values, but in web development
work it’s often handy to work with string index values, which are called
keys. An array that uses keys instead of a numeric index is called an
associative array because you’re associating each key with a value to
create an array of key/value pairs.

Here’s an example (bk04ch01/example11.php):
<?php

 $team_nicknames['Santa Cruz'] = 'Banana Slugs';

 $team_nicknames['Delta State'] = 'Fighting Okra';

 $team_nicknames['Kent State'] = 'Golden Flashes';

 echo $team_nicknames['Delta State'];

?>

The output of this code is
Fighting Okra

To create an associative array using the array keyword, you assign each
key/value pair using the => operator, as in this example
(bk04ch01/example12.php):

<?php

 $team_nicknames = array('Santa Cruz' => 'Banana Slugs', 'Delta State' =>

'Fighting Okra', 'Kent State' => 'Golden Flashes');

 echo $team_nicknames['Kent State'];

?>

The output of this code is
Golden Flashes

Outputting array values
You can use the echo or print keyword to output individual array
values. However, what if you want to see all the values stored in an
array? Rather than, say, looping through the array, PHP offers the
print_r() function, which outputs the current value of a variable:

print_r($variable);

where $variable is the name of the variable you want to output.

If you use an array as the print_r() parameter, PHP outputs the
contents of the array as key/value pairs. For example, the following code
(bk04ch01/example12.php)

<pre>

<?php

 $team_nicknames = array('Banana Slugs', 'Fighting Okra', 'Golden

Flashes');

 print_r($team_nicknames);

?>

</pre>

outputs the following:
Array

(

 [0] => Banana Slugs

 [1] => Fighting Okra

 [2] => Golden Flashes

)

 Note that I surrounded the PHP code with the <pre> tag to get
the output on multiple lines rather than a single hard-to-read line.

Sorting arrays
If you need your array values sorted alphanumerically, PHP offers a
handful of functions that will get the job done. The function you use
depends on the type of sort you want (ascending or descending) and
whether your array uses numeric indexes or string keys (that is, it's an
associative array).

For numeric indexes, you can use the sort() function to sort the values
in ascending order (0 to 9, then A to Z, then a to z), or the rsort()
function to sort the values in descending order (z to a, then Z to A, then
9 to 0):

sort($array);

rsort($array);

where $array is the name of the array you want to sort.

Here's an example (bk04ch01/example14.php):
<pre>

<?php

 $oxymorons = array('Pretty ugly', 'Jumbo shrimp', 'Act naturally',

'Original copy');

 sort($oxymorons);

print_r($oxymorons);

?>

</pre>

Here’s the output:
Array

(

 [0] => Act naturally

 [1] => Jumbo shrimp

 [2] => Original copy

 [3] => Pretty ugly

)

For associative arrays, you can use the asort() function to sort the
values in ascending order (0 to 9, then A to Z, then a to z), or the
arsort() function to sort the values in descending order (z to a, then Z
to A, then 9 to 0):

asort($array);

arsort($array);

where $array is the name of the associative array you want to sort.

Here's an example (bk04ch01/example15.php):
<pre>

<?php

 $team_nicknames = array('Santa Cruz' => 'Banana Slugs', 'Delta State' =>

'Fighting Okra', 'Kent State' => 'Golden Flashes');

 arsort($team_nicknames);

 print_r($team_nicknames);

?>

</pre>

Here’s the output:
Array

(

 [Kent State] => Golden Flashes

 [Delta State] => Fighting Okra

 [Santa Cruz] => Banana Slugs

)

Looping through array values
PHP offers a special loop called foreach() that you can use to loop
through an array’s values. Here’s the syntax:

foreach($array as $key => $value) {

Loop statements go here

}

where:

$array is the name of the array you want to loop through.

$key is an optional variable name that PHP uses to store the key of
the current array item.

$value is a variable name that PHP uses to store the value of the
current array item.

Here's an example (bk04ch01/example16.php):
<?php

 $team_nicknames = array('Santa Cruz' => 'Banana Slugs', 'Delta State' =>

'Fighting Okra', 'Kent State' => 'Golden Flashes');

 foreach($team_nicknames as $school => $nickname) {

 echo "The team nickname for $school is $nickname.
";

 }

?>

Here’s the output:
The team nickname for Santa Cruz is Banana Slugs.

The team nickname for Delta State is Fighting Okra.

The team nickname for Kent State is Golden Flashes.

Creating multidimensional arrays
A multidimensional array is one where two or more values are stored in
each array element. In a one-dimensional array, the value is usually a
string, number, or Boolean. Now imagine, instead, that value is an array
literal. For a two-dimensional array, the general syntax for assigning an
array to an array element looks like this:

arrayName[index] = Array(value1, value2);

As an example, say you want to store an array of background and
foreground colors. Here's how you might declare and populate such an
array (bk04ch01/example17.php):

<?php

 $colorArray[0] = Array('white', 'black');

 $colorArray[1] = Array('aliceblue', 'midnightblue');

 $colorArray[2] = Array('honeydew', 'darkgreen');

 echo $colorArray[1][1];

?>

Here’s the output:
midnightblue

Alternatively, you can declare and populate an associative array
(bk04ch01/example18.php):

<?php

 $colorArray['scheme1'] = Array('foreground' => 'white', 'background' =>

'black');

 $colorArray['scheme2'] = Array('foreground' => 'aliceblue', 'background'

=> 'midnightblue');

 $colorArray['scheme3'] = Array('foreground' => 'honeydew', 'background'

=> 'darkgreen');

 echo $colorArray['scheme2']['foreground'];

?>

Here’s the output:
aliceblue

Controlling the Flow of Your PHP
Code

I go through a detailed discussion of controlling code with decisions and
loops in Book 3, Chapter 4. That chapter focuses on JavaScript code, but
the structures for making decisions and looping are identical in both
JavaScript and PHP. Therefore, I just quickly summarize the available
statements here, and refer you to Book 3, Chapter 4 to fill in the details.

Making decisions with if()
You make simple true/false decisions in PHP using the if() statement:

if (expression) {

 statements-if-true

}

where:

expression is a comparison or logical expression that returns true
or false.

statements-if-true is the statement or statements to run if
expression returns true. If expression returns false, PHP skips

over the statements.

Here's an example (bk04ch01/example19.php):
if ($original_amount !== 0) {

 $percent_increase = 100 * (($new_amount - $original_amount) /

$original_amount);

}

To run one group of statements if the condition returns true and a
different group if the result is false, use an if()…else statement:

if (expression) {

 statements-if-true

} else {

 statements-if-false

}

where:

expression is a comparison or logical expression that returns true
or false.

statements-if-true is the block of statements you want PHP to run
if expression returns true.

statements-if-false is the block of statements you want executed
if expression returns false.

Here's an example (bk04ch01/example20.php):
<?php

 if ($currentHour < 12) {

 $greeting = "Good morning!";

 } else {

 $greeting = "Good day!";

 }

 echo $greeting;

?>

A third syntax for the if()…else statement lets you string together as
many logical tests as you need:

if (expression1) {

 statements-if-expression1-true

} elseif (expression2) {

 statements-if-expression2-true

}

etc.

else {

 statements-if-false

}

 This syntax represents a rare instance where PHP and JavaScript
control structures are different (however slightly): You use the
keywords else if in JavaScript, but the single keyword elseif in
PHP.

The following code shows a script that uses a nested if() statement
(bk04ch01/example21.php):

<?php

 if ($currentHour < 12) {

 $greeting = "Good morning!";

 } elseif ($currentHour < 18) {

 $greeting = "Good afternoon!";

 } else {

 $greeting = "Good evening!";

 }

 echo $greeting;

?>

Making decisions with switch()
When you need to make a whole bunch of tests (say, four or more), PHP
offers the switch() statement. Here's the syntax:

switch(expression) {

 case case1:

 case1 statements

 break;

 case case2:

 case2 statements

 break;

 etc.

 default:

 default statements

}

where:

expression is an expression that is evaluated at the beginning of the
structure. It must return a value (numeric, string, or Boolean).
case1, case2, and so on are the possible values for expression. PHP
examines each case value to see whether one matches the result of
expression and, if it does, executes the statements associated with
that case.
break statement tells PHP to stop processing the rest of the switch()
statement.

Here's an example (bk04ch01/example22.php):
switch($season) {

 case 'winter':

 $footwear = 'snowshoes';

 break;

 case 'spring':

 $footwear = 'galoshes';

 break;

 case 'summer':

 $footwear = 'flip-flops';

 break;

 case 'fall':

 $footwear = 'hiking boots';

 break;

}

Looping with while()
PHP’s while() loop uses the following syntax:

while (expression) {

 statements

}

where:

expression is a comparison or logical expression that determines
how many times the loop gets executed.

statements is the block of statements to execute each time through
the loop.

Here's an example (bk04ch01/example23.php):
<?php

 $counter = 1;

 while ($counter <= 12) {

 // Generate a random number between 1 and 100

 $randoms[$counter - 1] = rand(1, 100);

 $counter++;

 }

 print_r($randoms);

?>

Looping with for()
The structure of a PHP for() loop looks like this:

for ($counter = start; expression; $counter++) {

 statements

}

where:

$counter is a numeric variable used as a loop counter.

start is the initial value of $counter.

expression is a comparison or logical expression that determines the
number of times through the loop.
$counter++ is the increment operator applied to the $counter
variable.
statements are the statements to execute each time through the loop.

Here's an example (bk04ch01/example24.php):
<?php

 for ($counter = 0; $counter < 12; $counter++) {

 // Generate a random number between 1 and 100

 $randoms[$counter] = rand(1, 100);

 }

 print_r($randoms);

?>

Looping with do…while()
PHP’s do…while() loop uses the following syntax:

do {

 statements

}

while (expression);

where:

statements is the block of statements to execute each time through
the loop.
expression is a comparison or logical expression that determines
how many times PHP runs through the loop.

Here's an example (bk04ch01/example25.php):
<?php

 $counter = 0;

 do {

 // Generate a random number between 1 and 100

 $randoms[$counter] = rand(1, 100);

 $counter++;

 }

 while ($counter < 12);

 print_r($randoms);

?>

Working with PHP Functions
I talk about functions until I’m blue in the face in Book 3, Chapter 5.
PHP and JavaScript handle functions in the same way, so here I give you
a quick overview from the PHP side of things.

The basic structure of a function looks like this:
function function_name(arguments) {

 statements

}

where:

function identifies the block of code that follows it as a function.

function_name is a unique name for the function.

arguments is one or more optional values that are passed to the
function and that act as variables within the function.
statements is the code that performs the function's tasks or
calculations.

Here’s an example (bk04ch01/example26.php):
function display_header() {

 echo "<header>\n";

 echo "\n";

 echo "<h1>News of the Word</h1>\n";

 echo "<h3>Language news you won't find anywhere else (for good reason!)

</h3>\n";

 echo "</header>";

}

To call the function, include in your script a statement consisting of the
function name, followed by parentheses:

display_header();

Passing values to functions
An argument is a value that is sent — or passed, in programming terms
— to the function. The argument acts just like a variable, and it
automatically stores whatever value is sent. Here’s an example
(bk04ch01/example27.php):

display_header('notw.png');

function display_header($img_file) {

 echo "<header>\n";

 echo "\n";

 echo "<h1>News of the Word</h1>\n";

 echo "<h3>Language news you won't find anywhere else (for good reason!)

</h3>\n";

 echo "</header>";

}

Returning a value from a function

If your function calculates a result, you can send that result back to the
statement that called the function by using a return statement:

return result;

As an example, I constructed a function that calculates and then returns
the tip on a restaurant bill (bk04ch01/example28.php):

$preTipTotal = 100.00;

$tipPercentage = 0.15;

function calculate_tip($preTip, $tipPercent) {

 $tipResult = $preTip * $tipPercent;

 return $tipResult;

}

$tipCost = calculate_tip($preTipTotal, $tipPercentage);

$totalBill = $preTipTotal + $tipCost;

echo "Your total bill is \$$totalBill";

Working with PHP Objects
I discuss objects from a JavaScript point of view in Book 3, Chapter 6,
so here I just recall that an object is a programmable element that has
two key characteristics:

You can make changes to the object’s properties.
You can make the object perform a task by activating a method
associated with the object.

I use objects extensively in Book 4, Chapter 3 when I talk about using
PHP to access a MySQL database, so the next few sections provide
some necessary background.

Rolling your own objects
Let’s take a quick look at creating custom objects in PHP. In the object-
oriented world, a class acts as a sort of object template. A cookie cutter
provides a good analogy. The cookie cutter isn’t a cookie, but when you
use the cookie cutter, it creates a cookie that has a predefined shape. A
class is the same way. It’s not an object, but using it (or instancing it, to

use the vernacular) creates an object that has the class characteristics.
These characteristics are governed by the members of the class, which
are its properties and methods.

Creating a custom class
You define a custom class by using the class keyword:

class Name {

 Class properties and methods go here

}

where Name is the name you want to assign to your class. Class names
traditionally begin with an uppercase letter.

Here's an example:
class Invoice {

}

I’ll use this class to create customer invoice objects (refer to
(bk04ch01/example29.php).

Adding properties to the class
The next step is to define the class properties, which are PHP variables
preceded by the public keyword, which makes them available to code
outside the class. Let’s add a few properties to the Invoice class:

class Invoice {

 public $customer_id;

 public $subtotal;

 public $tax_rate;

}

A bit later I show you how to create an object from a class. In most cases
you want to initialize some or all of the properties when you create the
object, and to do that you must add a special __construct() function to
the class definition. Here's the general syntax:

public function __construct($Arg1, $Arg2, …) {

 $this->prop1 = $Arg1;

 $this->prop2 = $Arg2;

 etc.

}

where:

$Arg1,$Arg2, and so on are the initial values of the object properties.

$this-> refers to the object in which the code is running; the ->
character pair is called the object operator and you use it to access
an object's properties and methods.
prop1,prop2, and so on are references to the class properties, minus
the $.

To extend the example:
class Invoice {

 public $customer_id;

 public $subtotal;

 public $tax_rate;

 public function __construct($Customer_ID, $Subtotal, $Tax_Rate) {

 $this->customer_id = $Customer_ID;

$this->subtotal = $Subtotal;

 $this->tax_rate = $Tax_Rate;

 }

}

Adding methods to the class
The last step in creating your custom class is to add one or more
functions that will be used as the class methods. Here's the general
syntax:

public function method() {

 Method code goes here

}

where method is the name of the method.

To complete our example class, add a method that calculates the invoice
total and rounds it to two decimal places:

class Invoice {

 public $customer_id;

 public $subtotal;

 public $tax_rate;

 public function __construct($Customer_ID, $Subtotal, $Tax_Rate) {

 $this->customer_id = $Customer_ID;

 $this->subtotal = $Subtotal;

 $this->tax_rate = $Tax_Rate;

 }

 public function calculate_total() {

 $total = $this->subtotal * (1 + $this->tax_rate);

 return round($total, 2);

 }

}

Creating an object
Given a class — whether it’s a built-in PHP class or a class you’ve
created yourself — you can create an object from the class, which is
known as an instance of the class. Here’s the general format to use:

$object = new Class(value1, value2, …);

where:

$object is the variable name of the object.

Class is the name of the class on which to base the object.

value1, value2, and so on are the optional initial values you want to
assign to the object's properties.

Here’s a statement that creates an instance of the Invoice class from the
previous section:

$inv = new Invoice('BONAP', 59.85, .07);

Working with object properties
You refer to an object property by using the object operator (->):

object->property

where:

object is the object that has the property.

property is the name of the property you want to work with.

Here's an example that creates an object instance and then references the
object’s customer_id property:

$inv = new Invoice('BONAP', 59.85, .07);

$current_customer = $inv->customer_id;

To change the value of a property, use the following generic syntax:
object->property = value;

where:

object is the object that has the property.

property is the name of the property you want to change.

value is a literal value (such as a string or number) or an expression
that returns the value to which you want to set the property.

Here's an example:
$inv->subtotal = 99.95;

Working with object methods
To run a method, you use the following syntax:

object->method(arg1, arg2, …)

where:

object is the object that has the method you want to work with.

method is the name of the method you want to execute.

arg1,arg2, and so on are the arguments required by the method, if
any.

Here's an example:
$inv = new Invoice('BONAP', 59.85, .07);

$invoice_total = $inv->calculate_total();

Chapter 2
Building and Querying MySQL

Databases
IN THIS CHAPTER

 Learning about MySQL and what it can do
 Building MySQL databases and tables
 Getting your head around SQL
 Selecting data with queries
 Modifying data with queries

MySQL is a fast and powerful, yet easy-to-use, database system that
offers just about anything a website would need in order to find and
serve up data to browsers.

— ROBIN NIXON
One of the central themes of this book is that today’s web is all about
dynamic content. Sure, if you have (or your client has) just one or two
web pages to show the world, the standard front-end web development
tools — HTML, CSS, and JavaScript — are more than enough to get the
job done. However, it’s much more likely that a modern website will
consist of dozens, perhaps even hundreds, of pages, with new content
added regularly. Believe me, as the developer or administrator of such a
site, you don’t want to hand-code all those pages as static HTML and
CSS. Life’s too short!

Fortunately, you don’t have to hand-assemble all those pages if you get
the back end of the web development world doing the hard work for you.
The key is the database software that stores your site info on the server,
and that’s what this chapter is all about. Here you discover the MySQL

database program and learn all that it can do to help you build and
maintain dynamic, robust, and fast websites of any size.

What Is MySQL?
In simplest terms, a database is a collection of information with some
sort of underlying structure and organization. MySQL (pronounced “my
ess-kew-ell,” or sometimes “my sequel”) is a database management
system (DBMS) that runs on the server. This means MySQL will not
only store the data you want to use as the source for some (or perhaps
even all) of the data you want to display on your web page, but it will
also supply you with the means to manage this data (by sorting,
searching, extracting, and so on).

The official description of MySQL is that it’s a relational database
management system (RDBMS). The relational part means that you can
set up relations between various parts of a database. For example, most
businesses assign some sort of account number for each of their
customers. So, a database of customer information would include a
column for this account number (as well as the name, address, credit
limit, and so on). Similarly, you could also include the account number
column in a collection of accounts receivable invoices (along with the
invoice date, amount, and so on). In this way, you can relate each
invoice to the appropriate customer information. (So, for example, you
could easily look up phone numbers and call those deadbeat customers
whose invoices are more than 90 days past due!)

MySQL is a massive piece of software that can do incredibly
complicated things. Fortunately, as web developers, we need to use only
a small subset of MySQL’s features, and we don’t have to get into
anything mind-blowingly complex. To get started on developing
dynamic web pages, in fact, you need to know about only two pieces of
the MySQL puzzle: tables and queries.

Tables: Containers for your data
In MySQL databases, you store your information in an object called a
table. Tables are essentially a grid, where each vertical segment

represents a column (a specific category of information) and each
horizontal segment represents a row (a single record in the table).

Figure 2-1 shows a table of customer data. Note how the table includes
separate columns for each logical grouping of the data (company name,
contact name, and so on).

FIGURE 2-1: In MySQL databases, tables store the raw data.

 In web development, you use MySQL tables to store the data
that will appear in your pages. Getting that data from the server to
the web page requires five steps:

1. On the web page, some JavaScript code launches a PHP script on the
server.

2. That PHP script asks a MySQL database for the data required by the
web page.

3. The PHP script configures the data into a format JavaScript can
understand.

4. PHP sends the data back to the web page.

5. The JavaScript code accepts the data and displays it on the page.

I go through these steps in glorious detail in Book 4, Chapter 3 and in
Book 6, Chapter 1.

Queries: Asking questions of your data
By far the most common concern expressed by new database users (and
many old-timers, as well) is how to extract the information they need
from all that data. What if, for example, you have a database of accounts
receivable invoices and your boss wants a web page that tells them how
many invoices are more than 150 days past due? You can’t hand-code
such a page because, for a large database, your page would be out of
date before you were done. The better way would be to ask MySQL to
do the work for you by creating another type of database object: a query.
Queries are, literally, questions you ask of your data. In this case, you
could ask MySQL to display a list of all invoices more than 150 days
past due.

Queries let you extract from one or more tables a subset of the data. For
example, in a table of customer names and addresses, what if I wanted to
see a list of firms that are located in France? No problem. I’d just set up
a query that asks, in effect, “Which rows have 'France' in the country
column?” The answer to this question is shown in Figure 2-2.

FIGURE 2-2: You use MySQL queries to extract a subset of the data from one or more
tables.

The actual querying process is performed using a technology called
Structured Query Language (or SQL, pronounced “ess-kew-ell”). In the
five-step procedure I mention in the preceding section, the SQL portion
takes place in Step 2.

Introducing phpMyAdmin
To work with MySQL — whether it's creating a database, importing or
exporting data, adding a table, inserting and editing data, or testing SQL
statements to use in your PHP code — almost all web hosts offer a web
application called phpMyAdmin. (It’s an odd name, I know: It means,
more or less, “PHP-based MySQL Administration.”)

In the XAMPP web development environment that I discuss in Book 1,
Chapter 2, you have two ways to get phpMyAdmin on the job (make
sure you have the Apache web server running):

Dashboard: From the XAMPP Dashboard page
(http://localhost/dashboard), click the phpMyAdmin link in the

header.
Direct: Use a web browser to surf to
http://localhost/phpmyadmin.

Figure 2-3 shows the default phpMyAdmin page.

FIGURE 2-3: From the XAMPP Dashboard, click phpMyAdmin to open the phpMyAdmin
web app.

The navigation pane on the left shows the default databases that come
with phpMyAdmin (don't mess with these!), while the tabs across the
top — Databases, SQL, and so on — take you to different parts of the
application.

Importing data into MySQL
Before I talk about building a database from scratch, let me first go
through the procedure for getting some existing data into MySQL.
phpMyAdmin supports several import formats, but you’ll most likely
want to use a comma-separated values (.csv) file, where the column
data in each row is separated by commas. Another possibility is a SQL
(.sql) file, which is a backup file for a MySQL database:

1. In phpMyAdmin, click the Import tab.
If you don't see the Import tab, click More, and then click Import.

2. In the File to Import section, click Browse (Windows) or Choose
File (Mac).
Your operating system’s file chooser dialog appears.

3. Click the file that contains the data you want to import, and then
click Open.

4. In the Format section, make sure the list shows the correct
format for the file you chose.
If you’re importing a CSV file, the list should have CSV selected; if
you’re importing a SQL backup file, the list should have SQL
selected.

5. If you’re importing a CSV file, use the Format-Specific Options
section to tell phpMyAdmin the structure of the file.
In particular, if the first line of your CSV file contains the column
names of your data, you need to select the check box labeled The
First Line of the File Contains the Table Column Names.

6. Click Go.
phpMyAdmin imports the data.

If you imported a CSV file, you should see the message Import has
been successfully finished, and in the navigation pane you should
see a new database named CSV_DB, as shown in Figure 2-4.

FIGURE 2-4: Importing a CSV file creates the CSV_DB database.

Here are the steps to follow to rename the database and the table that
contains the imported data:

1. In the navigation pane, click CSV_DB.
phpMyAdmin opens the database. Note that you now see a table
named TBL_NAME, which contains the imported CSV data. I show
you how to rename it beginning with Step 6.

2. Click the Operations tab.
If you don’t see the Operations tab, click More and then click
Operations.

3. In the Rename Database To section, type the new database name
in the text box provided.

4. Click Go.
phpMyAdmin asks you to confirm.

5. Click OK.
phpMyAdmin changes the database name.

6. In the navigation pane, click TBL_NAME.
7. Click the Operations tab.

If you don’t see the Operations tab, click More and then click
Operations.

8. In the Rename Table To text box in the Table Options section,
type the new table name.

9. Click Go.
phpMyAdmin changes the table name.

Backing up MySQL data
As you work with phpMyAdmin, you should run periodic backups to
make sure your data is safe. Here are the steps to follow:

1. In phpMyAdmin, click the Export tab.
If you don’t see the Export tab, click More and then click Export.

2. In the Format section, use the list to select SQL (although this is
the default format).

3. Click Go.
phpMyAdmin exports the data, which your web browser then
downloads to your computer.

Creating a MySQL Database and Its
Tables

If you don’t import your data, you need to create your own MySQL
databases and populate them with the tables that will hold the data.

Creating a MySQL database
The first question you need to ask yourself is: Do I need just a single
database or multiple databases? As a web developer, you’ll almost
always need multiple databases. Here’s why:

You need a separate database for each website you build.
You need a separate database for each web app you build.
You need a separate database for each client you have.

If you are just building a single website or app and have no clients, one
database is fine. But know that MySQL is ready and willing to
accommodate almost any number of databases you care to throw at it.

Here are the steps to follow to create a database using phpMyAdmin:

1. In the navigation pane, click New that appears at the top of the
navigation tree.

2. In the Database Name text box in the Create Database section,
type the name you want to use.

3. In the Collation list, select utf8_general_ci.

Collation refers to how MySQL compares characters (for example,
when sorting data). In this case, you’re telling MySQL to use a
standard, case-insensitive (for example, a equals A) collation on the
UTF-8 character set.

4. Click Create.
phpMyAdmin creates the database for you.

Designing your table
You need to plan your table design before you create it. By asking
yourself a few questions in advance, you can save yourself the trouble of
redesigning your table later. For simple tables, you need to ask yourself
three basic questions:

Does the table belong in the current database?
What type of data should I store in each table?
What columns should I use to store the data?

The next few sections examine these questions in more detail.

Does the table belong in the current database?
Each database you create should be set up for a specific purpose: a
website, a web app, a client, and so on. Once you know the purpose of
the database, you can decide if the table you want to create fits in with
the database theme.

For example, if the purpose of the database is to store a client's data, it
would be inappropriate to include a table that stores your personal blog
posts. Similarly, it wouldn’t make sense to include a table of a web app’s
user accounts in a database that belongs to an entirely different website.

What type of data should I store in each table?
The most important step in creating a table is determining the
information you want it to contain. In theory, MySQL tables can be quite
large: up to 4,096 columns and many millions (even billions) of rows. In
practice, however, you should strive to keep your tables as small as
possible. Doing so saves memory and makes managing the data easier.

Ideally, you should aim to set up all your tables with only essential
information.

Suppose you want to store user information in a database. You have to
decide whether you want all your users in a single table or separate
tables for each type of user. For example, a table of customers would
include detailed information such as each person’s first and last names,
postal address, phone number, and payment preference. By contrast, a
table of people who have opted-in to receive your newsletters might
store each person’s email address, the newsletters they want to receive,
the subscription type (full or digest), and more. There’s not a lot of
overlap between these two types of customers, so it probably makes
sense to create two separate tables.

When you’ve decided on the tables you want to use, you need to think
about how much data you want to store in each table. In your customers
table, for example, would you also want to include information on each
person’s site customizations, account creation date, date of last visit, and
product preferences? This might all be crucial information for you, but
you need to remember that the more data you store, the longer it will
take to query and sort the data.

What columns should I use to store the data?
Now you’re almost ready for action. The last thing you need to figure
out is the specific columns to include in the database. For the most part,
the columns are determined by the data itself. For example, a database of
business contacts would certainly include columns for name, address,
and phone number. But should you split the name into two columns —
one for the first name and one for the last name? If you think you’ll need
to sort the table by last name, then, yes, you probably should. What
about the address? You’ll probably need individual columns for the
street, city, state, and ZIP code.

Here are two general rules to follow when deciding how many columns
to include in your tables:

Ask yourself whether you really need the data for a particular
column (or if you might need it in the near future). For example, if

you think your table of contact names might someday be used to
create form letters, a column to record titles (Ms., Mr., Dr., and so
on) would come in handy. When in doubt, err on the side of too
many columns rather than too few.
Always split your data into the smallest columns that make sense.
Splitting first and last names is common practice, but creating a
separate column for, say, the phone number area code would
probably be overkill.

 Don’t sweat the design process too much. It’s easy to make
changes down the road (by adding or deleting columns), so you’re
never stuck with a bad design.

Deciding which column to use for a primary key
When you create a table, you need to decide which column to use as the
primary key. The primary key is a column that uses a unique number or
character sequence to identify each row in the table. Keys are used
constantly in the real world. Your Social Security number is a key that
identifies you in government records. Most machines and appliances
have unique serial numbers. This book (like most books) has a 13-digit
ISBN — International Standard Book Number (which you can see on
the back cover).

Why are primary keys necessary? Well, for one thing, MySQL creates an
index for the primary key column. You can perform searches on indexed
data much more quickly than on regular data; therefore, many MySQL
operations perform faster if a primary key is present. Keys also make it
easy to find rows in a table because the key entries are unique (things
such as last names and addresses can have multiple spellings, which
makes them hard to find). Finally, once a table has a primary key,
MySQL adds its data editing tools, which enable you to modify, copy,
and delete table data.

You can configure the table so that MySQL sets and maintains the
primary key for you, or you can do it yourself. Which one do you
choose? Here are some guidelines:

If your data contains a number or character sequence that uniquely
defines each row, you can set the key yourself. For example, invoices
usually have unique numbers that are perfect for a primary key.
Other columns that can serve as primary keys are employee IDs,
customer account numbers, and purchase order numbers.
If your data has no such unique identifier, let MySQL create a key
for you. MySQL will set up an AUTO_INCREMENT column that
will automatically assign a unique number to each row (the first row
will be 1, the second 2, and so on).

Relating tables
MySQL is a relational database system, which means that you can
establish relationships between multiple tables. As an example, suppose
you have a database that contains (at least) two tables:

orders: This table holds data on orders placed by your customers,
including the customer name and the date of the order. It also
includes an order_id column as the primary key, as shown in Figure
2-5.

FIGURE 2-5: The orders table includes a column named order_id.

order_details: This table holds data on the specific products that
make up each order: the product name, the unit price, the quantity
ordered. It also includes an order_id field, as shown in Figure 2-6.

FIGURE 2-6: The order_details table also includes a column named order_id.

Why not lump both tables into a single table? Well, that would mean
that, for each product ordered, you'd have to include the name of the
customer, the order date, and so on. If the customer purchased ten
different products, this information would be repeated ten times. To
avoid such waste, the data is kept in separate tables, and the two tables
are related on the common column called order_id.

For example, notice in Figure 2-5 that the first row in the orders table
has an order_id value of 10248. Now check out Figure 2-6, where you
see that the first three rows of the order_details table also have an
order_id value of 10248. This means that when you join these tables on
the related order_id field, MySQL combines the data, as shown in
Figure 2-7. For example, notice that the first three rows still have an
order_id value of 10248, but they now also include the customer_id
column from the orders table.

FIGURE 2-7: The order_details and orders tables joined on the common column named
order_id.

Creating a MySQL table
Here are the steps to follow to create a table in a MySQL database:

1. In the navigation pane, click the database in which you want to
add the table.

2. Click the Structure tab. In the Create New Table section, type a
name for the table, select the number of columns you want, and
then click Create.
If you're not sure how many columns you need, just make your best
guess for now. You can always add more later on.

3. Type a name for the column.
4. In the Type list, select the data type you want to use for the data.

There’s a long list of data types to wade through, but only a few
make sense in most web projects:

INT: Stores an integer value between -2,147,483,648 and
2,147,483,648. For really small integer values, consider using
either TINYINT (-128 to 127 or 0 to 255) or SMALLINT
(-32,768 to 32,767 or 0 to 65,535).
VARCHAR: Stores a variable-length string between 0 and
65,535 characters long. If you need to store super-long chunks

of text, consider MEDIUMTEXT (up to 16,777,215
characters) instead.
DATE: Stores a date and time value.

5. If you selected VARCHAR in Step 4, you can use the
Length/Values field to enter a maximum size for the column.

6. Use the Default list to specify a default value that MySQL will
enter automatically into the column when you create a row.
If you want the current date and time in a DATE column, select
CURRENT_TIMESTAMP. Otherwise, select As Defined, and then
enter a value in the text box that appears.

7. In the Collation list, select utf8_general_ci.
8. To allow MySQL to enter no value into the column, select the

Null check box.
If you leave Null deselected, be sure you always specify a value for
the column.

9. If you want MySQL to index the column, use the Index list to
select the type of index you want.
In most cases you should choose the all-purpose INDEX type; if the
column values are all different, select the UNIQUE type; for a text-
heavy field, select the FULLTEXT type.
Don't index every column. Instead, you only need to index those
columns that you’ll be using for sorting and querying.

10. Repeat Steps 3 through 9 until you’ve defined all your columns.
11. Click Save.

Adding data to a table
Ideally, most of your table data will be inserted automatically, either by
importing data or by having your page users fill in an HTML form (see
Book 6, Chapters 2 and 3). If you do need to enter table data by hand,
here’s how it’s done:

1. In the navigation pane, click the table in which you want the
data added.

2. Click the Insert tab.
phpMyAdmin displays empty text boxes for each column in the
table.

3. If you see two sets of text boxes, scroll down to the bottom of the
Insert tab and change Continue Insertion with 2 Rows to
Continue Insertion with 1 Row.

4. In the Value fields, add a value for each column.
If a column accepts null values (that is, if the column’s Null check
box is selected), it’s okay to leave that column’s Value field blank.

5. If you want to add multiple rows, use the two lists near the
bottom of the page to select Insert as New Row and then Insert
Another New Row.

6. To insert the data, click Go.

Creating a primary key
When you import a table, MySQL doesn’t automatically create a
primary key, so you need to follow these steps to create the primary key
yourself:

1. In the navigation pane, click the table you want to work with.
2. Click the Structure tab.
3. Select the check box that appears to the left of the column you

want to use as the primary key.
Make sure you select a column that contains only unique values.

4. Click Primary.
MySQL configures the column as the table’s primary key.

What happens if none of your table’s fields contain unique items? In that
case, you need to create a column to use as the primary key. Here’s how:

1. In the navigation pane, click the table you want to work with.
2. Click the Structure tab.
3. Leave the Add 1 Columns as is, but select At Beginning of Table

in the list, and then click Go.
4. Type a name for the primary key field.

If you’re not sure what name to use, something like table_id would
work, where table is the name of the table.

5. Select the A_I (AUTO_INCREMENT) check box.
MySQL displays the Add Index dialog.

6. Leave the default settings as they are, and then click Go.
7. Click Save.

MySQL adds the field and automatically populates it with unique
integer values.

Querying MySQL Data
It's all well and good having a bunch of data hunkered down in a
MySQL database, but as a web developer, your real concern is getting
that data from the server to the web page. That complete journey is the
subject of both Book 4, Chapter 3 and Book 6, Chapter 1, but I’m going
to tackle the first leg of the trip here and show you how to specify the
data that will eventually get sent to the page. The technique I show you
is called querying the data, and the tool of choice is Structured Query
Language, or SQL.

What is SQL?
SQL is a collection of commands that interrogate or modify — query, in
the SQL vernacular — MySQL data in some way. SQL is huge, but as a
web developer you really only need to know about four query types:

SELECT: Returns a subset of a table’s data
INSERT: Adds a new row to a table

UPDATE: Modifies a table’s existing data
DELETE: Removes one or more rows from a table

In the case of the SELECT, UPDATE, and DELETE query types, you
target the specific rows you want to work with by specifying criteria,
which are extra parameters that define one or more conditions the rows
must meet. For example, you might want to run a SELECT query that
returns only customers where the country column is equal to France.
Similarly, you might want to run a DELETE query on only the items in the
products table where the discontinued column has the value TRUE.

Creating a SELECT query
The most common type of query is the SELECT query that returns rows
from one or more tables based on the columns you choose and the
criteria you apply to those columns. It's called a SELECT query not only
because you use it to select certain rows but also because it's based on
the SQL language's SELECT statement. SELECT is the SQL “verb” that
you'll see and work with most often, and it’s used to create a subset
based on the table, columns, criteria, and other clauses specified in the
statement. Here’s a simplified syntax for the SELECT verb:

SELECT select_columns

 FROM table_name

 WHERE criteria

 ORDER BY sort_columns [DESC]

where:

SELECTselect_columns specifies the names of the columns you want
in your subset. If you want all the columns, use * instead.

FROMtable_name is the name of the table that contains the data.

WHEREcriteria filters the data to give you only those rows that
match the specified criteria.

ORDER BYsort_columns sorts the results in ascending order based on
the data in the columns specified by sort_columns (separated by

commas, if you have more than one). Use the optional DESC keyword
to sort the rows in descending order.

The most basic SELECT query is one that returns all the rows from a
table. For example, the following SELECT statement returns all the rows
from the customers table:

SELECT *

 FROM customers

In the following example, only the company_name, city, and country
columns are returned in the results:

SELECT company_name, city, country

 FROM customers

Here's another example that sorts the rows based on the values in the
company_name column:

SELECT *

 FROM customers

 ORDER BY company_name

Understanding query criteria
The heart of any query is its criteria, which are a set of expressions that
determine the rows included in the query results. All query expressions
have the same general structure. They contain one or more operands —
which can be literal values (such as 123 or "USA" or 2024-08-23),
identifiers (names of MySQL objects, such as tables), or functions —
separated by one or more operators — the symbols that combine the
operands in some way, such as the plus sign (+) and the greater than sign
(>).

Most criteria expressions are logical formulas that, when applied to each
row in the table, return TRUE or FALSE. The subset contains only those
rows for which the expression returns TRUE.

Comparison operators
You use comparison operators to compare field values to a literal, a
function result, or a value in another field. Table 2-1 lists MySQL's

comparison operators.

TABLE 2-1 Comparison Operators for Criteria
Expressions

Operator General Form Matches Rows Where …

= = Value The column value is equal to Value

<> <> Value The column value is not equal to Value

> > Value The column value is greater than Value

>= >= Value The column value is greater than or equal to Value

< < Value The column value is less than Value

<= <= Value The column value is less than or equal to Value

For example, suppose you have a products table with a
units_in_stock column. If you want a SELECT query to return just
those products that are out of stock, you'd use the following SQL
statement:

SELECT *

 FROM products

 WHERE units_in_stock = 0

The LIKE operator
If you need to allow for multiple spellings in a text column, or if you're
not sure how to spell a word you want to use, the wildcard characters
can help. There are two wildcards: The underscore (_) substitutes for a
single character, and the percent sign (%) substitutes for a group of
characters. You use them in combination with the LIKE operator, as
shown in Table 2-2.

TABLE 2-2 The LIKE Operator for Criteria Expressions

Example Matches Rows Where …

LIKE 'Re_d' The column value is Reid, Read, reed, and so on

LIKE 'M_' The column value is MA, MD, ME, and so on

Example Matches Rows Where …

LIKE 'R%' The column value begins with R

LIKE '%office%' The column value contains the word office

LIKE '2024-12-%' The column value is any date in December 2024

The BETWEEN…AND operator
If you need to select rows where a column value lies between two other
values, use the BETWEEN…AND operator. For example, suppose you want to
see all the rows in the order_details table where the quantity value is
between (and includes) 50 and 100. Here's a SELECT statement that does
the job:

SELECT *

 FROM order_details

 WHERE quantity BETWEEN 50 AND 100

You can use this operator for numbers, dates, and even text.

The IN operator
You use the IN operator to match rows where the specified column value
is one of a set of values. For example, suppose you want to return a
subset of the customers table that contains only those rows where the
region column equals NY, CA, TX, IN, or ME. Here's the SELECT statement
to use:

SELECT *

 FROM customers

 WHERE region IN('NY','CA','TX','IN','ME')

The IS NULL operator
What do you do if you want to select rows where a certain column is
empty? For example, a table of invoices might have a date_paid column
where, if this column is empty, it means the invoice hasn't been paid yet.
For these challenges, MySQL provides the IS NULL operator. Applying
this operator to a column selects only those rows whereby the column is
empty. Here’s an example:

SELECT *

 FROM invoices

 WHERE date_paid IS NULL

To select rows when a particular column is not empty, use the IS NOT
NULL operator.

Compound criteria and the logical operators
Sometimes a single expression just doesn't do the job. For more
sophisticated needs, you can set up compound criteria where you enter
either multiple expressions for the same column or multiple expressions
for different columns. You use the logical operators to combine or
modify expressions. Table 2-3 summarizes MySQL’s logical operators.

TABLE 2-3 Logical Operators for Criteria Expressions

Operator General Form Matches Rows When …

AND

Expr1 AND

Expr2

Both Expr1 and Expr2 are TRUE

OR

Expr1 OR

Expr2

At least one of Expr1 and Expr2 is TRUE

NOT NOT Expr Expr is not TRUE

XOR

Expr1 XOR

Expr2

Only one of Expr1 and Expr2 is TRUE (XOR is short for
exclusive or)

The AND and OR operators let you create compound criteria using a single
expression. For example, suppose you want to match all the rows in your
products table where the units_in_stock column is either 0 or greater
than or equal to 100. The following SELECT statement does the job:

SELECT *

 FROM products

 WHERE units_in_stock = 0 OR units_in_stock >= 100

The NOT operator looks for rows that don't match a particular logical
expression. In a table of customer data, for example, if you want to find
all non-North American customers, you'd filter out the customers by
using the country column, like so:

SELECT *

 FROM customers

 WHERE NOT country = 'USA' AND

 NOT country = 'Canada' AND

 NOT country 'Mexico'

Querying multiple tables
Although most of your MySQL queries will use just a single table, some
of the most useful and powerful queries involve two (or more) tables.
The type of multiple-table query you’ll see and use most often is called
an inner join because it joins two tables based on a common column.

To create an inner join on two tables, use the following version of the
FROM clause:

FROM table1

 INNER JOIN table2

 ON table1.column = table2.column

Here, table1 and table2 are the names of the two tables you want to
join, and table1.column and table2.column are the common columns
in each table. Note that the column names don't have to be the same.

For example, suppose you have two tables: orders and order_details,
and they each have a column named order_id that stores a value that is
unique for each order. The following SELECT statement sets up an inner
join on these tables:

SELECT *

 FROM orders

 INNER JOIN order_details

 ON orders.order_id = order_details.order_id

If you want only certain columns from both tables in the results, specify
the column names after the SELECT command using the table.column
syntax, as in this example:

SELECT orders.order_id, orders.customer_id, order_details.quantity

 FROM orders

 INNER JOIN order_details

 ON orders.order_id = order_details.order_id

INNER JOINS? OUTER JOINS? WHAT'S
THE DIFFERENCE?

Besides inner joins, MySQL also supports a variation on the multiple-table query theme
called an outer join. To understand the difference between these two join types, let’s run
through some examples using the sample data in the following table.

The novelties Table The suppliers Table

name supplier supplier

Inflatable Dartboard Facepalm LLC Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC RUSerious, Ltd.

Non-Reflective Mirror Facepalm LLC Silly Stuff, Inc.

Fireproof Firewood Internal Nov-L-T Industries

Donut Holes Internal

No-String Guitar Internal

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

The novelties table has two columns: name and supplier, and the suppliers table has a
single column: supplier. Here are three things to note about these tables:

The two tables have the supplier column in common.

The novelties table includes several rows that use Internal as the supplier
value, but Internal is not listed in the suppliers table.

The suppliers table includes one row — Nov-L-T Industries — that is not used
anywhere in the novelties table.

An inner join only returns the overlapping data between two tables. To visualize this,
consider the following Venn diagram.

Here's a SELECT statement that runs an inner join on the novelties and suppliers
tables:

SELECT novelties.name, suppliers.supplier

 FROM novelties

 INNER JOIN suppliers

 ON novelties.supplier = suppliers.supplier

Here are the results:

novelties.name suppliers.supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

Non-Reflective Mirror Facepalm LLC

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

http://novelties.name/

Note that from the novelties table we don't see any of the rows that had Internal as the
supplier value because that value doesn't appear in the suppliers table. Similarly, we
don't see the Nov-L-T Industries supplier because that value doesn't appear in the
novelties table.

However, suppose we want all the novelties to appear in the results. That’s called a left
outer join, and to see why, take a look at the following Venn diagram. This join includes
all the novelties rows, plus the overlapping data from the suppliers table.

Here's a SELECT statement that runs a left outer join on the novelties and suppliers
tables:

SELECT novelties.name, suppliers.supplier

 FROM novelties

 LEFT OUTER JOIN suppliers

 ON novelties.supplier = suppliers.supplier

Here are the results:

name supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

name supplier

Non-Reflective Mirror Facepalm LLC

Fireproof Firewood NULL

Donut Holes NULL

No-String Guitar NULL

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

Note that for those novelties that don't have a corresponding supplier value in the
suppliers table, MySQL returns NULL.

Finally, you might want all the suppliers to appear in the results. That's called a right
outer join, and you can see why by taking a peek at the following Venn diagram. This
join includes all the suppliers rows, plus the overlapping data from the novelties table.

Here's a SELECT statement that runs a right outer join on the novelties and suppliers
tables:

SELECT novelties.name, suppliers.supplier

 FROM novelties

 RIGHT OUTER JOIN suppliers

 ON novelties.supplier = suppliers.supplier

Here are the results:

name supplier

Inflatable Dartboard Facepalm LLC

Banana Peel Welcome Mat Facepalm LLC

Non-Reflective Mirror Facepalm LLC

NULL Nov-L-T Industries

Helium Paperweight RUSerious, Ltd.

Sandpaper Bathroom Tissue RUSerious, Ltd.

All-Stick Frying Pan Silly Stuff, Inc.

Water-Resistant Sponge Silly Stuff, Inc.

Note that for those suppliers that don't have a corresponding supplier value in the
novelties table, MySQL returns NULL.

Adding table data with an INSERT query
An INSERT query adds a new row to an existing table. In MySQL, you
build an INSERT query using the INSERT verb:

INSERT

 INTO table (columns)

 VALUES (values)

where:

table is the name of the table into which you want the row
appended.
columns is a comma-separated list of column names from table. The
values you specify will be added to these columns.

values is a comma-separated list of values that you want to add. The
order of these values must correspond with the order of the column
names in the columns parameter.

For example, suppose we have a table named categories that includes
three fields: category_id, category_name, and description. First,
assume that category_id is the table's primary key and its value is
generated automatically by an AUTO_INCREMENT function, which means
you can ignore it when building your INSERT query. Therefore, you can
use the following SQL statement to add a new row:

INSERT

 INTO categories (category_name, description)

 VALUES ('Breads', 'Multi-grain, rye, and other deliciousness')

Modifying table data with an UPDATE query
An UPDATE query modifies the values in one or more columns and
optionally restricts the scope of the updating to those rows that satisfy
some criteria. In MySQL, you build an UPDATE query by using the
UPDATE verb to construct a statement with the following syntax:

UPDATE table

 SET column1=value1,column2=value2,…

 WHERE criteria

where:

table is the table that contains the data you want to update.

column1=value1,column2=value2,and so on are the new values you
want to assign to the specified columns.
criteria is the criteria that define which rows will be updated.

For example, suppose you have a products table and want to increase
the values in the unit_price column by 5 percent for the Beverages
category (category_id = 1). This is the same as multiplying the current
unit_price values by 1.05, so the UPDATE statement looks like this:

UPDATE products

 SET unit_price = unit_price*1.05

 WHERE CategoryID = 1

Removing table data with a DELETE query
A DELETE query removes rows from a table and optionally restricts the
scope of the deletion to those rows that satisfy some criteria. If you don't
include criteria, MySQL deletes every row in the specified table.

In MySQL, you build a delete query by using the DELETE verb to
construct a statement with the following syntax:

DELETE

 FROM table

 WHERE criteria

where:

table is the table that contains the rows you want to delete.

criteria is the criteria that defines which rows will be deleted.

For example, if you want to delete those rows in the products table
where the supplier_id value is 1, you use the following SQL statement:

DELETE

 FROM products

 WHERE supplier_id = 1

Chapter 3
Using PHP to Access MySQL

Data
IN THIS CHAPTER

 Understanding web development’s most enduring marriage
 Connecting to a MySQL database with PHP
 Using PHP to access MySQL data with a SELECT query
 Processing the SELECT query results
 Rendering server data to the browser
 Using PHP to run INSERT, UPDATE, and DELETE queries

PHP and MySQL work together to provide powerful, flexible
components that can keep up with the expanding database driven
development needs of virtually any organization, large or small.

— ISAAC DUNLAP
Run a Google search on the text PHP MySQL "Match made in heaven"
and you'll get more than a few results. I'm not surprised one bit because
it seems as though these two technologies were meant to be together; a
case of love at first byte, as it were.

What’s the secret of their success as a couple? First, it helps that they’re
both free (not the usual prerequisite for marriage success, I know),
which ensures that they’re both widely available and widely supported.
Second, both PHP and MySQL reward a little bit of learning effort with
a lot of flexibility and power right off the bat. Although both are
complex, sophisticated pieces of technology, you need to learn only a
few basics to take your web development skills to a whole new level.

I cover the first two parts of those basics in Chapters 1 and 2 of this
minibook. In this chapter, I bring everything together by showing you
how to combine PHP and MySQL to create the foundation you need to
build truly dynamic and powerful web applications.

Understanding the Role of PHP and
MySQL in Your Web App

Before getting to the trees of actual PHP code, I want to take a moment
to look out over the forest of the server back end, so you’re comfortable
and familiar with the process. Specifically, I want to look at how PHP
and MySQL team up to deliver the back-end portion of a web app.
Rather than getting bogged down in an abstract discussion of what
happens when a user requests a page that requires some data from the
server, I’ll use a concrete example.

The following steps take you through the back-end process that happens
when a hypothetical web app to display this book’s sample code gets a
request for a specific example:

1. Someone requests the web page of a specific book sample page.
Here’s a for instance:

https://example.com/example.php?book=4& chapter=1&example=2

The PHP script file is example.php and the request data — known to
the cognoscenti as a query string — is everything after the question
mark (?): book=4&chapter=1&example=2. This string is requesting
the second example from Book 4, Chapter 1.

2. The web server retrieves example.php and sends it to the PHP
processor.

3. The PHP script parses the query string to determine which sample
the user is requesting.
For the query string shown in Step 1, the script would extract the
book number as 4, the chapter number as 1, and the example number

as 2.
4. The script connects to the database that stores the code samples.
5. The script uses the query string data to create and run a SELECT

query that returns the sample code.
The SELECT statement looks something like this:

SELECT *

 FROM examples

 WHERE book_num=4 AND chapter_num=1 AND example_num=2

6. The script massages the SELECT results into a format readable by
the browser.
This format is usually just HTML, but another popular format is
JSON (JavaScript Object Notation), which you learn about in Book
6, Chapter 1.

7. The web server sends the formatted data to the web browser, which
displays the code sample.

The rest of this chapter expands on Steps 3 through 6.

Using PHP to Access MySQL Data
When used as the back end of a web app, PHP's main job is to interact
with MySQL to retrieve the data requested by the app and then format
that data so that it’s usable by the app for display in the browser. To do
all that, PHP runs through five steps:

1. Get the request parameters from the URL query string.
2. Connect to the MySQL database.
3. Create and run a SELECT query to extract the requested data.
4. Get the data ready to be sent to the browser.
5. Output the data for the web browser.

I talk about INSERT, UPDATE, and DELETE queries later in this
chapter, but the next few sections take you through the details of this

five-step procedure from the point of view of a SELECT query.

 In the sections that follow, I don’t discuss security techniques for
blocking malicious hacking attempts. That’s a crucial topic,
however, so I devote a big chunk of Book 7, Chapter 4 to the all-
important details, which you should read before deploying any
dynamic web apps.

Parsing the query string
Many PHP scripts don’t require any information from the web app to get
the data that the app needs. For example, if the script’s job is to return
every record from a table or to return a predetermined subset of a table,
your app just needs to call the script.

However, it’s more common for a web app to decide on-the-fly (say,
based on user input or some other event) what data it requires, and in
such cases it needs to let the server know what to send. To get your web
app to request data from the web server, you send a query string to the
server. You can send a query string using two different methods:

GET: Specifies the data by adding the query string to the URL of the
request. This is the method I talk about in this chapter.
POST: Specifies the data by adding it to the HTTP header of the
request. This method is associated with HTML forms and some
AJAX requests, which I cover in Book 6.

In the GET case, the query string is a series of name-value pairs that use
the following general form:

name1=value1&name2=value2&…

Here’s an example:
book=4& chapter=1& example=2

In the case of a GET request, you build the request by taking the URL of
the PHP script that will handle the request, adding a question mark (?) to

designate the boundary between the script address and the query string,
and then adding the query string itself. Here’s an example:

https://example.com/example.php?book=4& chapter=1& example=2

Now your PHP script has something to work with, and you access the
query string data by using PHP’s $_GET variable, which is an associative
array created from the query string’s name-value pairs. Specifically, the
array’s keys are the query string’s names, and the array’s values are the
corresponding query string values. For example, the preceding URL
creates the following $_GET array:

$_GET['book'] => 4

$_GET['chapter'] => 1

$_GET['example'] => 2

However, it’s good programming practice to not assume that the $_GET
array is populated successfully every time. You should check each
element of the array by using PHP’s isset() function, which returns
true if a variable exists and has a value other than null. Here's some
PHP code that checks that each element of the preceding $_GET array
exists and isn’t null (check out bk04ch03/example01.php in this book’s
example files):

if (isset($_GET['book'])) {

 $book_num = $_GET['book'];

} else {

 echo 'The "book" parameter is missing!
';

 echo 'We are done here, sorry.';

 exit(0);

}

if (isset($_GET['chapter'])) {

 $chapter_num = $_GET['chapter'];

} else {

 echo 'The "chapter" parameter is missing!
';

 echo 'Sorry it didn\'t work out.';

 exit(0);

}

if (isset($_GET['example'])) {

 $example_num = $_GET['example'];

} else {

 echo 'The "example" parameter is missing!
';

 echo 'You had one job!';

 exit(0);

}

echo 'Got the query string!

 Book number: ' . $book_num . '

 Chapter number: ' . $chapter_num . '

 Example number: ' . $example_num . '
';

This code checks each element of the $_GET array:

If the element exists and isn't null, the code assigns the array value
to a variable.
If the element either doesn’t exist or is null, the code outputs a
message specifying the missing parameter and then stops the code by
running the exit(0) function. (The 0 means that you're terminating
the script in the standard way.)

Connecting to the MySQL database
You give PHP access to MySQL through an object called MySQLi (short
for MySQL Improved). You can actually bring PHP and MySQL together
in several ways, but MySQLi is both modern and straightforward, so it’s
the one I cover in this book.

You connect to a MySQL database by creating a new MySQLi
connection. Here's the general format to use:

$var = mysqli_connect(hostname, username, password, database);

where:

$var is the variable that stores the new MySQLi connection.

hostname is the name of the server running MySQL. If the server is
on the same computer as your script (which is usually the case), you
can use localhost as the hostname.

username is the account name of a user who has access to the
MySQL database.
password is the password associated with the username account.

database is the name of the MySQL database.

Here's a script that sets up the connection parameters by using four
variables, and then creates the new MySQLi connection (check out
bk04ch03/example02.php):

<?php

 $host = 'localhost';

 $user = 'root';

 $password = 'shhhhhhh';

 $database = 'examples';

 $connection = mysqli_connect($host, $user, $password, $database);

?>

However, you shouldn’t connect to a database without also checking that
the connection was successful. Fortunately, MySQLi makes this easy by
setting two properties when an error occurs:

mysqli_connect_errno(): Returns the error number

mysqli_connect_error(): Returns the error message

The mysqli_connect() method returns false if the connection fails, so
your code can use an if() test to check for failure and, in that case,
return the values of mysqli_connect_errno() and
mysqli_connect_error()(bk04ch03/example02.php):

if(!connection) {

 echo 'Connection Failed!

 Error #' . mysqli_connect_errno()

 . ': ' . mysqli_connect_error();

 exit(0);

}

If an error occurs, the code displays a message like the one shown in
Figure 3-1 and then runs exit(0) to stop execution of the script.

FIGURE 3-1: An example of an error number and message generated by the MySQLi object.

Before moving on to querying the database, you need to add two quick
housekeeping chores to your code. First, tell MySQLi to use the UTF-8
character set:

mysqli_set_charset($connection, 'utf8');

In the preceding statement, replace $connection with the name of your
MySQLi connection variable.

Second, use the mysqli_close() method to close the database
connection by adding the following statement at the end of your script
(that is, just before the ?> closing tag):

$mysqli_close($connection);

Again, remember to replace $connection with the name of your
MySQLi connection variable.

Creating and running the SELECT query
To run a SELECT query on the database, you need to create a string
variable to hold the SELECT statement and then use that string to run
MySQLi's mysqli_query() method:

mysqli_query(connection, sql)

where:

connection is the MySQLi connection to the database.

sql is the SQL SELECT statement you want to use the query the
database.

Here’s an example (bk04ch03/example03.php):
$sql = 'SELECT category_name, description

 FROM categories';

$result = mysqli_query($connection, $sql);

// Check for a query error

if (!$result) {

 echo 'Query Failed!

 Error: ' . mysqli_error($connection);

 exit(0);

}

The result of the query is stored in the $result variable. You might
think that this variable now holds all the data, but that's not the case.
Instead, $result is an object that contains information about the data,
not the data itself. You make use of that information in the next section,
but for now note that you can use the result object to check for an error
in the query. That is, if $result is null, the query failed, so display the
error message (using MySQLi’s mysqli_error() method) and exit the
script.

 If you want to know how many rows the SELECT query
returned, you can use the mysqli_num_rows() method on the result
object:

$total_rows = mysqli_num_rows($result);

Storing the query results in an array
The object returned by the mysqli_query() method is really just a
pointer to the actual data, but you can use the object to retrieve the
SELECT query's rows. You can do this in various ways, but I go the
associative array route, which uses the MySQL's mysqli_fetch_all()
method to return all the rows as an associative array:

$array = $mysqli_fetch_all(result, MYSQLI_ASSOC);

where:

$array is the name of the associative array you want to use to hold
the query rows
result is the result object returned by MySQLi's mysqli_query()
method

 If you prefer to work with a numeric array, replace the
MYSQLI_ASSOC constant with MYSQLI_NUM.

Note that the array is two dimensional, which makes sense because table
data is two-dimensional (that is, it consists of one or more rows and one
or more columns).

I’ll make this more concrete by extending the example
(bk04ch03/example03.php):

// Create a SELECT query

$sql = 'SELECT category_name, description

 FROM categories';

// Run the query

$result = mysqli_query($connection, $sql);

// Check for a query error

if (!$result) {

 echo 'Query Failed!

 Error: ' . mysqli_error($connection);

 exit(0);

}

// Get the query rows as an associative array

$rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

// Get the total number of rows

$total_rows = mysqli_num_rows($result);

echo "Returned $total_rows categories:
";

Here, mysqli_fetch_all() stores the query result as an array named
$rows. The code then uses mysqli__num_rows() to get the total number
of rows in the array.

Looping through the query results
By storing the query results in an array, you make it easy to process the
data by looping through the array using a foreach() loop
(bk04ch03/example03.php):

// Get the query rows as an associative array

$rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

[skip some code]

// Loop through the rows

foreach($rows as $row) {

 echo $row['category_name'] . ': ' . $row['description'] . '
';

}

Here's what’s happening in the foreach() loop:

Each item in the $rows array is referenced using the $row variable.

Each $row item is itself an associative array, where the key-value
pairs are the column names and their values.
Because the keys of the $row array are the column names, the code
can refer to the values using the $row['column'] syntax.

Figure 3-2 shows the output of the script.

FIGURE 3-2: The output of the PHP script.

Incorporating query string values in the query
I talk earlier in this chapter about how you can use $_GET to parse a
URL's query string, so now I show you an example that uses a query
string value in a SELECT query. First, here’s the code
(bk04ch03/example04.php):

<?php

 // Parse the query string

 if (isset($_GET['category'])) {

 $category_num = $_GET['category'];

 } else {

 echo 'The "category" parameter is missing!
';

 echo 'We are done here, sorry. ';

 exit(0);

 }

 // Store the database connection parameters

 $host = 'localhost';

 $user = 'root';

 $password = 'shhhhhhh';

 $database = 'northwind;

 // Create a new MySQLi object with the database connection parameters

 $connection = mysqli_connect($host, $user, $password, $database);

 // Create a SELECT query

 // This is an INNER JOIN of the products and

 // categories tables, based on the category_id

 // value that was in the query string

 $sql = "SELECT products.product_name,

 products.unit_price,

 products.units_in_stock,

 categories.category_name

 FROM products

 INNER JOIN categories

 ON products.category_id = categories.category_id

 WHERE products.category_id = $category_num";

 // Run the query

 $result = mysqli_query($connection, $sql);

// Get the query rows as an associative array

 $rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

 // Get the category name

 $category = $rows[0]['category_name'];

?>

First, note that to keep the code shorter, I removed the error-checking
code. There’s quite a bit going on here, so I’ll go through it piece by
piece:

The script resides in an HTML file, and you’d load the file using a
URL that looks something like this:

https://example.com/example04.php?category=1

The first part of the script uses $_GET['category'] to get the
category number from the query string, and that value is stored in the
$category_num variable.

The script then builds a SQL SELECT statement, which is an inner
join on the products and categories tables. The WHERE clause
restricts the results to just those products that have the category value
from the query string:

WHERE products.category_id = $category_num

The mysqli_query() method runs the SELECT query and stores the
result in the $result object.

The mysqli_fetch _all() method fetches the data as an associative
array that gets stored in the $rows object.

The category name is stored in a variable.

The final step is to render the fetched data to the web browser.

Rendering the data to the browser
Later in the book (see, in particular, Book 6), you learn how to use
JavaScript to not only fetch data from the server by calling a PHP script,
but also to write that data to the web page. However, in many cases it’s
faster and more straightforward to use PHP to write the data directly to
the page. This is called rendering the data to the browser, and it’s one of
the most important and widely used PHP techniques for web developers.

The underlying idea is that within a .php file, you can intermingle both
PHP code and HTML code. In most applications, this intermingling
happens as follows:

1. Populate the file with your regular HTML code.

2. At the top of the file (that is, above the <!DOCTYPE html> tag), add a
PHP block (that is, PHP code between <?php and ?>) that performs
all the actions required to get the page data from the server:
connecting to the database; gathering the query string values;
creating an SQL statement; running the query; and fetching the query
data.

3. Within your HTML code, insert small PHP blocks (again, I'm talking
about PHP code between <?php and ?>) that perform the rendering of
the data. These smaller blocks will usually do one or both of the
following:

Insert some structural PHP code, such as the code that starts
and ends a foreach loop.

Insert PHP code that writes data to the page, usually in the
form echo data, where data is a reference (such as a variable
name) to the data you want to write.

 If you're worried about web surfers having access to sensitive
PHP code such as your database connection parameters, you can
unfurrow your brow because all code in a PHP block is executed on
the server and then stripped when the file is sent to the web
browser.

I’ll now demonstrate the intermingling of HTML and PHP using the file
bk04ch03/example04.php in this book’s example files. The top of
example04.php looks like this:

<?php

 // Parse the query string

 if (isset($_GET['category'])) {

 $category_num = $_GET['category'];

 } else {

The rest of the PHP code (refer to the previous section) goes here.

 // Get the query rows as an associative array

 $rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

 // Get the category name

 $category = $rows[0]['category_name'];

?>

<!DOCTYPE html>

The top of the file contains all the PHP code from the preceding section.
The last line is the beginning of the HTML code, which continues as
follows:

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Products - <?php echo $category; ?></title>

 <style>

 .align-left {

 text-align: left;

 }

 .align-right {

 text-align: right;

 width: 75px;

 }

 </style>

</head>

In this code, you see the first PHP data rendering as part of the <title>
tag:

<?php echo $category; ?>

This code uses echo to output the value of the $category variable. So,
for example, if the value of the $category variable is the string
Beverages, the web browser will render the <title> tag as follows:

<title>Products - Beverages</title>

A similar rendering happens at the top of the page body:
<body>

 <h2><?php echo $category; ?></h2>

 <table>

 <tr>

 <th class="align-left">Product</th>

 <th class="align-right">Price</th>

 <th class="align-right">In Stock</th>

 </tr>

Again, the code uses echo to output the value of the $category variable,
this time between the <h2> and </h2> tags. Note, as well, that the HTML
then sets up the top part of a table. The rest of the table gets populated
with a combination of PHP code and HTML tags:

<?php

 // Loop through the rows

 foreach($rows as $row) {

?>

 <tr>

 <td><?php echo $row['product_name']; ?></td>

 <td class="align-right"><?php echo $row['unit_price']; ?></td>

 <td class="align-right"><?php echo $row['units_in_stock']; ?></td>

 </tr>

<?php

 }

?>

 </table>

No less than five PHP blocks are at work here:

The first block sets up the beginning of a foreach loop to run
through the associative array of data returned by the query.
Between the first set of <td></td> tags, echo
$row['product_name']; outputs the name of the current product.

Between the second set of <td></td> tags, echo
$row['unit_price']; outputs the unit price of the current product.

Between the third set of <td></td> tags, echo
$row['units_in_stock']; outputs the units in stock for the current
product.
The final PHP code block closes the foreach loop with the right
brace (}).

The PHP file ends with the following code:
<?php

 // That's it for now

 mysqli_close($connection);

?>

</body>

</html>

A final PHP block closes the database connection, and then the closing
HTML tags appear. Figure 3-3 shows the resulting page.

FIGURE 3-3: The output of the script, which lays out the query data in an HTML table.

Creating and Running Insert,
Update, and Delete Queries

Performing INSERT, UPDATE, and DELETE queries in PHP is much
simpler than performing SELECT queries because once your code has
checked whether the query completed successfully, you're done. Here's
an example that runs an INSERT query (bk04ch03/example05.php):

<?php

 // Store the database connection parameters

 $host = 'localhost';

 $user = 'root';

 $password = 'shhhhhhh';

 $database = 'northwind';

 // Create a new MySQLi object with the database connection parameters

 $connection = mysqli_connect($host, $user, $password, $database);

// Check for a connection error

 if(!$connection) {

 echo 'Connection Failed!

 Error #' . mysqli_connect_errno()

 . ': ' . mysqli_connect_error();

 exit(0);

 } else {

 echo 'So far, so good!';

 }

 // Create an INSERT query

 $sql = "INSERT

 INTO categories (category_name, description)

 VALUES ('Breads', 'Multi-grain, rye, and other deliciousness')";

 // Run the query

 $result = mysqli_query($connection, $sql);

 // Check for a query error

 if (!$result) {

 echo 'Query Failed!

 Error: ' . mysqli_error($connection);

 exit(0);

 }

?>

When given an INSERT, UPDATE, or DELETE statement, MySQLi’s
mysqli_query() method returns true if the query executed successfully,
or false if the query failed.

Separating Your MySQL Login
Credentials

When you’re building a web app or some other medium-to-large web
project that requires a back end, you’ll soon notice that your PHP scripts
that access the project’s MySQL data begin to multiply in a rabbitlike
fashion. Before you know it, you’ve got 10 or 20 such scripts lying

around. What do these scripts have in common? They all include the
same code for connecting to the project’s MySQL database. It’s not a big
deal to just copy and paste that code into each new script, but it can be a
huge deal if one day you have to change your login credentials. For
example, for security reasons you might decide to change the password.
That means you now have to wade through every single one of your
scripts and make that change. Annoying!

A better way to go is to make use of PHP’s require statement, which
enables you to insert the contents of a specified PHP file into the current
PHP file:

require php_file;

where php_file is the path and filename of the PHP file you want to
insert.

So, what you do is take your MySQL database credentials code and
paste it into a separate PHP file:

<?php

 $host = 'localhost';

 $user = 'root';

 $password = 'shhhhhhh';

 $database = 'northwind';

?>

Say this file is named credentials.php. If it resides in the same
directory as your scripts, you’d replace the credentials code in your PHP
scripts with the following statement:

require 'credentials.php';

If the credentials file resides in a subdirectory, you need to include the
full path to the file:

require '/includes/credentials.php';

Note that if PHP can’t find or load this file for some reason, the script
will halt with an error.

Book 5
Debugging Your Code

Contents at a Glance
Chapter 1: Debugging CSS Code

Displaying the Web Development Tools

Inspecting an Element

Editing a Property Value

Disabling a Declaration

Adding an Inline Declaration to an Element

Adding an Element Declaration to the Inspector Stylesheet

Adding a Class to an Element

Simulating a Pseudo-Class State

Chapter 2: Debugging JavaScript Code
Understanding JavaScript’s Error Types

Getting to Know Your Debugging Tools

Debugging with the Console Window

Pausing Your Code

Stepping Through Your Code

Monitoring Script Values

More Debugging Strategies

The 10 Most Common JavaScript Errors

The 10 Most Common JavaScript Error Messages

Chapter 3: Debugging PHP Code
Configuring php.ini for Debugging

Accessing the PHP Error Log

Outputting Variable Values

Chapter 1
Debugging CSS Code

IN THIS CHAPTER
 Getting your browser’s dev tools onscreen
 Inspecting an element’s styles
 Editing CSS property values
 Adding CSS on the fly
 Simulating pseudo-classes

CSS, like other languages, becomes easier to debug when you take time
to learn a bit about its quirks. It also helps to become familiar with tools
to help you both debug and prevent creating bugs in the first place.

— STEPHANIE ECKLES
CSS is awesome. With just a few rules, you can turn a drab, lifeless page
into a work of art that is a pleasure to read and will have your visitors
clamoring for more.

CSS is also a pain in the you-know-what. You add what appears to be a
straightforward rule to your CSS, save your work, refresh your browser
and … nothing changes! Or maybe things change, but not in the way
you expected. Cue the cartoon steam shooting out your ears.

Let me say at this point that although these kinds of frustrations are the
stuff of legend in the CSS community, they do not mean, as some folks
would have it, that CSS is illogical or stupid or broken. A large group of
dedicated and smart people create the CSS standards and, believe me,
these folks know what they’re doing! It may be a tough pill to swallow,
but the truth is that if your CSS seems to be behaving illogically or
stupidly or brokenly, it means your code is to blame, not CSS itself.

That’s okay, though, because there’s a way out of every CSS jam. When
you stumble upon a particularly ornery CSS problem, you can turn to
your favorite browser’s web development tools (which all the cool kids
shorten to dev tools). These tools provide plenty of features to help you
troubleshoot wonky CSS code, as you discover in this chapter.

In this chapter, I use the example page shown in Figure 1-1 which has a
crowded top-left corner that I want to debug. (In the book’s example
files, check out bk05ch01/example01.html.)

FIGURE 1-1: The web page that I’ll debug.

Displaying the Web Development
Tools

Most web developers debug their CSS using Google Chrome, so I focus
on that browser in this chapter. But here’s how you open the web

development tools in not only Chrome but also the various flavors of
Firefox, Microsoft Edge, and Safari:

Chrome for Windows: Click Customize, click the control Google
Chrome icon (three vertical dots to the right of the address bar), and
then choose More Tools⇒  Developer Tools. Shortcut: Ctrl+Shift+I.
Chrome for Mac: Choose View⇒  Developer⇒  Developer Tools.
Shortcut: Option+⌘  +I.
Firefox for Windows: Click the open Application menu icon (three
horizontal lines on the far right of the toolbar) and then choose More
Tools ⇒  Web Developer Tools. Shortcut: Ctrl+Shift+I.
Firefox for Mac: Choose Tools⇒  Browser Tools⇒  Web Developer
Tools. Shortcut: Option+⌘  +I.
Microsoft Edge: Click the settings and more icon (three vertical
dots to the right of the address bar), and then choose More Tools⇒  
Developer Tools. Shortcut: Ctrl+Shift+I.
Safari: Choose Develop⇒  Show Web Inspector. Shortcut:
Option+⌘  +I. If the Develop menu isn’t around, select Safari⇒  
Settings, click the Advanced tab, and then select the Show Develop
Menu in Menu Bar check box.

 In all browser development tools, you can configure where the
pane appears in relation to the browser window. In Chrome, click
the customize icon (three vertical dots near the upper-right corner
of the dev tools) and then click the dock to right, dock to bottom, or
dock to left icon (see Figure 1-2). if you prefer a floating pane that
you can move around, click the undock icon.

FIGURE 1-2: Choose where the development tools pane appears in the browser window.

Inspecting an Element
If an element on the page doesn’t look right or has gone awry in some
other way, the most basic CSS debugging technique is to examine how
the web browser has interpreted your CSS code. This is known as
inspecting the element.

To begin your inspection of any element on a web page, use the
following techniques:

If you don’t already have your browser’s web development tools
open, right-click the element and then click Inspect (or, in Safari,
Inspect Element). This opens your browser’s development tools,
displays the Elements tab (it’s called Inspector in Firefox), and
highlights the element’s HTML.
If your browser’s web development tools are already open, click the
Elements tab (the Inspector tab in Firefox), and then click the tag of

the element you want to inspect.
If the web development tools are already open, click the select an
element icon (labeled in Figure 1-3) and then click an element on the
rendered page.

Figure 1-3 shows the page from Figure 1-1 with the header's img element
selected.

FIGURE 1-3: Inspecting the img element.

There are two things to note here:

The left side of the tab shows the page’s HTML code as it was
interpreted by the browser.

When you hover the mouse pointer over an element, the browser
highlights the element in the rendered page and displays the
element’s dimensions.

Inspecting an element’s styles
When you click an element in the HTML code, the Styles subtab on the
right shows the style rules that have been applied to the element. (In
some browsers, particularly Safari and Firefox, there’s a separate Styles
pane in the middle.) There are usually two or three types of style rules:

The style rules that you created. To the right of each rule, the
browser displays the filename of the rule’s source code and the line
number where the rule appears in that file.
Rules from your CSS reset, if you’re using one.
Rules where the location is user agent stylesheet, which means
these are rules applied by the browser.

 The order of the rules isn't random. On the contrary, the browser
orders the rules by their relative importance — or weight, as CSS
types call it — with the most important rules at the top. How does
the browser decide which rules are more important than others? Ah,
that’s a topic I cover in Book 2, Chapter 2.

 If the list of rules for an element is long, you can zero in on a
particular rule by typing all or part of the rule’s selector in the Filter
text box. For example, if you type header, the browser filters the
rules to include only those that have header somewhere in the
selector.

When you’re debugging your styles, one of the first things you should
look for is a line through a style declaration. This line tells you one of

two important things:

The declaration has been overridden by another declaration
elsewhere in the CSS. For example, check out the Styles subtab in
Figure 1-4. At the bottom, notice the line through the nav element's
display: block declaration, which came from the user agent
stylesheet. That declaration was overridden by the display: flex
declaration that I added to the nav element in my CSS. (Refer to
Book 2, Chapter 4 to learn about laying out page elements with
Flexbox.)
The declaration is wrong in some way. If there's a line through the
declaration and also a warning icon to its left, the web browser
couldn’t process the declaration, either because the browser doesn’t
support the property or value or because the property or value is
invalid. For example, in the Styles subtab shown in Figure 1-5, one
of the a element declarations has a line through it and a warning icon
next to it. Why? Upon closer inspection, you can read that the
property name is font-varaint, but it's supposed to be font-
variant.

FIGURE 1-4: A line through a declaration tells you it has been overridden by another
declaration.

FIGURE 1-5: The browser displays a warning icon and a crossed-out declaration for
unsupported or invalid properties or values.

Inspecting an element’s box model
If the spacing within or around an element isn’t what you were
expecting, some kind of problem with the box model — that is, the
element’s padding, border, margin, width, or height — should be your
first suspect. Click the element you want to inspect and then click the
Computed tab.

The browser shows the element’s box model abstractly as a series of
concentric rectangles (check out Figure 1-6), where the innermost
rectangle is the content box, and then successive rectangles represent the
padding, the border, and finally the margin. The content box shows the
width and height of the element, with each of the other rectangles
showing the four values (top, right, bottom, and left) for the
corresponding box model component.

FIGURE 1-6: The browser displays an element’s box model as a series of concentric
rectangles.

How does all this help for debugging? Viewing the values that the
browser is using for padding and margin, in particular, can help you
solve spacing problems. For example, back in Figure 1-1, note that the
header image in the upper-left corner has no space around it. To
understand why, I can inspect the img element. Lo and behold, as shown
in the Figure 1-7, that element has no padding or margins (that is, the
browser displays dashes instead of values), which explains why the
image is being crowded by its web page neighbors.

FIGURE 1-7: The img element's box model tells us that it has no margin or padding set.

Inspecting an element’s computed styles
An element’s computed styles are the final property values calculated by
the browser after weighing all available CSS rules (such as the default
user agent styles, your CSS reset, and the styles you define). If an
element isn’t displaying the way you thought it would, its computed
styles can at least tell you why the browser is rendering the element the
way it is.

In the browser’s web development tools, the Elements tab includes a
Computed subtab that displays the computed styles for the selected
element, as shown in Figure 1-8. To figure out where the web browser
got its computed value, click the expansion triangle to the left of a
property, which reveals the location of the rule the browser is using.

FIGURE 1-8: The Computed tab shows the selected element’s computed styles.

 If the Computed tab has a long list of properties, you can make it
easier to find the one you want by selecting the Group check box to
organize the properties by category (such as Layout, Text, and
Appearance).

 By default, the Computed tab shows only those properties where
the browser's calculated values are different than the browser's
defaults. To inspect every property, including the unchanged default
values, select the Show All check box.

Inspecting an element’s layout
The final feature of the Elements tab that you might find useful for
troubleshooting CSS is the Layout tab, which offers tools for visualizing
layouts that use the following technologies:

CSS Grid: Enables you to add an overlay that shows the grid and its
track numbers. You can also optionally view track sizes, named
areas, and extended grid lines. Refer to Book 2, Chapter 4 to learn
how to lay out a page using CSS Grid.
Flexbox: Enables you to add a simple overlay to help you visualize
your flex container and its items. Refer to Book 2, Chapter 4 to learn
how to lay out a page using Flexbox and how to use the overlay to
inspect a flex layout.

Editing a Property Value
If the web development tools were just about inspecting CSS, they’d be
useful, for sure, but hardly game changing. Fortunately, your browser’s
development tools enable you to not only view the current CSS but also
change it. That is, you can make temporary, on-the-fly adjustments to
just about any property value. As soon as you edit an existing property

value, the browser automatically updates the rendered page to reflect the
change.

Why is this a game-changer? Because normally to make a change, you’d
have to go back to your HTML or CSS file, edit the CSS as needed, save
your work, possibly upload the edited file, switch to your browser, and
then refresh the page. And if the edit didn't give you the result you want
and you decided to try something else, you'd need to go back to the CSS
and reverse the change you just made.

That’s a lot of work for what is, most of the time, a small adjustment to a
property value. With the web development tools, you can make that
change quickly and without messing with your original code. There’s no
muss and not even a little fuss.

Here’s how it works:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. On the Styles subtab, click the property value you want to edit.
The browser opens the value for editing.

3. Edit the value.
You can edit the property value in the following ways:

To replace the entire value: Just type the new value. This
works because when you first click the property value, the
browser selects the entire entry, so your typing replaces that
selection.
To select a new value from a list: Press Delete to remove the
current value, and then click the new value from the list the
browser displays. Note that this technique works only for
property values that accept a defined set of keywords as
values.
To edit only part of the property value: Click the value a
second time to place an insertion point cursor inside the field;
then make your edits.

To increment the current numeric value: Press the up arrow
key; to decrement the current numeric value, press the down
arrow key.

4. When you’re done with your changes, press Enter or Return.

For a box model property, you can also edit the values directly on the
box model representation (refer to Figure 1-6) in the Computed tab.
Here’s how it works:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. Click the Computed tab.
3. In the box model, double-click the value you want to edit.

In the content box, double-click either the width or the height to edit
that value. Otherwise, in the padding, border, or margin rectangle,
double-click the existing top, right, bottom, or left value.
The browser opens the value for editing.

4. Type the new value, and then press Enter or Return.

Disabling a Declaration
A useful what-if question to ask yourself when you’re debugging CSS is,
“What if declaration A wasn’t in rule B?” In other words, how would the
browser render an element differently if that element’s rule didn’t
include a particular declaration?

No need to go back to your CSS source code and comment out that
declaration. Instead, your browser’s web development environment
makes it a snap to disable any rule that’s not a default user agent
stylesheet rule. Here’s how:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. On the Styles subtab, hover your mouse pointer over the rule
that contains the declaration you want to disable.
The browser displays a check box to the left of each declaration in
the rule, as shown in Figure 1-9.

FIGURE 1-9: Hovering the mouse pointer over a rule adds check boxes beside
each declaration.

3. Deselect the check box for the declaration you want to disable.
The browser displays the effect of disabling the declaration. When
you’re ready to enable the declaration again, repeat Steps 1 and 2
and then select the check box.

Adding an Inline Declaration to an
Element

Rather than have you disable an existing declaration, as I describe in the
previous section, your CSS troubleshooting chores might require you to
add a declaration to an element. Happily, as with disabling a declaration,
you don’t need to modify your existing CSS to add a declaration because
you can perform this task within the convenient confines of the web
development tools.

Here are the steps to follow to add a declaration:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. On the Styles subtab, click the element.style rule (it’s at the top
of the list of styles, just below the Filter box).
The browser creates an empty CSS declaration and places the cursor
in the property field, just before the colon (:).

3. Start typing the CSS property you want to use. In the list of
properties that match what you’ve typed, click the property
when it appears; then press Tab.
The browser moves the cursor to the empty value field.

4. Either type the property value you want to use or select the value
from the list (if any) that appears.
The browser adds a new inline declaration to the element’s tag and
updates the rendered element with the new property value, as shown
in Figure 1-10.

FIGURE 1-10: You can add new declarations to an element.

Adding an Element Declaration to
the Inspector Stylesheet

As is shown in Figure 1-10, the browser adds a style attribute to the
element's tag. That’s fine, but inline styles create a lot of weight (in the
CSS sense; refer to Book 2, Chapter 2’s discussion of the cascade to
learn more), which might not give you an accurate picture of things. A
better method — that is, one that creates a bit less weight — is to add the
new rule to a special stylesheet called the inspector stylesheet. The
inspector stylesheet is a temporary set of styles that the browser uses
only while you’re inspecting elements. Any rules you add to the
inspector stylesheet will override your own rules, which is what you
want.

Here are the steps to follow to add a new rule to the inspector stylesheet:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. On the Styles subtab toolbar, click the new style rule icon
(labeled in Figure 1-11).
The browser starts a new rule using the element selector that has the
highest importance. It also opens the selector field for editing.

3. Modify the rule’s selector as needed, and then press Tab.
The browser creates an empty CSS declaration and places the cursor
in the property field, just before the colon (:).

4. Start typing the CSS property you want to use. In the list of
properties that match what you’ve typed, click the property
when it appears, and then press Tab.
The browser moves the cursor to the empty value field.

5. Either type the property value you want to use or select the value
from the list (if any) that appears.
The browser adds the new rule to the inspector stylesheet and
updates the rendered element with the new declaration, as shown in

Figure 1-11.

FIGURE 1-11: You can add new rules to the inspector stylesheet.

 You can edit the inspector stylesheet by clicking the inspector-
stylesheet link that appears to the right of your new rule. After
you have the inspector stylesheet open for editing, feel free to use
any selector you want to add new rules, including class rules, which
you can then add to the element, as I describe in the next section.

Adding a Class to an Element
Another useful what-if question to ask when debugging a recalcitrant
element is, “What if I applied a class to that element?” That is, if a
particular class is already defined somewhere in your CSS, would
adding that class to the element — inserting the class name into the tag’s
class attribute — solve the problem? Good question!

To add an existing class — one where a rule that uses that class as the
selector, which could be in your own CSS, a third-party CSS file, or the
inspector stylesheet — to an element, follow these steps:

1. In the Elements tab of the browser development tools, click the
element you want to modify.

2. On the Styles subtab toolbar, click the .cls button.
The browser displays the Add New Class text box.

3. Type the name of the class, and then press Enter or Return.
As shown in Figure 1-12, the browser adds a class attribute to the
element (if that attribute wasn't already there) and adds the class
name as the value. The browser also adds a check box for the class to
the Styles subtab, which enables you to quickly disable and enable
the class.

FIGURE 1-12: You can add a class to the element.

Simulating a Pseudo-Class State
In Book 2, Chapter 2, I briefly discuss pseudo-classes and how useful
they are as selectors. Several pseudo-classes deal with user behavior,
such as the user hovering the mouse pointer over an element, the user
putting the focus on an element, and the user clicking a button.

One conundrum you may come across when debugging your CSS is that
your pseudo-class rules don’t show up in the Styles pane of your

browser’s web development tools. That’s a pain because what if you
want to try out new or modified values in your pseudo-class rules?

Fear not, dear debugger, because your web development tools have you
covered with a feature that enables you to quickly toggle several element
states on and off. When you toggle on a state such as hover, the browser
adds your :hover pseudo-class rule to the Styles pane and you can play
around with that rule as needed.

Click the element you want to work with. (For example, if you’re
following along using bk05ch01/example02.html, click any a element in
the nav element.) Then, on the Styles subtab toolbar, click the :hov
button. The browser displays the collection of check boxes shown in
Figure 1-13. Each check box corresponds to a pseudo-class: :active,
:hover, :focus, and so on. To simulate a particular state and therefore
display whatever rule uses that pseudo-class as its selector, select the
check box. Deselect the check box to deactivate the element state.

FIGURE 1-13: You can simulate pseudo-class states such as :active and :hover.

Chapter 2
Debugging JavaScript Code

IN THIS CHAPTER
 Learning JavaScript’s error types
 Debugging errors by using the Console window
 Setting breakpoints
 Watching variable and expression values
 Learning JavaScript’s most common errors and error messages

Testing proves a programmer’s failure. Debugging is the programmer’s
vindication.

— BORIS BEIZER
It usually doesn’t take too long to get short scripts and functions up and
running. However, as your code grows larger and more complex, errors
inevitably creep in. In fact, it has been proven mathematically that any
code beyond a minimum level of complexity will contain at least one
error, and probably quite a lot more.

Many of the bugs that crawl into your code will consist of simple syntax
problems that you can fix quickly, but others will be more subtle and
harder to find. For the latter — whether the errors are incorrect values
returned by functions or problems with the overall logic of a script —
you need to be able to get inside your code to scope out what’s wrong.

The good news is that JavaScript and modern web browsers offer a ton
of top-notch debugging tools that can remove some of the burden of
program problem solving. In this chapter, you delve into these tools to
explore how they can help you find and fix most programming errors.
You also investigate a number of tips and techniques that can go a long
way in helping you avoid coding errors in the first place.

Understanding JavaScript’s Error
Types

When a problem occurs, the first thing you need to determine is what
kind of error you’re dealing with. The three basic error types are syntax
errors, runtime errors, and logic errors.

Syntax errors
Syntax errors arise from misspelled or missing keywords or incorrect
punctuation. JavaScript almost always catches these errors when you
load the page (which is why syntax errors are also known as load-time
errors). That is, as JavaScript reads the script’s statements, it checks
each one for syntax errors. If it finds an error, it stops processing the
script and displays an error message. Here’s an example statement
(check out bk05ch02/example01.html in this book’s example files) with
a typical syntax error (can you spot it?). Figure 2-1 shows how the error
is flagged in the Firefox Console window.

const pageFooter - document.querySelector("footer");

FIGURE 2-1: The Firefox Console window displaying data about a typical syntax error.

Runtime errors
Runtime errors occur during the execution of a script. They generally
mean that JavaScript has stumbled upon a statement that it can’t figure
out. A runtime error might be caused by trying to use an uninitialized
variable in an expression or by using a property or method with the
wrong object.

If your script has statements that execute as the page loads, and no
syntax errors have been found, JavaScript will attempt to run those
statements. If it comes across a statement with a problem, it halts
execution of the script and displays the error. If your script has one or
more functions, JavaScript doesn’t look for runtime errors in those
functions until you call them.

Here’s some code (check out bk05ch02/example02.html) in which I
misspelled a variable name in the third line (pagefooter instead of
pageFooter). Figure 2-2 shows the Chrome Console window displaying
the runtime error that results.

const pageFooter = document.querySelector("footer");

const currDate = new Date();

pagefooter.innerHTML = "Copyright " + currDate.getFullYear() + " Logophilia

Limited.";

FIGURE 2-2: The Chrome Console window displaying data about a typical runtime error.

Logic errors
If your code zigs instead of zags, the cause is usually a logic error,
which is a flaw in the logic of your script. It might be a loop that never
ends or a switch test that doesn't switch to anything.

Logic errors are the toughest to pin down because you don’t get an error
message to give you clues about what went wrong and where. What you
usually need to do is set up debugging code that helps you monitor

values and trace the execution of your program. I go through the most
useful debugging techniques later in this chapter.

 WHY ARE PROGRAM ERRORS
CALLED BUGS?

The computer scientist Edsger Dijkstra once quipped, “If debugging is the process of
removing bugs, then programming must be the process of putting them in.” But why on
Earth do we call programming errors “bugs”? A popular and appealing tale claims to
explain how the word bug came about. Apparently, the early computer pioneer Grace
Hopper was working on a machine called the Mark II in 1947. While investigating a
glitch, she found a moth among the vacuum tubes, so from then on glitches were called
bugs. Appealing, yes, but true? Not quite. In fact, engineers had already been referring
to mechanical defects as bugs for at least 60 years before Ms. Hopper’s discovery. As
proof, the Oxford English Dictionary offers the following quotation from an 1889 edition
of the Pall Mall Gazette:

Mr. Edison, I was informed, had been up the two previous nights discovering ‘a
bug’ in his phonograph — an expression for solving a difficulty, and implying
that some imaginary insect has secreted itself inside and is causing all the
trouble.

Getting to Know Your Debugging
Tools

All major web browsers come with a sophisticated set of debugging
tools that can make your life as a web developer much easier and much
saner. Most web developers debug their scripts using Google Chrome, so
I focus on that browser in this chapter. But in this section, I give you an
overview of the tools available in all the major browsers and how to get
at them.

Here’s how you open the web development tools in Chrome, Firefox,
Microsoft Edge, and Safari:

Chrome for Windows: Click Customize, click the Control Google
Chrome icon (three vertical dots to the right of the address bar), and
then choose More Tools⇒  Developer Tools. Shortcut: Ctrl+Shift+I.
Chrome for Mac: Choose View⇒  Developer⇒  Developer Tools.
Shortcut: Option+⌘  +I.
Firefox for Windows: Click the open Application menu icon (three
horizontal lines on the far right of the toolbar), and then choose More
Tools ⇒  Web Developer Tools. Shortcut: Ctrl+Shift+I.
Firefox for Mac: Choose Tools⇒  Browser Tools⇒  Web Developer
Tools. Shortcut: Option+⌘  +I.
Microsoft Edge: Click Settings, click the more icon (three vertical
dots to the right of the address bar), and then choose More Tools⇒  
Developer Tools. Shortcut: Ctrl+Shift+I.
Safari: Click Develop⇒  Show Web Inspector. Shortcut: Option+⌘  
+I. If you don’t have the Develop menu, click Safari⇒  Settings, click
the Advanced tab, and then select the Show Develop Menu in Menu
Bar check box.

These development tools vary in the features they offer, but each
provides the same set of basic tools, which are the tools you’ll use most
often. These basic web development tools include the following:

HTML viewer: This tab (called Inspector in Firefox and Elements
in the other browsers) shows the HTML source code used in the web
page. When you hover the mouse pointer over a tag, the browser
highlights the element in the displayed page and shows its width and
height, as shown in Figure 2-3. When you click a tag, the browser
shows the CSS styles applied with the tag, as well as the tag’s box
dimensions (again, refer to Figure 2-3).

FIGURE 2-3: The HTML viewer, such as Chrome’s Elements tab, enables you to
inspect each element’s styles and box dimensions.

Console: This tab enables you to view error messages, log messages,
test expressions, and execute statements. I cover the Console
window in more detail in the next section.
Debugging tool: This tab (called Debugger in Firefox and Sources
in the other browsers) enables you to pause code execution, step
through your code, watch the values of variables and properties, and
much more. This is the most important JavaScript debugging tool, so
I cover it in detail later in this chapter.
Network: This tab tells you how long it takes to load each file
referenced by your web page. If you find that your page is slow to
load, this tab can help you find the bottleneck.
Web storage: This tab (called Application in Chrome and Edge and
Storage in Firefox and Safari) enables you to examine data stored in
the browser using the Web Storage API, which I discuss in Book 3,
Chapter 10.

Debugging with the Console
Window

If your web page is behaving strangely — for example, the page is blank
or missing elements — you should first check your HTML code to make
sure it’s correct. (Common HTML errors are not finishing a tag with a
greater than sign — > — not including a closing tag, and missing a
closing quotation mark for an attribute value.) If your HTML checks out,
there’s a good chance that your JavaScript code is wonky. How do you
know? A trip to the Console window is your first step.

The Console window is an interactive browser window that shows
warnings and errors, displays the output of console.log() statements,
and enables you to execute expressions and statements without having to
run your entire script. The Console window is one of the handiest web
browser debugging tools, so you need to know your way around it.

Displaying the Console window in various
browsers
To display the Console window, open your web browser’s development
tools and then click the Console tab. You can also use the following
keyboard shortcuts:

Chrome for Windows: Press Ctrl+Shift+J.
Chrome for Mac: Press Option+⌘  +J.
Firefox for Windows: Press Ctrl+Shift+K.
Firefox for Mac: Press Option+⌘  +K.
Microsoft Edge: Press Ctrl+Shift+J.
Safari: Press Option+⌘  +C.

Logging data to the Console window

You can use the console.log() method of the special Console object to
print text and expression values in the Console window:

console.log(output)

where output is the expression you want to print in the Console window.
The output expression can be a text string, a variable, an object
property, a function result, or any combination of these.

 You can also use the handy console.table() method to output
the values of arrays or objects in an easy-to-read tabular format:

console.table(output)

where output is the array or object (as a variable or as a literal) you
want to view in the Console window.

For debugging purposes, you most often use the Console window to
keep an eye on the values of variables, object properties, and
expressions. That is, when your code sets or changes the value of
something, you insert a console.log() (or console.table()) statement
that outputs the new value. When the script execution is complete, you
can open the Console window and then check out the logged value or
values.

Executing code in the Console window
One of the great features of the Console window is that it's interactive,
which means that you can not only read messages generated by the
browser or by your console.log() statements but also type code
directly into the Console window. That is, you can use the Console
window to execute expressions and statements. There are many uses for
this feature:

You can try some experimental expressions or statements to
determine their effect on the script.

When the script is paused, you can output the current value of a
variable or property.
When the script is paused, you can change the value of a variable or
property. For example, if you notice that a variable with a value of
zero is about to be used as a divisor, you can change that variable to
a nonzero value to avoid crashing the script.
When the script is paused, you can run a function or method to
determine whether it operates as expected under the current
conditions.

Each browser’s Console tab includes a text box (usually marked by a >
prompt) that you can use to enter your expressions or statements.

 You can execute multiple statements in the Console window by
separating each statement with a semicolon. For example, you can
test a for… loop by entering a statement similar to the following:

for (let i=1; i < 10; i += 1){console.log(i**2); console.log(i**3);}

 If you want to repeat an earlier code execution in the Console
window, or if you want to run some code that's very similar to code
you ran earlier, you can recall statements and expressions that you
used in the current browser session. Press the up arrow key to scroll
back through your previously executed code; press the down arrow
key to scroll forward through your code.

Pausing Your Code
Pausing your code midstream lets you examine certain elements, such as
the current values of variables and properties. It also lets you execute
program code one statement at a time so that you can monitor the flow
of the script.

When you pause your code, JavaScript enters break mode, which means
that the browser displays its debugging tool and highlights the current
statement (the one that JavaScript will execute next). Figure 2-4 shows a
script in break mode in Chrome’s debugger (the Sources tab).

Entering break mode
JavaScript gives you two ways to enter break mode:

By setting breakpoints
By using a debugger statement

FIGURE 2-4: In break mode, the web browser displays its debugging tool and highlights the
statement that it will execute next.

Setting a breakpoint

If you know approximately where an error or a logic flaw is occurring,
you can enter break mode at a specific statement in the script by setting a
breakpoint. Here are the steps to set a breakpoint:

1. Display your web browser’s developer tools and switch to the
debugging tool (such as the Sources tab in Chrome).

2. Open the file that contains the JavaScript code you want to
debug.
How you do this depends on the browser: In Chrome (and most
browsers), you have two choices:

In the left pane, click the HTML file (if your JavaScript code
is in a script element in your HTML file) or the JavaScript
(.js) file (if your code resides in an external JavaScript file).

Press Ctrl+P (Windows) or ⌘  +P (macOS) and then click the
file in the list that appears.

3. Locate the statement where you want to enter break mode.
JavaScript will run every line of code up to but not including this
statement.

4. Click the line number to the left of the statement to set the
breakpoint.

To remove a breakpoint, most browsers give you three choices:

To disable a breakpoint temporarily, deselect the breakpoint's check
box in the Breakpoints list.
To disable all your breakpoints temporarily, click the deactivate
breakpoint icon (labeled in Figure 2-5). Click this icon again to
reactivate all breakpoints.
To remove a breakpoint completely, click the statement’s line
number.

FIGURE 2-5: In the browser’s debugging tool, click a line number to set a breakpoint on that
statement.

Entering break mode using a debugger statement
When developing your web pages, you’ll often test the robustness of a
script by sending it various test values or by trying it out under different
conditions. In many cases, you’ll want to enter break mode to make sure
things appear okay. You could set breakpoints at specific statements, but
you lose them if you close the file. For something a little more
permanent, you can include a debugger statement in a script. JavaScript
automatically enters break mode whenever it encounters a debugger
statement.

Here's a bit of code that includes a debugger statement
(bk05ch02/example03.html):

// Add the sentence to the <div>

document.querySelector('div').innerHTML = sentence;

// Generate random colors (use values < 128 to keep the text dark)

const randomRed = parseInt(Math.random() * 128);

const randomGreen = parseInt(Math.random() * 128);

const randomBlue = parseInt(Math.random() * 128);

debugger;

Exiting break mode

To exit break mode, you can use either of the following methods in the
browser’s debugging tool:

Click the resume icon. Chrome’s version of this icon is labeled in
Figure 2-4.
Press the browser’s Resume keyboard shortcut. In Chrome (and most
browsers), either press F8 or press Ctrl+\ (Windows) or ⌘  +\
(macOS).

Stepping Through Your Code
One of the most common (and most useful) debugging techniques is to
step through the code one statement at a time. Doing so lets you get a
feel for the program flow to make sure that things such as loops and
function calls are executing properly. You can use four techniques:

Step one statement at a time
Step into some code
Step over some code
Step out of some code

Stepping one statement at a time
The most common way of stepping through your code is to step one
statement at a time. In break mode, stepping one statement at a time
means two things:

You execute the current statement and then pause on the next
statement.
If the current statement to run is a function call, stepping takes you
into the function and pauses at the function’s first statement. You can
then continue to step through the function until you execute the last
statement, at which point the browser returns you to the statement
after the function call.

To step through your code one statement at a time, set a breakpoint and
then after your code is in break mode, do one of the following to step
through a single statement:

Click the step icon. (Refer to Figure 2-4 for Chrome’s version of this
icon.)
Press the browser’s step keyboard shortcut. In Chrome (and most
browsers, except Firefox, which doesn’t support step as of this
writing; use the step into button, instead), press F9.

Keep stepping through until the script ends or until you’re ready to
resume normal execution (by clicking the resume icon).

Stepping into some code
In all the major browsers (except Firefox), stepping into some code is the
same as stepping through the code one statement at a time. The
difference comes when a statement executes asynchronously (that is, it
performs its operation after some delay rather than right away).

To understand the difference, consider the following code (I added line
numbers to the left; they’re not part of the code; check out
bk05ch02/example04.html):

1 setTimeout(() => {

2 console.log('Inside the setTimeout() block!');

3 }, 5000);

4 console.log('Outside the setTimeout) block!');

This code uses setTimeout() to execute an anonymous function after 5
seconds (5,000 milliseconds). Suppose you enter break mode at the
setTimeout() statement (line 1). What happens if you use step versus
step into here? Check it out:

Step: Clicking the step icon doesn't take you to line 2, as you might
expect. Instead, because setTimeout() is asynchronous, step
essentially ignores the anonymous function and takes you directly to
line 4.

Step into: Clicking the step into icon does take you to line 2 but only
after the specified delay (5 seconds, in this case). You can then step
through the anonymous function as needed.

To step into your code, set a breakpoint and then do one of the following
after your code is in break mode:

Click the step into icon. (Refer to Figure 2-4 for Chrome’s version of
this icon.)
Press the browser’s step into keyboard shortcut. In Chrome (and
most browsers), either press F11 or press Ctrl+; (Windows) or ⌘  +;
(macOS).

 My description of step into here doesn't apply (at least as I write
this) to Firefox. Instead, the Firefox step into feature works like the
step feature I describe in the preceding section.

Stepping over some code
Some statements call other functions. If you’re not interested in stepping
through a called function, you can step over it. Stepping over a function
means that JavaScript executes the function normally and then resumes
break mode at the next statement after the function call.

To step over a function, first either step through your code until you
come to the function call you want to step over, or set a breakpoint on
the function call and refresh the web page. When you’re in break mode,
you can step over the function using any of the following techniques:

Click the step over icon. (Refer to Figure 2-4 for Chrome’s version
of this icon.)
Press the browser’s step over keyboard shortcut. In Chrome (and
most browsers), either press F10 or press Ctrl+' (Windows) or ⌘  +'
(macOS).

Stepping out of some code
I’m always accidentally stepping into functions I’d rather step over. If
the function is short, I just step through it until I’m back in the original
code. If the function is long, however, I don’t want to waste time
stepping through every statement. Instead, I invoke the step out feature
using any of these methods:

Click the step out icon. (Refer to Figure 2-4 for Chrome’s version of
this icon.)
Press the browser’s step out keyboard shortcut. In Chrome (and most
browsers), either press Shift+F11 or press Ctrl+Shift+; (Windows) or
⌘  +Shift+; (macOS).

JavaScript executes the rest of the function and then reenters break mode
at the first line after the function call.

Monitoring Script Values
Many runtime and logic errors are the result of (or, in some cases, can
result in) variables or properties assuming unexpected values. If your
script uses or changes these elements in several places, you’ll need to
enter break mode and monitor the values of these elements to figure out
where things go awry. The browser developer tools offer three main
ways to keep an eye on your script values:

View the current value of a single variable.
View the current values of all the variables in both the local and
global scopes.
View the value of a custom expression or object property.

Viewing a single variable value
If you just want to eyeball the current value of a variable, the developer
tools in Chrome (and all major browsers) make this straightforward:

1. Enter break mode in the code that contains the variable you
want to check.

2. If the script hasn’t yet set the value of the variable, step through
the code until you’re past the statement that supplies the
variable with a value.
If you’re interested in how the variable’s value changes during the
script, step through the script until you’re past any statement that
changes the value.

3. Hover the mouse pointer over the variable name.
The browser pops up a tooltip that displays the variable’s current
value. Figure 2-6 shows an example. Also note in Figure 2-6 that the
dev tools display the current value of any variable immediately after
any statement that sets or changes the variable value.

FIGURE 2-6: In break mode, hover the mouse pointer over a variable name to display the
variable’s current value.

Viewing all variable values
Most of the values you’ll want to monitor will be variables, which come
in three flavors (or scopes):

Block scope: Variables declared in the current statement block and
available only to that block
Local scope: Variables declared in the current function and available
only to that function

Global scope: Variables declared outside any function or block,
which makes them available to any script or function on the page

For more detailed coverage of variable scope, refer to Book 3, Chapter
5.

When you’re in break mode, the Chrome debugging tool (like all major
browser debuggers) displays a pane on the right that includes a section
that shows the current values of all your declared variables (refer to
Figure 2-7). In Chrome, the section is named Scope and includes several
lists: Block (for block-scoped variables), Local (for local variables) and
Script (for global variables). Confusingly, there’s also a Global section
that references just the Window object.

FIGURE 2-7: In break mode, Chrome’s Scope section shows the current values of the local
and global variables.

In Figure 2-7, note that some local variables show the value undefined.
These variables are undefined because the script hasn't yet reached the
point where the variables are assigned a value.

Adding a watch expression
Besides monitoring variable values, JavaScript also lets you monitor the
results of any expression or the current value of an object property. To
do this, you need to set up a watch expression that defines what you

want to monitor. These watch expressions appear in a special section of
the browser’s debugging tools. Here’s how to add a watch expression in
Chrome (the steps in other major browsers are similar):

1. Put your code into break mode.
2. Open the Watch section in the right pane.
3. Click the add watch expression icon (+).

A blank text box appears.
4. Type your expression in the text box, and then press Enter or

Return.

The browser adds the expression and then displays the current value of
the expression to the right. Figure 2-8 shows an example.

FIGURE 2-8: You can define a watch expression for your code.

You can use the following techniques to work with your watch
expressions:

Edit a watch expression. Double-click the expression, edit it, and
then press Enter or Return.

Update the values of your watch expressions. Click the refresh
watch expression icon (labeled in Figure 2-8).
Delete a watch expression. Hover the mouse pointer over the watch
expression you want to remove; then click the delete icon (X) that
appears to the right of the expression.

More Debugging Strategies
Debugging your scripts can be a frustrating job, even for relatively small
scripts. Here are a few tips to keep in mind when tracking down
programming problems:

Indent your code for readability. JavaScript code is immeasurably
more readable when you indent the code in each statement block.
Readable code is that much easier to trace and decipher, so your
debugging efforts have one less hurdle to negotiate. How far you
indent is a matter of personal style, but two or four spaces is typical:

function myFunction() {

 Each statement in this function

 block is indented four spaces.

}

If you nest one block inside another, indent the nested block by
another four spaces:

function myFunction() {

 Each statement in this function

 block is indented four spaces.

 for (const item of someArray) {

 Each statement in this nested for…of

 block is indented another four spaces.

 }

}

Break down complex tasks. Don’t try to solve all your problems at
once. If you have a large script or function that isn’t working right,
test it in small chunks to try to narrow down the problem.
Break up long statements. One of the most complicated aspects of
script debugging is making sense out of long statements (especially

expressions). The Console window can help (you can use it to print
parts of the statement), but it’s usually best to keep your statements
as short as possible. After you get things working properly, you can
often recombine statements for more efficient code.
Comment out problem statements. If a particular statement is
giving you problems, you can temporarily deactivate it by placing
two slashes (//) at the beginning of the line. The slashes tell
JavaScript to treat the line as a comment. If you have a number of
statements you want to skip, place /* at the beginning of the first
statement and */ at the end of the last statement.

Use comments to document your scripts. Speaking of comments,
it's a programming truism that good code — meaning (at least in
part) code that uses clear variable and function names and a logical
structure — should be self-explanatory. However, almost every piece
of non-trivial code contains sections that, when you examine them
later, aren’t immediately obvious. For those section, it’s another
programming truism that you can never add enough explanatory
comments. The more comments you add to complex and potentially
obscure chunks of your code, the easier your scripts will be to debug.

The 10 Most Common JavaScript
Errors

When you encounter a script problem, the first thing you should do is
examine your code for the most common errors. To help you do that,
here’s a list of the ten most common errors made by both beginning and
experienced programmers:

JavaScript keywords as variable names: Because JavaScript has
many reserved words and keywords built into the language, it’s
common to accidentally use one of these words as a variable or
function name. Double-check your names to make sure you’re not
using any reserved words, or the names of any objects, properties, or
methods.

Misspelled variables and other names: Check your variable and
function names to make sure you spell them consistently throughout
the script. Also, check the spelling of the objects, properties, and
methods you use.
Misused uppercase and lowercase letters: JavaScript is a case-
sensitive language, which means it treats each letter differently
depending on whether it’s uppercase or lowercase. For example,
consider the following two statements:

const firstName = "Millicent";

const message = "Welcome " + firstname;

The first statement declares a variable named firstName, but the
second statement uses firstname. This code would generate the
error firstname is not defined (or something similar, depending
on the browser) because JavaScript thinks that firstname is a
different (and uninitialized) variable.
Mismatched quotation marks: In any statement where you began a
string literal with a quotation mark (" or '), always check to make
sure that you included the corresponding closing quotation mark at
the end of the string. Also, check whether you used one or more
instances of the same quotation mark within the string. If so, either
edit the string to use the proper escape sequence (\" or \') or switch
to back ticks (`):

// Bad

const myString = "There are no "bad" programs.";

// Better

const myString = "There are no \"bad\" programs.";

// Best

const myString = `There are no "bad" programs.`;

Mismatched parentheses: Examine your code for statements that
contain a left parenthesis — (— and make sure there's a
corresponding right parenthesis —). This rule applies also to square
brackets — [and] — and braces — { and }.

 For complex expressions that include three or more sets of
parentheses, a quick match-up check is to count the number of left
parentheses in the expression and then count the number of right
parentheses. If these numbers don't match, you know you have a
mismatch somewhere in the expression.
Missed parentheses after function names: Speaking of
parentheses, if your script calls a function or method that doesn’t
take any arguments, check that you included the parentheses — ()
— after the name of the function or method:

function tryThis() {

 alert("Parentheses travel in pairs!");

}

// This won't work

tryThis;

// This will

tryThis();

Improper use of braces: JavaScript uses braces to mark the start ({)
and end (}) of statement blocks associated with functions, tests
involving if and switch, and loops, including for…of, for, while,
and do…while. It's easy to miss one or both braces in a block, and it’s
even easier to get the braces mixed up when nesting one test or loop
inside another. Double-check your braces to make sure each block
has both an opening and a closing brace.

 One way to ensure that you don’t miss any braces is to
position them consistently throughout your script. For example,
many people prefer to use the traditional style for brace positions:

keyword {

 statements

}

(Here, keyword means the statement — such as function or if —
that defines the block.) If you prefer this style, use it all through your
script so that you know exactly where to find each brace.
An easy way to ensure that you never forget a closing brace is to
enter it immediately after entering the opening brace. That is, you
type {, press Enter twice, and then type }.
Also, use indentation consistently for the statements within the
block. Consistent indentation makes it much easier to view the
braces, particularly when you have one block nested within another.
Using = or == instead of ===: The identity operator (===) is one of
the least intuitive JavaScript features because the assignment
operator (=) feels so much more natural. The equality operator (==)
can cause problems because it often converts the data types before
making the comparison. Therefore, check all your comparison
expressions to make sure you always use === instead of = or ==.

Conflicts between global variables and block or local variables:
A global variable is available throughout the entire page, even within
blocks and functions. So, within a block or function, make sure that
you don't declare and use a variable that has the same name as a
global variable.
The use of a page element before it’s loaded: JavaScript runs
through a page’s HTML one line at a time and checks the syntax of
each JavaScript statement as it comes to it. If your code refers to an
element (such as a form field) that JavaScript hasn’t come to yet, it
will generate an error. Therefore, if your code deals with an element,
always place the script after the element in the HTML file.

The 10 Most Common JavaScript
Error Messages

To help you decipher the error messages that JavaScript throws your
way, here’s a list of the ten most common errors and what they mean:

Syntax error: This load-time error means that JavaScript has
detected improper syntax in a statement. The error message almost
always tells you the line and character where the error occurs. For
example, if you refer to the error message shown in Figure 2-1, note
that to the right of the error message you see the following:

example01.html:17:18

This text means that the error occurs in the example01.html file, on
line 17, at character position 18 (counting from the start of the
statement).
Expected (or Missing (: These messages mean that you forgot to
include a left parenthesis:

function changeBackgroundColor newColor) {

If you forget a right parenthesis instead, you'll get Expected) or
Missing):

function changeBackgroundColor (newColor{

Expected { or Missing { before function body: These errors tell
you that your code is missing the opening brace for a function:

function changeBackgroundColor (newColor)

 statements

}

If you're missing the closing brace instead, you’ll get the errors
Expected } or Missing } after function body.

Unexpected end of input or Missing } in compound statement:
These messages indicate that you forgot the closing brace in an if
block or other compound statement:

 if (currentHour < 12) {

 console.log("Good morning!");

 } else {

 console.log("Good day!");

If you forget the opening brace, instead, you'll get a Syntax error
message that points, confusingly, to the block’s closing brace (which
is the point where the browser first realizes that there’s an error).

Missing ; or Missing ; after for-loop
initializer|condition: These errors mean that a for loop
definition is missing a semicolon (;), either because you forgot the
semicolon or because you used some other character (such as a
comma):

for (let counter = 1; counter < 5, counter += 1) {

Unexpected identifier or Missing ; before statement: These
errors tell you that the preceding statement didn't end properly for
some reason or that you’ve begun a new statement with an invalid
value. In JavaScript, statements are supposed to end with a
semicolon (;), but using a semicolon is optional. So, if JavaScript
thinks you haven’t finished a statement properly, it assumes that a
semicolon is missing. For example, this can happen if you forget to
include the opening /* to begin a multiple-line comment:

Start the comment (oops!)

Close the comment */

X is not defined: This message most often refers to a variable
named X that has not been declared or initialized and that you're
trying to use in an expression. If that’s the case, declare and initialize
the variable. Another possible cause is a string literal that isn’t
enclosed in quotation marks. Finally, also check whether you
misspelled the variable name:

const grossProfit = 100000;

const profitSharing = grossPrifit * profitSharingPercent;

X is not an object or X has no properties: These messages
mean that your code refers to an object that doesn't exist or to a
property that doesn’t belong to the specified object. Check whether
you misspelled the object or property or, for the second case, that
you’re using the wrong object:

document.alert("Nope!")

Unterminated string constant or Unterminated string
literal: Both messages mean that you began a string literal with a

quotation mark but forgot to include the closing quotation mark:
const greeting = "Welcome to my website!

A script on this page is causing [browser name] to run

slowly. Do you want to abort the script? or Lengthy
JavaScript still running. Continue?: These errors tell you that
your code has probably fallen into an infinite loop. You don’t get any
specific information about what’s causing the problem, so you’ll
need to scour your code carefully for the possible cause.

Chapter 3
Debugging PHP Code

IN THIS CHAPTER
 Setting up PHP for debugging
 Examining the PHP error log
 Outputting variable values with echo and print
 Making good use of print_r()
 Getting to know var_dump()

The most effective debugging tool is still careful thought, coupled with
judiciously placed print statements.

— BRIAN KERNIGHAN
Debugging — the art, science, and (sometimes) magic of finding and
correcting programming errors — is a vital part of all web development.
Why? Because no one — not even the nerdiest and most experienced of
coders — can write anything moderately complex without introducing
an error (or, more likely, a half dozen errors). Programming just works
that way. Don’t ask me why because I really have no idea. It just does.
So, when some code doesn’t work the first time (or even the tenth time),
it doesn’t mean you’re a lousy coder. It just means you’re normal.
Believe me, it happens to absolutely everyone who codes.

JavaScript code runs inside the browser, so debugging that code is (more
or less) straightforward because, in a sense, the code runs right before
your eyes. This lets you set up breakpoints, watches, and the other
debugging tools that I talk about in Book 5, Chapter 2. PHP code,
however, runs on the server, so it all happens backstage, as it were. By
the time it gets to you (that is, to the browser), the code is done and all
you see is the output. That makes PHP code harder to debug, but,

thankfully, not impossible to debug. This chapter takes you through a
few useful PHP debugging techniques.

Configuring php.ini for Debugging
Your first step in setting up PHP for debugging is the php.ini file,
which is the PHP configuration file. In the XAMPP web development
environment, which I discuss in Book 1, Chapter 2, here are the default
locations of php.ini:

Windows:C:\xampp\php\php.ini

Mac:/Applications/XAMPP/xamppfiles/etc/php.ini

If you can’t locate the file, make sure your Apache web server is
running, open the XAMPP dashboard (http://localhost/dashboard),
and click PHPInfo (or surf directly to
http://localhost/dashboard/phpinfo.php). Look for the Loaded
Configuration File setting, as shown in Figure 3-1.

FIGURE 3-1: Examine the Loaded Configuration File setting to determine the location of
php.i.

Open php.ini in your favorite text editor, and then modify the following
settings (php.ini is a long document, so you should search for each
setting to save time):

display_errors: Determines whether PHP outputs its error
messages to the web browser. In a production environment, you want
display_errors set to Off because you don’t want site visitors

seeing ugly PHP error messages. However, in a development
environment, you definitely want display_errors set to On so you
can see where your code went wrong:

display_errors=On

error_reporting: Specifies which types of errors PHP flags. The
constant E_ALL flags all errors, and the constant E_STRICT flags code
that doesn’t meet recommended PHP standards. You don’t need
E_STRICT in a production environment, but it’s useful in a
development environment:

error_reporting=E_ALL | E_STRICT

 You need to restart the web server to put the new php.ini
settings into effect. In the XAMPP dashboard, click Manage
Servers, click Apache Web Server, and then click Restart.

With display_errors set to On, you’ll now see error messages in the
browser window. For example, take a look at the following statement
(check out bk05ch03/example01.php in this book’s example files):

display_header('notw.png';

Can you spot the error? Yep: The display_header function call is
missing its closing parenthesis. Figure 3-2 shows how PHP flags this
error. Note that the message includes not only the error but also the
location of the file and, crucially, the line number of the statement that
generated the error.

FIGURE 3-2: A typical PHP error message, showing the error, file path and name, and line
number.

Accessing the PHP Error Log
Setting display_errors to On is very useful in your development
environment, but the PHP default is to set display_errors to Off in a
production environment. The Off setting prevents your visitors from
seeing error messages, and it also boosts security because you don’t
want those visitors seeing sensitive information such as the location of
your PHP script.

So, what happens when PHP generates an error with display_errors
set to Off? It depends on the error, but in most cases you see either a
blank web page or a server error message such as 500 - Internal
server error. Neither is particularly helpful, but all is not lost because
PHP still records the error message to the PHP error log.

That’s nice, but where is this error log stored on the server? That
depends on the server, but you can find out by opening the php.ini file
as I describe in the preceding section. You can also run the following
script:

<?php

 phpinfo();

?>

This code displays the PHP configuration data, which includes an
error_log setting that tells you where the PHP error log is stored, as
shown in Figure 3-3.

FIGURE 3-3: The php.ini file will tell you the location of your PHP error log.

In some cases, you see just the name of a file — usually error_log —
and that means the server generates the error log in the same directory as

the PHP file that caused the error. So, if you store all your PHP scripts in
a php subdirectory, your error log will appear in that subdirectory.

Double-click the error log to open it in your operating system’s default
text editor. Figure 3-4 shows that the error log also recorded the same
error as the one shown earlier in Figure 3-2.

FIGURE 3-4: The error shown earlier in Figure 3-2 was also recorded in the PHP error log.

 Error messages appear in the error log with the oldest messages
at the top, so you need to scroll to the bottom of the file to see the
most recent error.

Outputting Variable Values
Since PHP code executes “over there” on the server instead of “in here”
on the web browser, you can’t set breakpoints or add watch expressions
to monitor the values of PHP variables. However, you can do the next
best thing by strategically using the PHP built-in statements that output
the current value of whatever variable, expression, or function result you
want to watch. PHP has tons of these statements, but the rest of this
chapter introduces you to the ones you’ll use most often.

 Some sophisticated tools enable you to step through your PHP
code and offer other debugging techniques. These tools are beyond
the scope of this book. If you’re interested, check out Xdebug

(https://xdebug.org/), which works with popular code editors
such as Visual Studio Code.

Debugging with echo statements
By far the most common PHP debugging technique is to add echo (or
print) statements, which output the current value of whatever variable,
expression, or function result you want to monitor.

For example, here’s a loop that generates a dozen random numbers
between 1 and 100. To watch the random values as they’re generated, I
included an echo statement within the loop (check out
bk05ch03/example02.php):

<?php

 for ($i = 0; $i < 12; $i++) {

 $randoms[$i] = rand(1, 100);

 echo "Random array value $i is $randoms[$i]
";

 }

?>

Figure 3-5 shows what the output looks like in the browser.

FIGURE 3-5: Adding an echo statement outputs the expression to the browser window.

Another good use of echo statements for debugging is when your PHP
code fails, but you don't get an error message. Now you have no idea
where the problem lies, so what’s a web developer to do? You can

https://xdebug.org/

gradually narrow down where the error occurs by adding an echo
statement to your code that outputs a message like Made it this far!.
If you see that message, you move the echo statement a little farther
down the code, repeating this procedure until you don’t see the message,
meaning the code failed before getting to the echo statement.

Alternatively, you can sprinkle several echo statements throughout your
code. You can either give each one a different output message, or you
can take advantage of one of PHP’s so-called magic constants:__LINE__.
This constant tells you the current line of the code that’s being executed,
so you could add the following echo statement throughout your code:

echo 'Made it to line #' . __LINE__;

Debugging with print_r() statements
Another way to output the value of a variable is with the print_r()
function, which outputs human-readable information about a specified
variable:

print_r(variable, return)

where:

variable is the name of the variable you want to work with.

return is a Boolean value that, when set to true, returns the variable
information rather than outputs it. (This feature enables you to, for
example, store the output in another variable.) The default is false,
which outputs the variable value.

If variable is a string or number, print_r() outputs the current value
of the variable. If variable is an array, print_r() outputs the array keys
and item values.

For example, in the preceding section, the code used an echo statement
to output the current value of the array each time through the loop. As an
alternative, you could wait until the loop completes and then run

print_r($randoms) to output the entire array
(bk05ch03/example03.php):

<pre>

<?php

 for ($i = 0; $i < 12; $i++) {

 $randoms[$i] = rand(1, 100);

 }

 print_r($randoms);

?>

</pre>

Note that I surrounded the PHP code with <pre> and </pre> tags, which
display the array output on separate lines instead of a single line, as
shown in Figure 3-6.

FIGURE 3-6: Using print_r() to output the keys and values of an array.

Debugging with var_dump() statements
PHP features such as echo and print_r() make it easy to see values
associated with variables and arrays, but sometimes your debugging
efforts require a bit more information. For example, you might want to
know the data type of a variable. You can get both the data type and the
current value of a variable or expression by using PHP's var_dump()
function:

var_dump(expression(s));

where expression(s) represents one or more variable names or
expressions.

Here’s an update to the random number generator that dumps the value
of the $i variable each time through the loop and the value of the
$randoms array after the loop (bk05ch03/example04.php):

<pre>

<?php

 for ($i = 0; $i < 12; $i++) {

 $randoms[$i] = rand(1, 100);

 var_dump($i);

 }

 var_dump($randoms);

?>

</pre>

Figure 3-7 shows an example of the output.

FIGURE 3-7: Using var_dump() to output information about some variables.

Book 6
Coding Dynamic and Static

Web Pages
Contents at a Glance

Chapter 1: Fetching Data with PHP, JavaScript, and JSON
Getting Your Head Around Asynchronous Operations

Getting Remote Data Asynchronously with the Fetch API

Returning Fetch API Data as JSON Text

Chapter 2: Building and Processing Web Forms
What Is a Web Form?

Understanding How Web Forms Work

Building an HTML Web Form

Looking at the HTMLFormElement Object

Taking a Peek at the HTMLInputElement Object

Programming Text Fields

Coding Check Boxes

Dealing with Radio Buttons

Programming Selection Lists

Handling and Triggering Form Events

Creating Keyboard Shortcuts for Form Controls

Submitting the Form

Chapter 3: Validating Form Data
Validating Form Data in the Browser

Validating Form Data on the Server

Regular Expressions Reference

Chapter 4: Coding Static Web Pages
Static? Dynamic? What Am I Even Talking About?

Building Your Own Static Site Generator

Using GitHub to Store Your Static Site Files

Forging Your HTML Template File

Using PHP to Generate the Static Pages

Deploying Your Static Website

Chapter 1
Fetching Data with PHP,
JavaScript, and JSON

IN THIS CHAPTER
 Dealing with asynchronous operations
 Making sense of the Fetch API
 Loading server data into a page element
 Sending data to and receiving data from the server
 Using JSON to work with complex data from the server

The Fetch API is a game-changer for developers, giving them
unparalleled flexibility … to easily and quickly make URL requests from
your browser.

— DANIELLE ELLIS
When coding web pages, it feels like there’s a great divide between the
browser front end and the server back end. When you’re working on the
front end, you can use HTML tags, CSS properties, and JavaScript code
to build, style, and animate your pages. When you’re working on the
back end, you can use MySQL and PHP code to define, access, and
manipulate data. That all works, but front-end code without back-end
data produces a lifeless page, whereas back-end data without front-end
code produces useless information.

To create a truly dynamic web page, you need to cross this divide. You
need to give your web page a mechanism to interact with the server to
ask for and receive server data, and you need to give the server a
mechanism to return that data in a format the page can understand and
manipulate. In this chapter, you investigate two such mechanisms:

asynchronous operations and the Fetch API for sending data back and
forth between the web page and the server.

Getting Your Head Around
Asynchronous Operations

When your web page code deals with only front-end operations, the web
browser executes that code one statement after the other, in each case
waiting for the current statement to complete before moving on to the
next one. In programming parlance, this wait-for-a-task-to-complete-
before-moving-to-the-next-task mode is described as synchronous.

However, synchronous operations become a problem when you start
dealing with back-end tasks, such as asking a remote server to send
some data. Why is that a problem? Because you don’t know in advance
how long a back-end task might take. Typically, front-end statements
execute in milliseconds, but it might take a remote server multiple
seconds to respond to a request for data. Performing such tasks
synchronously means that your code must wait for the server operation
to complete before continuing; the remainder of your code is said to be
blocked by the server request. Blocked code will almost certainly lead to
thumb-twiddling frustration on the part of your users.

Fortunately, you can keep your users happy and their thumbs
constructively occupied by implementing some powerful techniques that
prevent code blocking. The way modern JavaScript prevents such code
blocking is by using asynchronous operations, where asynchronous
describes an operation that runs separately in the background and
therefore doesn’t prevent the rest of the code from executing.

 PROMISES, PROMISES

The technology underlying modern JavaScript asynchronous operations is the promise,
which is an object returned by an asynchronous operation. The promise represents not
only the current state of the operation but also the operation’s eventual completion or
failure. All practical asynchronous operations used in this book hide the creation of a
Promise object, but you can create your own Promise objects using the Promise()
constructor:

const promiseVar = new Promise((resolve, reject) => {

 // Asynchronous operation code goes here

 if (/* operation is successful */) {

 // Fulfill the promise

 resolve("Success!");

 } else {

 // Reject the promise

 reject("Failure!");

 }

});

where:

promiseVar is the name of the variable that holds the new Promise object.

resolve is the function that runs when the asynchronous operation is
successful.

reject is the function that runs when the asynchronous operation fails.

You then handle the result of the promise using the Promise object's then() and
catch() methods. You use then() to handle a fulfilled promise and catch() to handle a
failed promise:

myPromise

 .then(result => {

 console.log("The promise was resolved with: ", result);

 })

 .catch(error => {

 console.log("The promise was rejected with: ", error);

 });

You can also chain together multiple promises. For a full example, see
bk06ch01/example01.html in this book's example files.

Again, the preceding code is the slightly older and slightly more verbose method of
handling promises. As you see in this chapter, modern JavaScript takes a slightly
different approach that hides most of these details.

Before getting to the JavaScript code that handles asynchronous
operations, you need some example asynchronous code (refer to

bk06ch01/example02.html):
// Converts a string asynchronously to uppercase after two seconds

function asynchronousUpperCase(str) {

 // Return a new Promise object

return new Promise((resolve, reject) => {

 // Use setTimeout() to delay two seconds

 setTimeout(() => {

 // Check that a String object was passed

 if (typeof str === 'string') {

 // If so, resolve the promise and return the string as

uppercase

 resolve(str.toUpperCase());

 } else {

 // If not, reject the promise and return an error message

 reject('Input is not a string');

 }

 }, 2000);

 });

}

The point of the asynchronousUpperCase() function is to convert the
passed string value to uppercase letters. To make this function
asynchronous, the code uses the setTimeout() method, which delays the
conversion to uppercase by two seconds. The function handles the
asynchronous nature of the operation by returning a Promise object that
resolves if the passed parameter is a string and that fails if the passed
parameter is not a string. (I explain JavaScript promises in the
“Promises, promises” sidebar.)

Solving synchronous problems with async
functions
JavaScript has several techniques for making operations asynchronous,
but the method I use in this chapter (and throughout the rest of the book)
is the async function, which is a named or anonymous function
declaration preceded by the keyword async.

Here's the syntax for a named asynchronous function:
async function functionName() {

 // Asynchronous function code goes here

}

where functionName is the name of the asynchronous function.

Here’s an example:
async function handleAsynchronous() {

 // Asynchronous function code goes here

}

For an anonymous asynchronous function, you can use either of the
following:

async function() {

 // Asynchronous function code goes here

}

or:
async () => {

 // Asynchronous handling code goes here

}

Here’s an example:
const form = document.querySelector('form');

form.addEventListener('submit', async function(event) {

 // Asynchronous form submission code goes here

}

 The async keyword was introduced in ECMAScript 2017 (ES8)
and has excellent modern browser support. However, its relative
newness means you can't use it if you need to support really old
browsers, such as Internet Explorer 11 and earlier.

Using await to wait for an asynchronous
operation to complete

Asynchronous operations are awesome, but they create a new problem
that’s sort of the opposite of the blocking problem described previously.
When you eventually get the data from the server, you almost always
have to process that data in some way: perform data conversions, write
the data to existing HTML elements on the page, create elements for the
data, and so on. In other words, in this case you don’t want the browser
to process these statements right away. What’s needed here is a way to
say something like, “Yo, wait until you get all the data from the server,
and then perform the following tasks to process that data.”

The way you convince the browser to hold off until an asynchronous
operation is complete before processing the code that follows is by using
the await operator:

const resultVar = await expression

where:

resultVar is the name of the variable that stores the result of the
asynchronous operation.
expression is a reference to an object that runs an asynchronous
operation. This is usually a call to a function that returns a Promise
object. (See the “Promises, promises” sidebar to learn about
promises.)

You almost always use the await operator in an async function. Here's
an example (bk06ch01/example02.html):

async function handleAsynchronous() {

 // Perform the asynchronous operation and store the result

 const result = await asynchronousUpperCase('hello world');

 // Display the result

 console.log(`Result: ${result}`);

}

// Run it

handleAsynchronous();

The handleAsynchronous() function uses the await operator to call the
asynchronousUpperCase() function with the hello world string. The
return value of the asynchronous operation is stored in the result
variable, which is then written to the Console window, as shown in
Figure 1-1.

FIGURE 1-1: The result of the asynchronous operation.

 The await operator was introduced in ECMAScript 2017 (ES8)
and has top-notch support in modern browsers. However, you can't
use await if you need to support ancient browsers, such as Internet
Explorer 11 and earlier.

Chaining multiple asynchronous operations
It’s common to require multiple asynchronous operations, where each
subsequent asynchronous operation must wait until the previous
operation is complete. You can handle this kind of scenario by chaining
multiple await expressions by running one after the other in the order
you need them to execute. Here's an expanded example of converting
multiple strings to uppercase by chaining the asynchronous function
calls (bk06ch01/example03.html):

async function handleAsynchronous() {

 // Perform the first asynchronous operation and store the result

 const firstResult = await asynchronousUpperCase('hello');

 // Display the first result

 console.log(`First result: ${firstResult}`);

 // Perform the second asynchronous operation and store the result

 const secondResult = await asynchronousUpperCase('world');

 // Display the second result

 console.log(`Second result: ${secondResult}`);

}

// Run it

handleAsynchronous();

This code uses the await operator to run the asynchronousUpperCase()
function twice, first with the string hello and second with the string
world. Figure 1-2 shows the results that get displayed in the Console
window.

FIGURE 1-2: The result of the chained asynchronous operations.

Handling asynchronous rejection responses
In the code in the previous few sections, I assumed that the
asynchronous operation would be successful. However, it's prudent to
include code that handles an unsuccessful asynchronous operation. The
way you do that in modern JavaScript is to use a try…catch statement:

try {

 Try statements

} catch {

 Catch statements

} finally {

 Finally statements

}

where:

Try statements is a block of statements that JavaScript always
executes at the beginning the try…catch construct.

Catch statements is a block of statements that JavaScript executes
only if an error occurs in the try block.

Finally statements is a block of statements that JavaScript always
executes before exiting the try…catch construct.

The try block is mandatory and the rest of the construct is either the
catch block, the finally block, or both. However, almost all try…catch
statements consist of a try block followed by a catch block.

For asynchronous operations, you handle successful results in the try
block and failure results in the catch block. Here's an example
(bk06ch01/example04.html):

async function handleAsynchronous() {

 // Handle successful asynchronous results

try {

 // Perform the first asynchronous operation and store the result

 const firstResult = await asynchronousUpperCase('hello');

 console.log(`First result: ${firstResult}`);

 // Perform the second asynchronous operation and store the result

 const secondResult = await asynchronousUpperCase('world');

 console.log(`Second result: ${secondResult}`);

 // Perform the third asynchronous operation and store the result

 // Send a number instead of a string to raise an error

 const thirdResult = await asynchronousUpperCase(42);

 console.log(`Third result: ${thirdResult}`);

 // Handle failed asynchronous results

 } catch (error) {

 console.log(`An error occurred: ${error}`);

 }

}

// Run it

handleAsynchronous();

In the try block, the code chains together three asynchronous
operations. The first two pass the string hello and world to the
asynchronous function and so return successful results. The third call to
the function passes the number 42, which forces a failed asynchronous
operation, the result of which is handled by the catch block. Figure 1-3
shows the results.

FIGURE 1-3: The result of three chained asynchronous operations, two successes and one
failure.

Getting Remote Data
Asynchronously with the Fetch API

Asynchronous operations shine when you use them to fetch data from a
server and display that data on a web page. Doing this fetching
asynchronously offers the following advantages:

Non-blocking code: The requested data is retrieved from the server
in the background while the rest of your code runs.
Data parsing and transformation: One or more specified
statements run only after the data has been completely received.
Data updates without page reloads: The requested data can affect
only specified page elements while leaving the rest of the page as is.

In modern JavaScript, you fetch remote data by using, appropriately
enough, the Fetch API, which I discuss over the next few sections.

Fetching data with the fetch() method
The workhorse of the Fetch API is the fetch() method, which you use
to grab a resource from the network. Here's the simplified version of the
fetch() syntax:

const responseVar = await fetch(resource);

where:

responseVar is the name of the variable that stores the response
returned by the asynchronous fetch() operation.

resource is the URL of the resource you want to fetch.

The fetch() method returns a promise (see the “Promises, promises”
sidebar, earlier in this chapter, to learn about promises) that contains the
results of the asynchronous fetch operation.

Running a script on the server
Probably the most straightforward application of fetch() is to execute a
PHP script on the server. Assuming the PHP script returns some sort of
response, your JavaScript can parse that response and do something with
it (such as display the response text in the Console window). To run a
script on the server, call the fetch() function with the URL or path of
the PHP file:

fetch(PHPFile)

where PHPFile is the name of the PHP file you want to execute on the
server. If the file resides in a directory that's different than the current
file’s directory, you need to include the path.

For example, here’s a simple PHP script (bk06ch01/example05.php):
<?php

 header('Content-Type: application/text');

 header('Access-Control-Allow-Origin: *');

 echo 'Hello Fetch API World!';

?>

Now here’s some JavaScript that uses fetch() to run the PHP script
(bk06ch01/example05.html; note that this file includes try…catch error
handling code not shown here):

async function runServerScript() {

 // Run the PHP script

 const response = await fetch('example05.php');

 // Check that we got a good response

 if (response.ok) {

 // Parse the response as text

 const data = await response.text();

 // Write the response text to the Console

 console.log(data);

 }

// Run the async function

runServerScript();

The PHP script returns (via the echo statement) the message Hello
Fetch API World!. The JavaScript parses that response with
response.text(), and then outputs the message to the Console window,
as shown in Figure 1-4.

FIGURE 1-4: The PHP script response displayed in the Console window.

Updating an element with fetched data

One of the most common and most useful asynchronous techniques is to
update just a single element on the page with data from the server. All
the other elements on the page stay the same, so the user's experience
isn’t disrupted by a jarring and annoying page reload.

How you use this method depends on what you want to load and
whether you want to run some code when the load is done. The next
couple of sections take you through the possibilities.

Loading an HTML file
One common use of fetch() is to populate a page element with the
contents of an HTML file. Here's the general syntax to use:

fetch(HTMLFile)

where HTMLFile is the name of the file that contains the HTML code you
want loaded into the page element. If the file resides in a directory that’s
different than the current file’s directory, you need to include the path
info, as well.

For example, here’s an <h1> tag that represents the entire contents of a
file named hellofetchworld.html (bk06ch01/hellofetchworld.html):

<h1>Hello Fetch World!</h1>

Now consider the following HTML code (bk06ch01/example06.html;
note that this file includes try…catch and other error handling code not
shown here):

<body>

 <div id="target">

 </div>

 <script>

// Set up an asynchronous function

 async function loadHTMLFile() {

 // Fetch the data asynchronously

 const response = await fetch('hellofetchworld.html');

 // Parse the response as text

 const data = await response.text();

 // Get a reference to the target element

 const target = document.getElementById('target');

 // Write the data to the target

 target.innerHTML = data;

 }

 // Run the async function

 loadHTMLFile();

 </script>

</body>

The <body> tag includes a div element that uses an id value of target.
When the page is loaded, the script runs the following statement:

loadHTMLFile();

This statement calls the asynchronous function loadHTMLFile(), which
uses fetch() to grab the contents of hellofetchworld.html from the
server:

const response = await fetch('hellofetchworld.html');

Technically, what fetch() does is return a promise, so once the promise
is resolved the code needs to parse the returned data. In this case, the
data we want is HTML, which is just text, so we parse the data
asynchronously using the response object's text() method:

const data = await response.text();

The script then gets a reference to the element that uses the id value of
target (that is, the page’s <div> tag) and then inserts the HTML data
into that element:

target.innerHTML = data;

Figure 1-5 shows the result.

FIGURE 1-5: Using JavaScript’s fetch() method to load the contents of an HTML file into a
page element.

 A built-in browser security restriction called the same-origin
policy allows a script to access data from another file only if both
files have the same origin, meaning the following must be the same
for both:

Protocol: Usually, both files must use http or both must use https.
If one file uses http and the other uses https, the fetch() call will
fail.
Host name: The two files can't be on different subdomains. If one
file uses mydomain.com and the other uses www.mydomain.com, the
fetch() call will fail.

Port number: The two files must use the same port number. The
standard HTTP port is 80, but if you call the script with, say, port 88
(that is, http://mydomain.com:88/), the fetch() call will fail.

Therefore, make sure that the HTML file you request has the same
origin as the file that contains the fetch() statement.

https://www.mydomain.com/
https://www.mydomain.com/
http://mydomain.com:88/

Loading output from a PHP script
If you have a PHP script that uses echo or print to output HTML tags
and text, you can use fetch() to insert that output into a page element.
The general syntax is nearly identical to the one for loading an HTML
file:

fetch(PHPFile)

where PHPFile is the name of the file that contains the PHP code. If the
PHP file sits in a directory other than the current file's directory, include
the path info.

For example, here's a PHP file named get-server-time.php
(bk06ch01/get-server-time.php):

<?php

 $current_time = date('H:i:s');

 echo "The time on the server is $current_time.";

?>

The script gets the current time on the server and then outputs a message
displaying the time. Now consider the following HTML code
(bk06ch01/example07.html):

<body>

 <h2 id="target">

 </h2>

 <script>

 // Set up an asynchronous function

 async function displayCurrentTime() {

 // Fetch the data asynchronously

 const response = await fetch('get-server-time.php');

 // Parse the response as text

 const data = await response.text();

 // Get a reference to the target element

 const target = document.getElementById('target');

 // Write the data to the target

 target.innerHTML = data;

 }

 // Run the async function

 displayCurrentTime();

 </script>

</body>

The script used fetch() to call get-server-time.php, parses the
response asynchronously with response.text(), and then loads the
output into the <h2> tag, as shown in Figure 1-6.

 The same-origin policy that I mention earlier for HTML files is
also in effect for PHP files. That is, the PHP script you request must
have the same origin as the file that contains the fetch() statement.

FIGURE 1-6: Using the fetch() method to load the output of a PHP script into a page
element.

Learning more about GET and POST requests

 When you're working with Fetch API calls to the server, one of
the decisions you must make is what request method to use: GET or
POST. How on Earth are you supposed to do that? Fortunately, it
mostly comes down to one thing: the length of the data. Since a
GET request's data is tacked on the URL as a query string, the

maximum length of that data is restricted by the maximum length
of a URL. The actual limit depends on the browser and server, but
the most common ceiling is 2,048 characters. Anything longer than
that and the server might cough up a 414 Request URI Too Long
error. If you’re sending longer data (such as a blog entry), use a
POST request.

Another consideration is security. GET requests operate by adding a
query string to the end of the URL, which is easily seen by the user (or
someone snooping over the user’s shoulder), so GET is the wrong choice
when you’re sending sensitive data, such as a password. By contrast,
POST data is sent in the body of the request, which is secure as long as
you’re sending the request over an encrypted connection (that is, via
HTTPS).

 If you only ever send relatively small amounts of data to the
server, you can certainly stick with using just GET requests.
However, some developers use both, even when sending small
amounts of data, as a way of making their code more readable:

Use a GET request when you want to retrieve data from the server
without modifying the server data in any way.
Use a POST request when you want to modify — that is, add,
update, or delete — server data.

Handling form POST requests in PHP
I cover handling GET requests in PHP code in Book 4, Chapter 3.
Handling POST requests is similar when you’re dealing with form data,
so here I just take a quick look at how you handle them in PHP.

When you submit a FormData object as the POST request body (I show
how this is done in Book 6, Chapter 2), you access the data by using
PHP's $_POST variable, which is an associative array created from the
form data.

For example, suppose your form has fields named book, chapter, and
example, and these fields have the values 6, 1, and 2, respectively. Then
this example creates the following $_POST array:

$_POST['book'] => 6

$_POST['chapter'] => 1

$_POST['example'] => 2

As with the $_GET array, your code should check that each of the
expected elements of the $_POST array exists by using PHP's isset()
function, which returns true if a variable exists and has a value other
than null. Here's an example:

if (isset($_POST['book'])) {

 $book_num = $_POST['book'];

} else {

 echo 'The "book" parameter is missing!
';

 echo 'We are done here, sorry.';

 exit(0);

}

Handling object POST requests in PHP
Although you’ll usually send form data with your POST requests, you
can also send a JavaScript object, if that’s how your data is stored.

First, to send object data to the server, you need to convert the object to a
JSON string by using the stringify() method (refer to Book 3, Chapter
10). Here’s an example:

myData = {

 name: Paul,

 email: pmcfedries@gmail.com

}

const response = await fetch('script.php', {

 method: 'POST',

 body: JSON.stringify(myData)

});

When you use this method, note that the sent data isn’t accessible via the
$_POST variable in PHP. Instead, you access the data as follows:

// Get the raw POST data

$rawData = file_get_contents("php://input");

// Decode the JSON string

$data = json_decode($rawData, true);

// Access the data

$name = $data["name"];

echo "<h1>Welcome, $name!</h1>";

This code uses php://input to access PHP's read-only data input
stream, which contains the raw POST data. The script then uses
json_decode() to convert the JSON string (stored in the $rawData
variable) to an associative array. The script then uses the array to access
the data.

Sending and retrieving data
Probably the most common remote data scenario is that you send some
data to the server, a PHP script on the server uses that data to retrieve
something, the PHP script returns the retrieved data, and then your front-
end JavaScript displays the result.

For example, suppose you want to know the total value of the inventory
(that is, the units in stock multiplied by the price of each unit) for a
particular category. Here's a partial PHP script
(bk06ch01/example08.php) that does the job:

// Get the raw POST data

$rawData = file_get_contents("php://input");

// Decode the JSON string

$data = json_decode($rawData, true);

// Access the data

$category_num = $data['category'];

// Create and run a SELECT query

$sql = "SELECT unit_price, units_in_stock

 FROM products

 WHERE category_id = $category_num";

// Run the query

$result = mysqli_query($connection, $sql);

// Get the query rows as an associative array

$rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

$inventory_total = 0;

// Loop through the rows

foreach($rows as $row) {

 // Update the inventory total with price * units

 $inventory_total += (float) $row['unit_price'] * (float)

$row['units_in_stock'];

}

echo $inventory_total;

This script (which has many parts not shown, such as the MySQL
connection statements) takes a category value via POST and runs a
SELECT query that returns the unit_price and units_in_stock for
that category. The code then loops through the returned rows, adding to
the inventory_total variable each time by multiplying unit_price and
units_in_stock. The script finishes by echoing the final value of
inventory_total.

Now consider the front-end code (bk06ch01/example08.html):

CSS:
div {

 color: green;

 font-size: 1.25rem;

}

.warning {

 color: red;

 font-weight: bold;

}

HTML:
<h1>Inventory Report</h1>

<div></div>

JavaScript:
// Function to get the total inventory cost from the server

async function getInventoryTotal() {

 // Data to send via POST

 const postData = {

 category: 1

 }

 // Send the POST request

 const response = await fetch('example08.php', {

 method: 'POST',

 body: JSON.stringify(postData)

 });

 // Parse the response as text

 const inventoryTotal = await response.text();

 // Get a reference to the output div

 const outputDiv = document.querySelector('div');

 // Define the default message

 let msg = `The total inventory is \$${inventoryTotal}`;

 // Is the inventory total over $10,000?

 if (inventoryTotal >= 10000) {

 // If so, set up a warning message, instead

 msg = `WARNING! Total inventory is \$${inventoryTotal}`;

 outputDiv.classList.add('warning');

 }

 // Output the message

 outputDiv.innerHTML = msg;

}

// Run the function

getInventoryTotal();

The asynchronous getInventoryPost() function declares a JavaScript
object that contains a category value. The function then uses fetch() to
send a POST request with the JSON stringified object as the request
body. The function stores the PHP output (that is, the $inventory_total
value) in the inventoryTotal variable, sets up a default message, and
checks to see if inventoryTotal is over 10000. If it is, the code changes
the message and adds the warning class to the div element. Finally, the
code displays the message in the div. Figure 1-7 shows an example
result.

FIGURE 1-7: A warning message displayed by the getInventoryTotal() function.

Returning Fetch API Data as JSON
Text

The real power of JSON becomes clear during Fetch API calls when you
want to return to the web page a complex set of data, usually an array of
database records. Sure, you can use your PHP code to loop through the
array and output the data along with some HTML tags and text.
However, most web apps don’t want to merely display the data; they
want to process the data in some way, and that means handling the data
using an asynchronous function. We still have the rather large problem
of getting the server data to the web page, but that’s where JSON comes
in. Because JSON data is just text, it’s easy to transfer that data between
the server and the web page.

Converting server data to the JSON format
You might be shaking in your boots imagining the complexity of the
code required to convert an array of database records into the JSON
format. Shake no more, because, amazingly, it takes but a single line of
PHP code to do the job! PHP comes with a handy and powerful
json_encode() function, which can take any value and automagically
turn it into a JSON object. Here's the syntax:

json_encode(value, options)

where:

value is the value you want to convert to JSON. For most of your
Fetch API calls, the value will be an array of MySQL table rows

returned by the mysqli_fetch_all() method.

options is an optional series of constants, separated by the OR
operator (|). These constants determine how the function encodes
special characters such as quotation marks. Here are four you’ll use
most often:

JSON_HEX_TAG: Encodes less than (<) and greater than (>) as
\u003C and \u003E, respectively
JSON_HEX_AMP: Encodes ampersands (&) as \u0026

JSON_HEX_APOS: Encodes single quotation marks (') as \u0027

JSON_HEX_QUOT: Encodes double quotation marks (") as
\u0022

The usual procedure is to store the output of json_encode() in a
variable, and then echo or print that variable. Here’s an example (where
it’s assumed that the $rows variable contains an array of MySQL rows):

$JSON_data = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT);

echo $JSON_data;

Here’s a longer example that assumes you’ve already used PHP to
connect to a MySQL database, and the resulting MySQLi connection
object is stored in the $connection variable (bk06ch01/example09.php):

// Create a SELECT query

$sql = "SELECT company_name, contact_name, contact_title, contact_email

 FROM suppliers";

// Run the query

$result = mysqli_query($connection, $sql);

// Get the query rows as an associative array

$rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

// Convert the array to JSON

$JSON_data = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT);

// Output the JSON

echo $JSON_data;

Here's a partial listing of what gets stored in $JSON_data:

[

{

 "company_name": "Exotic Liquids",

 "contact_name": "Charlotte Cooper",

 "contact_title": "Purchasing Manager",

 "contact_email": "charlottecooper@exoticliquids.com"

}, {

 "company_name": "New Orleans Cajun Delights",

 "contact_name": "Shelley Burke",

 "contact_title": "Order Administrator",

 "contact_email": "shelleyburke@neworleanscajundelights.com"

}, {

 "company_name": "Grandma Kelly\u0027s Homestead",

 "contact_name": "Regina Murphy",

 "contact_title": "Sales Representative",

 "contact_email": "reginamurphy@grandmakellyshomestead.com"

},

etc.

]

Note that this is an array of JSON strings, each of which represents a
row from the data returned by the MySQL SELECT query. Note, too, that
I've formatted this with newlines and spaces to make it easier to read.
The data stored in the variable doesn't contain whitespace.

Handling JSON data returned by the server
To process JSON data returned by a PHP script, use the Response
interface’s json() method to parse the returned data. Here’s the syntax:

const data = await response.json();

where:

data is the variable that will stored the parsed data.

response is the variable that contains the Promise returned by the
fetch() call to the PHP script.

Here's some code that processes the PHP output from the previous
section (bk06ch01/example09.html):

HTML:

<h1>Supplier Contacts</h1>

<main></main>

JavaScript:
async function getSuppliers() {

 // Send the request

 const response = await fetch('example09.php');

 // Parse the JSON response

 const suppliers = await response.json();

 // Loop through the suppliers array

 for (let i = 0; i < suppliers.length; i += 1) {

 document.querySelector('main')

 .insertAdjacentHTML('beforeend', `<section id="contact${i}">

</section>`);

 document.querySelector(`#contact${i}`)

 .insertAdjacentHTML('beforeend', `<div>Company:

${suppliers[i].company_name}</div>`);

 document.querySelector(`#contact${i}`)

 .insertAdjacentHTML('beforeend',`<div>Contact:

${suppliers[i].contact_name}</div>`);

 document.querySelector(`#contact${i}`)

 .insertAdjacentHTML('beforeend',`<div>Title:

${suppliers[i].contact_title}</div>`);

 document.querySelector(`#contact${i}`)

 .insertAdjacentHTML('beforeend',`<div>Email:

${suppliers[i].contact_email}</div>`);

 }

}

// Run the function

getSuppliers();

The code fetches the suppliers' data and then loops through the array of
suppliers' contacts:

A new <section> with an id set to `contact${i}` is appended to
main.

A <div> tag for each of the four pieces of contact data
(company_name, contact_name, contact_title, and
contact_email) is appended to the new <section> tag.

Figure 1-8 shows part of the resulting page.

FIGURE 1-8: The asynchronous function loops through the JSON array, appending each
object to the <main> tag.

Chapter 2
Building and Processing Web

Forms
IN THIS CHAPTER

 Understanding web form basics
 Coding text boxes, check boxes, and radio buttons
 Programming lists, labels, and buttons
 Monitoring and triggering form events
 Submitting the form data

From humble beginnings, forms in HTML5 are now tremendously
flexible and powerful, providing natively much of the functionality that
we as developers have been adding in with JavaScript over the years.

— PETER GASSTON
A dynamic web page is one that interacts with the user and responds in
some way to that interaction. However, when I use the word interaction
here, I don’t mean (or I don’t just mean) users scrolling through your
content and clicking a link here and there. A dynamic web page solicits
feedback from the user and then responds to that feedback in an
appropriate way (whatever appropriate might mean in that context).
Sure, you can pester your page visitors for info by tossing them a
confirm or prompt box or two, but these are mere toys in the land of
web interactivity. The real tools for soliciting feedback and then acting
on it — that is, for making your pages truly dynamic — are web forms.

In this chapter, you explore all that web forms have to offer. After
mastering the basics, you investigate the amazing new features offered
by HTML web forms, unearth the power of form events, and learn how

to dress up your form data and send it off to the web server. It's a
veritable forms smorgasbord, so tuck in!

What Is a Web Form?
Most modern programs toss a dialog box in your face if they need to
extract some information from you. For example, selecting a program’s
Print command most likely results in some kind of Print dialog box
showing up. The purpose of this dialog box is to ask for info such as the
number of copies you want, the pages you want to print, and the printer
you want to use.

A form is essentially the web page equivalent of a dialog box. It’s a page
section populated with text boxes, lists, check boxes, command buttons,
and other controls to get information from the user. For example, Figure
2-1 shows a form from my website. People can use this form to send me
a message. The form includes a text box for the person’s name, another
for their email address, a larger text area for the message, and a
command button to send the data to my server.

FIGURE 2-1: A typical web form.

Contact forms are very common, but there are lots of other uses for
forms:

If you put out a newsletter, you can use a form to sign up
subscribers.
If your website includes pages with restricted access, you can use a
form to get a person’s username and password for verification.
If you have information in a database, you can use a form to have
people specify what information they want to access.
If your site has a search feature, you can use a form to get the search
text and offer options for filtering and sorting the search results.

Understanding How Web Forms
Work

A web form is a little data-gathering machine. What kinds of data can it
gather? You name it:

Text, from a single word up to a long post
Numbers, dates, and times
Which item is (or items are) selected in a list
Whether a check box is selected
Which one of a group of radio buttons is selected

What happens to that data after you’ve gathered it? The data can travel
two roads: Server Street and Local Lane.

The Server Street route means that your web server gets in on the action.
Here are the basic steps that occur:

1. The user clicks a button to submit the form.
2. Your JavaScript code gathers and readies the form data for sending.
3. The code uses a Fetch API call (refer to Book 6, Chapter 1) to send

the form data to a PHP script on the server.
4. The PHP script extracts the form data.
5. PHP uses some or all of the form data to build and execute a MySQL

query.
6. PHP outputs either the requested data or some kind of code that

indicates the result of the operation.
7. Your JavaScript code processes the data returned by the server and

updates the web page accordingly.

The Local Lane route doesn’t get the web server involved at all:

1. The user changes the form data in some way.
2. Your JavaScript code detects the changed data.
3. The event handler for the changed form field updates the web page

based on the changed data.

In this chapter, I show you how to build a form and then how to handle
form events, which will enable you to stroll down Local Lane as much
as you want. I also cover submitting data at the end of the chapter, which
gives you everything you need to know for getting to Server Street.

Building an HTML Web Form
You build web forms with your bare hands using special HTML tags.
The latest version of HTML includes many new form goodies, most of
which now have great browser support, so I show you both the oldie-
but-goodie and the latest-and-greatest in the form world over the next
few sections.

Setting up the form
To get your form started, you wrap everything inside the <form> tag:

<form>

</form>

In this book, you create forms that either update the page locally or
submit data to the server via the Fetch API. All that front-end interaction
is controlled by JavaScript code, so you don’t need any special attributes
in the <form> tag.

However, I'd be remiss if I didn’t mention the version of the <form> tag
you need to use if you want your form data submitted directly to a script
on the server:

<form action="script" method="method">

where:

script is the URL of the server script you want to use to process the
form data.
method is the method you want to use to send the data: get or post.
(I talk about the difference between these two methods in Book 6,
Chapter 1.)

Here's an example:
<form

action="https://paulmcfedries.com/webcoding/bk06ch02/get-supplier-

contacts.php"

method="post">

 If you’re just using the form to add local interaction to the web
page and you won’t be submitting any form data to the server,
technically you don’t need the <form> tag. However, you should
use one anyway most of the time because including the <form> tag
enables the user to submit the form by pressing Enter or Return,
and it also gets you a submit button (such as Go) in mobile
browsers.

Adding a form button
Most forms include a button that users click when they’ve completed the
form and want to initiate the form’s underlying action. This action is
known as submitting the form, and that term has traditionally meant
sending the form data to a server-side script for processing. These days,
however, and certainly in this book, submitting the form can also mean

Updating something on the web page without sending anything to
the server. For example, clicking a button might set the page’s
background color.
Running a function that gathers the form data and uses a Fetch API
call to send the data to the server and process what the server sends
back. For example, if the form asks for the person’s username and
password, clicking the form button would launch the login process.

The old style of submitting a form is to use an <input> where the type
attribute is set to submit:

<input type="submit" value="buttonText">

where buttonText is the text that appears on the button face.

For example:
<input type="submit" value="Submit Me!">

This style is rarely used in modern web development because it’s a bit
tricky to style such a button. For that reason, most web developers use
the <button> tag, instead:

<button type="submit">buttonText</button>

where buttonText is the text that appears on the button face.

For example:
<button type="submit">Ship It</button>

 For better looking buttons, use CSS to style the following (check
out bk06ch02/example01.html in this book’s example files):

Rounded corners: To control the roundness of the button corners,
use the border-radius property set to either a measurement (in, say,
pixels) or a percentage. For example:

button {

 border-radius: 15px;

}

Drop shadow: To add a drop shadow to a button, apply the box-
shadowxyblur color property, where x is the horizontal offset of the
shadow, y is the vertical offset of the shadow, blur is the amount the
shadow is blurred, and color is the shadow color. For example:

button {

 box-shadow: 3px 3px 5px gray;

}

Looking at the HTMLFormElement
Object

A form element is an HTMLFormElement object that offers a few
potentially useful properties (in each case, assume that form is a
reference to a form element object):

form.action: The value of the form's action attribute

form.elements: Returns a collection (an
HTMLFormControlsCollection object) of all the form's controls

form.length: The number of controls in the form

form.method: The value of the form's method attribute

form.name: The value of the form's name attribute

form.target: The value of the form's target attribute

Taking a Peek at the
HTMLInputElement Object

Any form field that’s based on the input element is an
HTMLInputElement object that offers quite a few useful properties (in
each case, assume that input is a reference to an input element object):

input.form: The form (an HTMLFormElement object) in which the
element resides
input.labels: Returns a NodeList of the label elements associated
with the element
input.name: The value of the element's name attribute

input.type: The element's type attribute

input.value: The current value of the element

input.valueAsDate: The current value of the element, interpreted as
a date
input.valueAsNumber: The current value of the element, interpreted
as a time value, and then as a number

Programming Text Fields
Text-based fields are the most commonly used form elements, and most
of them use the <input> tag:

<input id="textId" type="textType" name="textName" value="textValue"

placeholder="textPrompt">

where:

textId is a unique identifier for the text field.

textType is the kind of text field you want to use in your form.

textName is the name you assign to the field. If you'll be submitting
the form data via the Fetch API, you must include a name value for
each field.
textValue is the initial value of the field, if any.

textPrompt is text that appears temporarily in the field when the
page first loads and is used to prompt the user about the required
input. The placeholder text disappears as soon as the user starts
typing in the field.

Here’s a list of the available text-based types you can use for the type
attribute:

text: Displays a text box into which the user types a line of text.
Add the size attribute to specify the width of the field, in characters
(the default is 20). Here's an example:

<input type="text" name="company" size="50">

number: Displays a text box into which the user types a numeric
value. Most browsers add a spin box that enables the user to
increment or decrement the number by clicking the up or down
arrow, respectively. Check out this example:

<input type="number" name="points" value="100">

I should also mention the range type, which displays a slider control
that enables the user to click and drag to choose a numeric value
between a specified minimum and maximum:

<input type="range" name="transparency" min="0" max="100" value="100">

email: Displays a text box into which the user types an email
address. Add the multiple attribute to allow the user to type two or
more addresses, separated by commas. Add the size attribute to
specify the width of the field, in characters. An example for you:

<input type="email" name="user-email"

placeholder="you@yourdomain.com">

url: Displays a text box into which the user types a URL. Add the
size attribute to specify the width of the field, in characters. Here’s a
for instance:

<input type="url" name="homepage" placeholder="e.g.,

http://domain.com/">

tel: Displays a text box into which the user types a telephone
number. Use the size attribute to specify the width of the field, in
characters. Here’s an example:

<input type="tel" name="mobile" placeholder="(xxx)xxx-xxxx">

time: Displays a text box into which the user types a time, usually
hours and minutes. For example:

<input type="time" name="start-time">

password: Displays a text box into which the user types a password.
The typed characters appear as dots (•). Add the autocomplete
attribute to specify whether the user's browser or password
management software can automatically enter the password. Set the

attribute to current-password to allow password autocompletion or
to off to disallow autocompletion. Need an example? Done:

<input type="password" name="userpassword" autocomplete="current-

password">

search: Displays a text box into which the user types a search term.
Add the size attribute to specify the width of the field, in characters.
Why, yes, I do have an example:

<input type="search" name="q" placeholder="Type a search term">

hidden: Adds an input field to the form but doesn’t display the field
to the user. That sounds weird, I know, but it’s a handy way to store a
value that you want to include in the submit, but you don’t want the
user to see or modify on the page. Here’s an example:

<input id="userSession" name="user-session" type="hidden"

value="jwr274">

 Some ancient browsers don’t get special text fields such as
email and time, but you can still use them in your pages because
those clueless browsers will ignore the type attribute and just
display a standard text field.

That was a lot of text-related fields, but we're not done yet! You need to
know about two others:

<textarea>: Displays a text box into which the user can type
multiple lines of text. Add the rows attribute to specify how many
lines of text are displayed. If you want default text to appear in the
text box, add the text between the <textarea> and </textarea>
tags. Here’s an example:

<textarea name="message" rows="5">

Default text goes here.

</textarea>

<label>: Associates a label with a form field. You can use a label in
two ways. In the first method, you surround the form field with
<label> and </label> tags, and insert the label text before or after
the field, like so:

<label>

Email:

<input type="email" name="user-email"

placeholder="you@yourdomain.com">

</label>

In the second method, you add an id value to the field tag, set the
<label> tag's for attribute to the same value, and insert the label text
between the <label> and </label> tags, as I've done here:

<label for="useremail">Email:</label>

<input id="useremail" type="email" name="user-email"

placeholder="you@yourdomain.com">

Figure 2-2 demonstrates each of these text fields (refer to
bk06ch02/example02.html).

FIGURE 2-2: The various text input types you can use in your forms.

Referencing text fields by field type
One common form-scripting technique is to run an operation on every
field of the same type. For example, you may want to apply a style to all
the URL fields. Here’s the JavaScript selector to use to select all input
elements of a given type:

document.querySelectorAll('input[type=fieldType]')

where fieldType is the type attribute value you want to select, such as
text or url.

Here's an example where the JavaScript returns the set of all input
elements that use the type url (bk06ch02/example03.html):

HTML:
<label for="url1">

 Site 1:

</label>

<input id="url1" type="url" name="url1" value="https://">

<label for="url2">

 Site 2:

</label>

<input id="url2" type="url" name="url2" value="https://">

<label for="url3">

 Site 3:

</label>

<input id="url3" type="url" name="url3" value="https://">

JavaScript:
const urlFields = document.querySelectorAll('input[type=url]');

console.log(urlFields);

Getting a text field value
Your script can get the current value of any text field by using one of the
field object's value-related properties:

field.value

field.valueAsDate

field.valueAsNumber

where field is a reference to the form field object you want to work
with.

Here’s an example (check out bk06ch02/example04.html):

HTML:
<label for="search-field">

 Search the site:

</label>

<input id="search-field" name="q" type="search">

JavaScript:

const searchString = document.getElementById('search-field').value;

console.log(searchString);

Setting a text field value
To change a text field value, assign the new string to the field object’s
value property:

field.value = value;

where:

field is a reference to the form field object you want to work with.

value is the string you want to assign to the text field.

Here's an example (bk06ch02/example05.html):

HTML:
<label for="homepage-field">

 Type your homepage address:

</label>

<input id="homepage-field" name="homepage" type="url"

value="HTTPS://PAULMCFEDRIES.COM/"">

JavaScript:
const homepageField = document.getElementById('homepage-field');

const homepageURL = homepageField.value;

homepageField.value = homepageURL.toLowerCase();

The HTML code defines an input element of type url where the default
value is in all-uppercase letters. The JavaScript code grabs a URL,
converts it to all-lowercase characters, and then returns it to the same
url field. As shown in Figure 2-3, the text box now displays all-
lowercase letters.

FIGURE 2-3: The script converts the input element's default text to all-lowercase letters.

Coding Check Boxes
You use a check box in a web form to toggle a setting on (that is, the
check box is selected) and off (the check box is deselected). You create a
check box by including in your form the following version of the
<input> tag:

<input id="checkId" type="checkbox" name="checkName" value="checkValue"

[checked]>

where:

checkId is a unique identifier for the check box.

checkName is the name you want to assign to the check box.

checkValue is the value you want to assign to the check box. Note
that this is a hidden value that your script can access when the form
is submitted; the user never encounters it.
checked (optional) means the check box is initially selected.

 One strange thing about a check box field is that it's included in
the form submission only if it’s selected. If the check box is
deselected, it’s not included in the submission.

Referencing check boxes

If your code needs to reference all the check boxes in a page, use the
following selector (bk06ch02/example06.html):

document.querySelectorAll('input[type=checkbox]')

If you just want the check boxes from a particular form, use a
descendant or child selector on the form’s id value:

document.querySelectorAll('#formid input[type=checkbox]')

or:
document.querySelectorAll('#formid > input[type=checkbox]')

Getting the check box state
You have to be a bit careful when discussing the “value” of a check box.
If it’s the value attribute you want to work with, getting this is no
different than getting the value property of a text field by using the
checkbox object's value property.

However, you’re more likely to be interested in whether a check box is
selected or deselected. This is called the check box state. In that case,
you need to examine the checkbox object’s checked property instead:

checkbox.checked

where checkbox is a reference to the checkbox object you want to work
with.

The checked property returns true if the check box is selected, or false
if the check box is deselected.

Here's an example (bk06ch02/example07.html):

HTML:
<label>

 <input id="autosave" type="checkbox" name="autosave">

 Autosave this project

</label>

JavaScript:
const autoSaveCheckBox = document.querySelector('#autosave');

if (autoSaveCheckBox.checked) {

 console.log(`${autoSaveCheckBox.name} is checked`);

} else {

 console.log(`${autoSaveCheckBox.name} is unchecked`);

}

The JavaScript code stores a reference to the checkbox object in the
autoSaveCheckBox variable. Then an if statement examines the object's
checked property and displays a different message in the console
depending on whether checked returns true or false.

Setting the check box state
To set a check box field to either the selected or deselected state, assign a
Boolean expression to the checked property:

checkbox.checked = Boolean;

where:

checkbox is a reference to the checkbox object you want to work
with.
Boolean is the Boolean value or expression you want to assign to the
checkbox object. Use true to select the checkbox object; use false
to deselect the checkbox object.

For example, suppose you have a form with a large number of check
boxes and you want to set up that form so that the user can select at most
three check boxes. Here's some code that does the job
(bk06ch02/example08.html):

document.querySelector('form').addEventListener('click', event => {

 // Make sure a checkbox was clicked

 if (event.target.type === 'checkbox') {

 // Get the total number of selected checkboxes

 const totalSelected =

document.querySelectorAll('input[type=checkbox]:checked').length;

 // Are there more than three selected checkboxes?

 if (totalSelected > 3) {

 // If so, deselect the checkbox that was just clicked

 event.target.checked = false;

 }

 }

});

This event handler runs when anything inside the form element is
clicked, passing a reference to the click event as the parameter event.
Then the code uses the :checked selector to return the set of all
checkbox elements that have the checked attribute, and the length
property tells you how many are in the set. An if test checks whether
more than three are now selected. If that's true, the code deselects the
check box that was just clicked.

Dealing with Radio Buttons
If you want to offer your users a collection of related options, only one
of which can be selected at a time, radio buttons are the way to go. Form
radio buttons congregate in groups of two or more where only one
button in the group can be selected at any time. If the user clicks another
button in that group, it becomes selected and the previously selected
button becomes deselected.

You create a radio button using the following variation of the <input>
tag:

<input id="radioId" type="radio" name="radioGroup" value="radioValue"

[checked]>

where:

radioId is a unique identifier for the radio button.

radioGroup is the name you want to assign to the group of radio
buttons. All the radio buttons that use the same name value belong to
that group.
radioValue is the value you want to assign to the radio button. If
this radio button is selected when the form is submitted, this is the
value that's included in the submission.

checked (optional) means the radio button is initially selected.

Referencing radio buttons
If your code needs to work with all the radio buttons in a page, use this
JavaScript selector:

document.querySelectorAll('input[type=radio]')

If you want the radio buttons from a particular form, use a descendant or
child selector on the form’s id value:

document.querySelectorAll('#formid input[type=radio]')

or:
document.querySelectorAll('#formid > input[type=radio]')

If you require just the radio buttons from a particular group, use the
following JavaScript selector, where radioGroup is the common name of
the group:

document.querySelectorAll('input[name=radioGroup]')

Getting a radio button state
If your code needs to know whether a particular radio button is selected
or deselected, you need to determine the radio button state. You do that
by examining the radio button's checked attribute, like so:

radio.checked

where radio is a reference to the radio button object you want to work
with.

The checked attribute returns true if the radio button is selected, or
false if the button is deselected.

For example, consider the following HTML
(bk06ch02/example09.html):

<form>

 <fieldset>

 <legend>

 Select a delivery method

 </legend>

 <label>

 <input type="radio" id="carrier-pigeon" name="delivery"

value="pigeon" checked>Carrier pigeon

 </label>

 <label>

 <input type="radio" id="pony-express" name="delivery"

value="pony">Pony express

 </label>

<label>

 <input type="radio" id="snail-mail" name="delivery"

value="postal">Snail mail

 </label>

 <label>

 <input type="radio" id="some-punk" name="delivery"

value="bikecourier">Some punk on a bike

 </label>

 </fieldset>

</form>

The following statement stores the state of the radio button with the id
value of pony-express:

const ponySelected = document.querySelector('#pony-express').checked;

However, it's more likely that your code will want to know which radio
button in a group is selected. You can do that by applying the :checked
selector to the group and then getting the value property of the returned
object:

const deliveryMethod =

document.querySelector('input[name=delivery]:checked').value;

 To get the text of the label associated with a radio button, use the
input element's labels property to get a reference to the label
element, and then use the innerText property to get the label text:

document.querySelector('input[name=delivery]:checked').labels[0].innerTextinn

erText);

Setting the radio button state

To set a radio button field to either the selected or deselected state,
assign a Boolean expression to the checked attribute:

radio.checked = Boolean;

where:

radio is a reference to the radio button object you want to change.

Boolean is the Boolean value or expression you want to assign to the
radio button object. Use true to select the radio button; use false to
deselect the radio button object.

For example, in the HTML code from the preceding section, the initial
state of the form group had the first radio button selected. You can reset
the group by selecting that button. You could get a reference to the id of
the first radio button, but what if later you change (or someone else
changes) the order of the radio buttons? A safer way is to get a reference
to the first radio button in the group, whatever it may be, and then select
that element. Here's some code that does this
(bk06ch02/example10.html):

const firstRadioButton = document.querySelectorAll('input[name=delivery]')

[0];

firstRadioButton.checked = true;

This code uses querySelectorAll() to return a NodeList collection of
all the radio buttons in the delivery group; next it uses [0] to reference
just the first element in the collection. Then that element's checked
property is set to true.

Programming Selection Lists
Selection lists are common sights in HTML forms because they enable
the web developer to display a relatively large number of choices in a
compact control that most users know how to operate.

To create the list container, you use the <select> tag:

<select id="selectId" name="selectName" size="selectSize" [multiple]>

where:

selectId is a unique identifier for the selection list.

selectName is the name you want to assign to the selection list.

selectSize is the optional number of rows in the selection list box
that are visible. If you omit this value, the browser displays the list as
a drop-down box.
multiple (optional) means the user is allowed to select multiple
options in the list.

For each item in the list, you add an <option> tag between the <select>
and </select> tags:

<option value="optionValue" [selected]>

where:

optionValue is the value you want to assign to the list option.

selected (optional) means the list option is initially selected.

Checking out the HTMLSelectElement object
A selection list is an HTMLSelectElement object that offers quite a few
useful properties (in each case, assume that select is a reference to a
selection list object):

select.form: The form (an HTMLFormElement object) in which the
selection list resides.
select.length: The number of option elements in the selection list.

select.multiple: A Boolean value that returns true if the selection
list includes the multiple attribute and false otherwise.

select.name: The value of the selection list's name attribute.

select.options: The option elements (an HTMLOptionsCollection
object) contained in the selection list.

select.selectedIndex: The index of the first selected option
element (index values begin at 0 for the first option element). This
property returns -1 if no option elements are selected.

select.selectedOptions: The option elements (an
HTMLCollection object) that are currently selected in the selection
list.
select.type: The selection list type, which is select-one for a
regular list or select-multiple for a list with the multiple attribute
applied.
select.value: The value property of the first selected option
element. If no option element is selected, this property returns the
empty string.

Checking out the HTMLOptionElement object
Each option element in a selection list is an HTMLOptionElement object.
Here are a few useful HTMLOptionElement properties to bear in mind (in
each case, assume that option is a reference to an option element
object):

option.defaultSelected: A Boolean value that returns true if the
option element included the selected attribute by default and false
otherwise
option.form: The form (an HTMLFormElement object) in which the
option element resides

option.index: The index of the option element within the selection
list (index values begin at 0 for the first option element)

option.selected: A Boolean value that returns true if the option
element is currently selected and false otherwise

option.text: The text content of the option element

option.value: The value of the value attribute of the option
element

Referencing selection list options
If your code needs to work with all the options in a selection list, use the
selection list object's options property (bk06ch02/example11.html) :

document.querySelector(list).options

where list is a selector that specifies the select element you want to
work with.

To work with a particular option in a list, use JavaScript's square
brackets operator ([]) to specify the index of the option’s position in the
list (bk06ch02/example11.html):

document.querySelector(list).options[n]

where:

list is a selector that specifies the select element you want to work
with.
n is the index of the option in the returned NodeList collection
(where 0 is the first option, 1 is the second option, and so on).

To get the option's text (that is, the text that appears in the list), use the
option object’s text property :

document.querySelector(list).options[2].text

Getting the selected list option
If your code needs to know whether a particular option in a selection list
is selected or deselected, examine the option’s selected property, like
so:

option.selected

where option is a reference to the option object you want to work with.

The selected attribute returns true if the option is selected or false if
the option is deselected.

For example, consider the following selection list:

<select id="hair-color" name="hair-color">

 <option value="black">Black</option>

 <option value="blonde">Blonde</option>

 <option value="brunette" selected>Brunette</option>

 <option value="red">Red</option>

 <option value="neon">Something neon</option>

 <option value="none">None</option>

</select>

The following JavaScript statement stores the state of the first item in the
selection list:

let black = document.querySelector('#hair-color').options[0].selected;

However, you'll more likely want to know which option in the selection
list is selected. You do that via the list's selectedOptions property:

const hairColor = document.querySelector('#hair-color').selectedOptions[0];

This isn’t a multiselect list, so specifying selectedOptions[0] returns
the selected option element. In this example, your code could use
hairColor.text to get the text of the selected option.

If the list includes the multiple attribute, the selectedOptions property
may return an HTMLCollection object that contains multiple elements.
Your code needs to allow for that by, say, looping through the collection
(bk06ch02/example12.html):

HTML:
<select id="hair-products" name="hair-products" size="5" multiple>

 <option value="gel" selected>Gel</option>

 <option value="grecian-formula" selected>Grecian Formula</option>

 <option value="mousse">Mousse</option>

 <option value="peroxide">Peroxide</option>

 <option value="shoe-black">Shoe black</option>

</select>

JavaScript:
const selectedHairProducts = document.querySelector('#hair-

products').selectedOptions;

for (const hairProduct of selectedHairProducts) {

 console.log(hairProduct.text);

}

Changing the selected option
To set a selection list option to either the selected or deselected state,
assign a Boolean expression to the option object's selected property:

option.selected = Boolean;

where:

option is a reference to the option element you want to modify.

Boolean is the Boolean value or expression you want to assign to the
option object. Use true to select the option; use false to deselect
the option.

Using the HTML code from the preceding section, the following
statement selects the third option in the list:

document.querySelector('#hair-products').options[2].selected = true;

If the initial state of a multiple-selection list had no items selected, you
may want to reset the list by deselecting all the options. You can do that
by setting the selection list object's selectedIndex property to -1:

document.querySelector('#hair-products').selectedIndex = -1;

Handling and Triggering Form
Events

With all the clicking, typing, tabbing, and dragging that goes on, web
forms are veritable event factories. Fortunately, you can let most of these
events pass you by. But a few events will come in handy, both in running
code when the event occurs and in triggering the events yourself.

Most form events are clicks, so you can handle them by setting click
event handlers using JavaScript's addEventListener() method (which I
covered in Book 3, Chapter 7). Here’s an example
(bk06ch02/example13.html):

HTML:

<form>

 <label for="user">Username:</label>

 <input id="user" type="text" name="username">

 <label for="pwd">Password:</label>

 <input id="pwd" type="password" name="password">

</form>

JavaScript:
document.querySelector('form').addEventListener('click', () => {

 console.log('Thanks for clicking the form!');

});

This example listens for clicks on the entire form element, but you can
also create click event handlers for buttons, input elements, check
boxes, radio buttons, and more.

Setting the focus
One simple feature that can improve the user experience on your form
pages is to set the focus on the first form field when your page loads.
Setting the focus saves the user from having to make that annoying click
inside the first field.

To get this done, run JavaScript's focus() method on the element that
you want to have the focus at startup:

field.focus()

where field is a reference to the form field that should have the focus.

Here's an example that sets the focus on the text field with id equal to
user at startup (bk06ch02/example14.html):

HTML:
<form>

 <label for="user">Username:</label>

 <input id="user" type="text" name="username">

 <label for="pwd">Password:</label>

 <input id="pwd" type="password" name="password">

</form>

JavaScript:
document.querySelector('#user').focus();

Monitoring the focus event
Rather than setting the focus, you may want to monitor when a particular
field gets the focus (for example, by the user clicking or tabbing into the
field). You can do that by setting up a focus event handler on the field:

field.addEventListener('focus', () => {

Focus code goes here

});

where field is a reference to the form field you want to monitor for the
focus event.

Here's an example (bk06ch02/example15.html):
document.querySelector('#user').addEventListener('focus', () => {

 console.log('The username field has the focus!');

});

Monitoring the blur event
The opposite of setting the focus on an element is blurring an element,
which removes the focus from the element. You blur an element by
running the blur() method on the element, which causes it to lose
focus:

field.blur()

where field is a reference to the form field you no longer want to have
the focus.

However, rather than blurring an element, you're more likely to want to
run some code when a particular element is blurred (for example, by the
user clicking or tabbing out of the field). You can monitor for a
particular blurred element by setting up a blur() event handler:

field.addEventListener('blur', () => {

Blur code goes here

});

where field is a reference to the form field you want to monitor for the
blur event.

Here's an example (bk06ch02/example16.html):

document.querySelector('#user').addEventListener('blur', () => {

 console.log('The username field no longer has the focus!');

});

Listening for element changes
One of the most useful form events is the change event, which fires
when the value or state of a field is modified. When this event fires
depends on the element type:

For a textarea element and the various text-related input elements,
the change event fires when the element loses the focus.

For check boxes, radio buttons, selection lists, and pickers, the
change event fires as soon as the user clicks the element to modify
the selection or value.

You listen for a field's change events by setting up a change() event
handler:

field.addEventListener('change', () => {

Change code goes here

});

where field is a reference to the form field you want to monitor for the
change event.

Here's an example (bk06ch02/example17.html):

HTML:
<label for="bgcolor">Select a background color</label>

<input id="bgcolor" type="color" name="bg-color" value="#ffffff">

JavaScript:
document.querySelector('#bgcolor').addEventListener('change', (event) => {

 const backgroundColor = event.target.value;

 document.body.bgColor = backgroundColor;

});

The HTML code sets up a color picker. The JavaScript code applies the
change event handler to the color picker. When the change event fires on
the picker, the code stores the new color value in the backgroundColor

variable by referencing event.target.value, where event.target
refers to the element to which the event listener is bound (the color
picker, in this case). The code then applies that color to the body
element's bgColor property.

 Note that I used the regular anonymous function syntax instead
of the arrow function syntax for the event handler. I did that
because inside an arrow function, this always refers to the parent
of the object we're listening on (that parent is the Window object in
this example). When you need this to refer to the object you're
listening on, use the regular anonymous function syntax.

Creating Keyboard Shortcuts for
Form Controls

A web page is very much a click- (or tap-) friendly medium, but that
doesn’t mean you can’t build some keyboard support into your interface.
For example, adding the tabindex="0" attribute to any HTML tag
automatically makes that element “tabbable” (meaning that a user can
set the focus on that element by tapping the tab key one or more times).

Another good example is a button that you feature on most or all of your
pages. In that case, you can set up a keyboard shortcut that enables a
user to execute the button by pressing a key or key combination.

You define a keyboard shortcut for a web page by setting up an event
handler for the document object's keydown event (which fires when the
user presses, but hasn’t yet released, a key). Depending on the type of
shortcut, you may also be able to define the shortcut using the document
object's keyup event (which fires when the user releases a pressed key).
Your event handler needs to look for two kinds of keys:

Special keys: The Alt, Ctrl (Control on a Mac), Shift, and Meta (that
is, ⌘   on a Mac) keys. When the user presses a special key, the
KeyboardEvent object sets one of the following properties to true:
altKey (for Alt), ctrlKey (for Ctrl or Control), shiftKey (for Shift),
or metaKey (for ⌘  ).

Any other key: The letters, numbers, and symbols on a typical
keyboard. In this case, the pressed key is returned as the
KeyboardEvent object's key property.

Here’s an example (bk06ch02/example18.html):

HTML:
<button type="button">

 Run Me!

</button>

<p>

 Keyboard shortcut: Ctrl+Shift+B

</p>

JavaScript:
// Add a listener for the button's 'click' event

document

 .querySelector('button')

 .addEventListener('click',

 (e) => {

 // Change the button text

 e.target.innerText = 'Thanks!';

 // Reset the button after 3 seconds

 setTimeout(() => document

 .querySelector('button').innerText = 'Run Me!',

 3000);

 }

);

// Add a listener for the 'keydown' event

document

 .addEventListener('keydown',

 function(e) {

 // Check whether Ctrl+Shift+B are all pressed

 if(e.ctrlKey && e.shiftKey && e.key === 'B') {

 // If so, trigger the button's 'click' event

 document.querySelector('button').click();

 }

 }

);

The HTML code creates a simple button. The JavaScript code sets up an
event handler for the button’s click event, which changes the button
text, and then uses setTimeout() to change the text back after three
seconds. The code also sets up a keydown event handler that checks
whether the Ctrl, Shift, and B keys were pressed at the same time. If so,
the code invokes the button's click() method, which fires the click
event and triggers the click event handler.

Submitting the Form
There's one form event that I didn’t cover in the preceding section, and
it’s a biggie: the submit event, which fires when the form data is to be
sent to the server. Here's the general syntax:

form.addEventListener('submit', (e) => {

Submit code goes here

});

where:

form is a reference to the form you want to monitor for the submit
event.
e is the argument that represents the event object.

You’ll rarely, if ever, allow the submit event to occur directly. Instead,
you’ll want to intercept the submit so that you can gather the data and
then send it to the server yourself using a Fetch API call. Handling the
submit event yourself gives you much more control over both what is
sent to the server and how what is sent back from the server is
processed.

Triggering the submit event
Here's a list of the various ways that the submit event gets triggered:

When the user clicks a button or input element that resides in a
<form> tag and has its type attribute set to submit

When the user clicks a button element that resides in a <form> tag
and has no type attribute

When the user presses Enter or Return while a form element has the
focus, and either a button or input element resides in the <form> tag
and has its type attribute set to submit, or a button element resides
in the <form> tag and has no type attribute

When your code runs the submit() method on a form:
form.submit();

where form is a reference to the form you want to submit

Preventing the default form submission
You control the form submission yourself by sending the data to the
server with a Fetch API call. The submit event doesn’t know that,
however, and it will try to submit the form data anyway. That’s a no-no,
so you need to prevent the default form submission by using the event
object’s preventDefault() method:

myForm.submit(function(e) {

 e.preventDefault();

});

Preparing the data for submission
Before you can submit your form data, you need to convert it to a format
that your server’s PHP script can work with. This conversion always
begins by gathering the data from the form’s field into a FormData
object:

new FormData(form)

where form is a reference to the form that has the data you want to
gather.

If you'll be submitting the data by using the POST request method, you
don't need to do anything else to the resulting FormData object. If you'll
be using the GET request method, however, then extra step is needed
because the GET format requires a string of name=value pairs, separated
by ampersands (&). To convert your form data to this format, use
JavaScript’s URLSearchParams()constructor:

new URLSearchParams(formData).toString()

where formData is a reference to the FormData object that has the data
you want to submit via GET.

For example (bk06ch02/example19.html):
const form = document.querySelector('form');

const formData = new FormData(form);

const queryParams = new URLSearchParams(formData).toString();

The queryParams variable now holds a string of name=value pairs,
which (as I discuss in the next section) you can tack on to the end of the
URL you send to the server using fetch().

Submitting the form data
Now you're almost ready to submit the data. As an example, here's some
HTML code for a form and div that I’ll use to output the form results:

<form>

 <div>

 <label for="first">First name:</label>

 <input id="first" type="text" name="firstname">

 </div>

 <div>

 <label for="last">Last name:</label>

 <input id="last" type="text" name="lastname">

 </div>

 <div>

 <label for="nick">Nickname:</label>

 <input id="nick" type="text" name="nickname">

 </div>

 <button type="submit" onclick="submitForm(event)">Submit</button>

</form>

<div class="output">

</div>

First, here’s the general JavaScript code that submits the form via the
Fetch API using the GET request method:

fetch(`url?${queryParams}`)

where:

url is the full URL of the PHP script that will process the GET
request.
queryParams is a reference to a string that contains the name=value
pairs created from your form data.

Here's an asynchronous function (bk06ch02/example20.html) that
submits the data using a GET request and processes the result (which
just echoes back the form data, as shown in Figure 2-4):

async function submitForm(event) {

 // Prevent the default form submission

 event.preventDefault();

 // Get a reference to the form

 const form = document.querySelector('form');

 // Gather the form data

 const formData = new FormData(form);

 // Create the query string to add to the fetch() URL

 const queryParams = new URLSearchParams(formData).toString();

 // Submit the data as a GET request using query parameters

 const response = await fetch(`http://localhost/php/echo-form-fields-

get.php?${queryParams}`);

// Parse the data asynchronously

 const data = await response.text();

 // Get a reference to the target element

 const target = document.querySelector('.output');

 // Write the data to the target

 target.innerHTML = data;

}

FIGURE 2-4: An example form submission.

 To make the code in this section easier to understand, I removed
all the error-handling statements. Refer to the example files to get
the full code for both scripts.

Here’s the general JavaScript code that submits the form via the Fetch
API using the POST request method:

fetch('url', {

 method: 'POST',

 body: formData

});

where:

url is the full URL of the PHP script that will process the POST
request.
formData is a reference to a FormData object that holds the form
data.

Here’s an asynchronous function (bk06ch02/example21.html) that
submits the data using a POST request and processes the result:

async function submitForm(event) {

 // Prevent the default form submission

 event.preventDefault();

 // Get a reference to the form

 const form = document.querySelector('form');

 // Gather the form data

 const formData = new FormData(form);

 // Submit the data as a POST request

 const response = await fetch('http://localhost/php/echo-form-fields-

post.php', {

 method: 'POST',

 body: formData

 });

 // Parse the data asynchronously

 const data = await response.text();

 // Get a reference to the target element

 const target = document.querySelector('.output');

 // Write the data to the target

 target.innerHTML = data;

}

 We’re missing one very important stop on our road to dynamic
web pages: We haven’t validated the form data! Form validation is
so important, in fact, that I devote an entire chapter to it: Book 6,
Chapter 3. Don’t miss it!

Chapter 3
Validating Form Data

IN THIS CHAPTER
 Validating data in the browser and on the server
 Making a field mandatory
 Setting restrictions on form fields
 Practicing good data hygiene

Garbage in, garbage out. Or rather more felicitously: The tree of
nonsense is watered with error, and from its branches swing the
pumpkins of disaster.

— NICK HARKAWAY
In the old computing axiom of garbage in, garbage out (GIGO), or if in
your genes or heart you’re British, rubbish in, rubbish out (yes, RIRO),
lies a cautionary tale. If the data that goes into a system is inaccurate,
incomplete, incompatible, or in some other way invalid, the information
that comes out of that system will be outdated, outlandish, outrageous, or
just outright wrong. What does this have to do with you as a web
developer? Plenty, because it’s your job to make sure that the data the
user enters into a form is accurate, complete, and compatible with your
system.

In a word, you have to make sure the data is valid. If that sounds like a
lot of work, I have some happy news for you: HTML has data validation
baked in, so you can just piggyback on the hard work of some real nerds.
In this chapter, you explore these HTML validation techniques. Ah, but
your work isn’t over yet, friend. You also have to validate the same data
once again on the server. Crazy? Like a fox. But there’s more good news
on the server side of things, because PHP has a few ready-to-run tools

that take most of the pain out of validation. In this chapter, you also dive
deep into those tools. Sleeves rolled up? Then let’s begin.

Validating Form Data in the
Browser

Before JavaScript came along, web servers would spend inordinate
amounts of processing time checking the data submitted from a form
and, all too often, returning the data back to the user to fill in an empty
field or fix some invalid entry. Someone eventually realized that
machines costing tens of thousands of dollars (which was the cost of the
average server machine when the web was in swaddling clothes) ought
to have better things to do with their time than chastising users for not
entering their email address correctly (or whatever). Wouldn’t it make
infinitely more sense for the validation of a form’s data to first occur in
the browser before the form was even submitted?

The answer to that is an unqualified “Duh!” And once JavaScript took
hold with its browser-based scripting, using it to do form validation on
the browser became the new language’s most important and useful
feature. Alas, data validation is a complex business, so it didn’t take long
for everyone’s JavaScript validation code to run to hundreds or even
thousands of lines. Plus, there was no standardization, meaning that
every web project had to create its own validation code from scratch,
pretty much guaranteeing it wouldn’t work like any other web project’s
validation code. Isn’t there a better way?

Give me another “Duh!” Perhaps that’s why the big brains in charge of
making HTML more useful decided to do something about the situation.
Several types of form validation are part of HTML, which means now
you can get the web browser to handle your validation chores, with little
or no JavaScript.

 HTML validation has huge browser support, so no major
worries there. However, a tiny minority of older browsers will still
scoff at your browser validation efforts. Not to worry, though:
You’ll get them on the server side!

Making a form field mandatory
It’s common for a form to contain at least one field that the user must fill
in. For example, if your form is for a login, you certainly need both the
username and password fields to be mandatory, meaning you want to set
up the form so that the submission won’t go through unless both fields
are filled in.

Here are a few things you can do to encourage users to fill in mandatory
fields:

Make it clear which fields are mandatory. Many sites place an
asterisk before or after a field and include a note such as Fields
marked with * are required at the top of the form.

For a radio button group, always set up your form so that one of the
<input> tags includes the checked attribute. This ensures that one
option will always be selected.
For a selection list, make sure that one of the <option> tags includes
the selected attribute.

Outside these techniques, you can make any field mandatory by adding
the required attribute to the form field tag. Here's an example (check
out bk06ch03/example01.html in this book’s example files):

<form>

 <div>

 <label for="fave-beatle">Favorite Beatle:</label>

 <input id="fave-beatle" type="text" required>

 <button type="submit">Submit</button>

 </div>

</form>

The <input> tag has the required attribute. If you leave this field blank
and try to submit the form, the browser prevents the submission and
displays a message telling you to fill in the field. This message is slightly
different, depending on the web browser. Figure 3-1 shows the message
that Chrome displays.

FIGURE 3-1: Add the required attribute to a form field to ensure that the field gets filled in.

Restricting the length of a text field
Another useful built-in HTML validation technique is setting restrictions
on the length of the value entered in a text field. For example, you might
want a password value to have a minimum length, and you might want a
username to have a maximum length. Easier done than said:

To add a minimum length restriction, set the minlength attribute to
the least number of characters the user must enter.
To add a maximum length restriction, set the maxlength attribute to
the most number of characters the user can enter.

Take a look at an example (check out bk06ch03/example02.html):
<form>

 <div>

 <label for="acct-handle">Account handle (6-12 chars):</label>

 <input id="acct-handle"

 type="text"

 placeholder="Enter 6-12 characters"

 minlength="6"

 maxlength="12">

 <button type="submit">Submit</button>

 </div>

</form>

The <input> tag asks for a value no less than 6 and no more than 12
characters long. If the user enters a value shorter or longer and tries to
submit the form, the browser prevents the submission and displays a
message asking for more or fewer characters. Figure 3-2 shows the
version of the message that Firefox displays.

FIGURE 3-2: Use the minlength or maxlength attribute (or both) to restrict a field's length.

Setting maximum and minimum values on a
numeric field
HTML can also validate a numeric field based on a specified minimum
or maximum value for the field. Here are the attributes to use:

min: To add a minimum value restriction, set the min attribute to the
smallest allowable value the user can enter.
max: To add a maximum value restriction, set the max attribute to the
largest allowable value the user can enter.

Here's an example (bk06ch03/example03.html):
<form>

 <div>

 <label for="loan-term">Loan term (years):</label>

 <input id="loan-term"

 type="number"

 placeholder="3-25"

 min="3"

 max="25">

 <button type="submit">Submit</button>

 </div>

</form>

The number <input> tag asks for a value between 3 and 25. If the user
enters a value outside this range and tries to submit the form, the
browser prevents the submission and displays a message to reenter a
value that's either less than or equal to the maximum (as shown in Figure
3-3) or greater than or equal to the minimum.

FIGURE 3-3: Use the min or max attribute (or both) to accept values within a specified range.

Validating email fields
Generic field validation attributes such as required, minlength, and max
are useful, but some form fields need a more targeted validation
technique. In a field that accepts an email address, for example, any
entered value should look something like username@domain. If that
sounds like a daunting challenge, you’re right, it is. Fortunately, that
challenge has already been taken up by some of the best coders on the
planet. The result? Built-in HTML validation for email addresses. And
when I say “built-in,” I mean built-in, because once you specify
type="email" in the <input> tag, modern web browsers will
automatically validate the field input to make sure it looks like an email
address when the form is submitted, as shown in Figure 3-4 (refer to
bk06ch03/example04.html).

FIGURE 3-4: Modern browsers automatically validate email fields.

Making field values conform to a pattern
One of the most powerful and flexible HTML validation techniques is
pattern matching, where you specify a pattern of letters, numbers, and
other symbols that the field input must match. You add pattern matching
validation to a text, email, url, tel, search, or password field by
adding the pattern attribute:

pattern="regular_expression"

where regular_expression is a type of expression called a regular
expression that uses special symbols to define the pattern you want to
apply to the field.

For example, suppose you want to set up a pattern for a ten-digit North
American telephone number that includes dashes, such as 555-123-4567
or 888-987-6543. In a regular expression, the symbol \d represents any
digit from 0 to 9, so your regular expression would look like this:

\d\d\d-\d\d\d-\d\d\d\d

Here’s the regular expression added to a telephone number field
(bk06ch03/example05.html):

<input id="user-phone"

 type="tel"

 pattern="\d\d\d-\d\d\d-\d\d\d\d"

 placeholder="e.g., 123-456-7890"

 title="Enter a 10-digit number in the format 123-456-7890">

 It’s a good idea to add the title attribute and use it to describe
the pattern you want to user to enter. Also, you can find all kinds of
useful, ready-made patterns at the HTML5 Pattern site:
www.html5pattern.com.

 HTML5 is the version of HTML that included most of the
validation features that I talk about in this section (plus lots of other
useful features, such as the semantic sectioning tags from Book 2,
Chapter 1). The name HTML5 was put out to pasture a few years
ago, and now HTML has no versions, just an ever-changing
specification called the HTML Living Standard
(https://html.spec.whatwg.org).

Table 3-1 summarizes the most useful regular expression symbols to use
with the pattern attribute. See “Regular Expressions Reference,” at the
end of this chapter, for a more detailed look at this powerful tool.

TABLE 3-1 The Most Useful Regular Expression
Symbols

Symbol Matches

\d Any digit from 0 through 9

\D Any character that is not a digit from 0 through 9

. Any character

\s

Any whitespace character, such as the space, tab (\t), newline (\n), and
carriage return (\r)

\S Any non-whitespace character

[] Whatever characters are listed between the square brackets

[c1-c2] Anything in the range of letters or digits from c1 to c2

https://www.html5pattern.com/
https://html.spec.whatwg.org/

Symbol Matches

[^]
Everything except whatever characters are listed between the square
brackets

[^c1-c2] Everything except the characters in the range of letters or digits from c1 to c2

? If the character preceding it appears just once or not at all

* If the character preceding it is missing or if it appears one or more times

+ If the character preceding it appears one or more times

{n} If the character preceding it appears exactly n times

{n,} If the character preceding it appears at least n times

{n,m}

If the character preceding it appears at least n times and no more than m
times

p1|p2 Pattern p1 or pattern p2

From this table, you can see that an alternative way to write the 10-digit
telephone regular expression would be the following:

[0-9]{3}-[0-9]{3}-[0-9]{4}

Styling invalid fields
One useful thing you can do as a web developer is make it obvious for
the user when a form field contains invalid data. Sure, the browser will
display its little tooltip to alert the user when they submit the form, but
that tooltip stays onscreen for only a few seconds. It would be better to
style the invalid field in some way, so the user always knows it needs
fixing.

One straightforward way to do that is to take advantage of the CSS
:invalid pseudo-selector, which enables you to apply a CSS rule to any
invalid field. For example, here's a rule that adds a red highlight around
any <input> tag that is invalid:

input:invalid {

 border-color: rgba(255, 0, 0, .5);

 box-shadow: 0 0 10px 2px rgba(255, 0, 0, .8);

}

The problem, however, is that the web browser checks for invalid fields
as soon as it loads the page. So, for example, if you have fields with the
required attribute that are initially empty when the page loads, the
browser will flag those as invalid and apply the invalid styling. Your
users will be saying, “Gimme a break, I just got here!”

One way to work around this problem is to display an initial message
(such as required) beside each required field, and then replace that
message with something positive (such as a check mark) when the field
is filled in.

Here’s some code that does that (bk06ch03/example06.html):

HTML:
<form>

 <div>

 <label for="user-name">Name:</label>

 <input id="user-name"

 type="text"

 placeholder="Optional"

 required>

 </div>

 <div>

 <label for="user-email">Email:</label>

 <input id="user-email"

 type="email"

 placeholder="e.g., you@domain.com"

 required>

 </div>

 <button type="submit">Submit</button>

</form>

CSS:
input:invalid+span::after {

 content: ' (required) ';

 color: red;

}

input:valid+span::after {

 content: '\2713';

 color: green;

}

Note in the HTML code that both fields have the required attribute and
both fields also have an empty span element right after them. Those
span elements are where you’ll put your messages, and that’s what the
CSS code is doing:

The first CSS rule looks for any invalid input field, and then uses
the adjacent sibling selector (+) to select the span that comes
immediately after the field. The ::after pseudo-element adds the
content (required) to the span and colors it red.

The second CSS rule is similar, except that it looks for any valid
input field, and then adds a green check mark (given by Unicode
character 2713) to the span.

Figure 3-5 shows these rules in action, where the Name field is valid and
the Email field is invalid.

FIGURE 3-5: The CSS rules add a green check mark to valid fields, and the red text
(required) to invalid fields.

Another approach is to use JavaScript to listen for the invalid event
firing on any input element. The invalid event fires when the user tries
to submit the form and one or more fields contain invalid data. In your
event handler, you could then apply a predefined class to the invalid
field. Here's some code that does just that (bk06ch03/example07.html):

HTML:
<form>

 <div>

 <label for="user-name">Name:</label>

 <input id="user-name"

 type="text"

 placeholder="Your name"

 required>

 </div>

 <div>

 <label for="user-email">Email:</label>

 <input id="user-email"

 type="email"

 placeholder="e.g., you@domain.com"

 required>

 </div>

 <button type="submit">Submit</button>

</form>

CSS:
.error {

 border-color: rgba(255, 0, 0, .5);

 box-shadow: 0 0 10px 2px rgba(255, 0, 0, .8);

}

input:valid {

 border-color: lightgray;

 box-shadow: none;

}

JavaScript:
const inputs = document.querySelectorAll('input');

for (const input of inputs) {

 input.addEventListener('invalid', () => {

 input.classList.add('error');

 });

}

The HTML code is the same as in the preceding example, minus the
extra tags. The CSS code defines a rule for the error class that
uses border-color and box-shadow to add a red-tinged highlight to an
element. The input:valid selector removes the border and box shadow
when the field becomes valid. The JavaScript code loops through all the

input elements and adds to each an event listener for the invalid event.
When that event fires, the event handler adds the error class to the
input element.

Validating Form Data on the Server
You might have looked at the title of this section and cried, “The server!
But we just went through validating form data in the browser! Surely we
don’t have to validate on the server, as well!?” First of all, calm down.
Second, yep, it would be nice if we lived in a world where validating
form data in the web browser was good enough. Alas, that Shangri-La
doesn’t exist. The problem, you see, is that a few folks are still surfing
with very old web browsers that don’t support either <input> tag types,
such as number, email, and date, or browser-based validation. It’s also
possible that someone might, innocently or maliciously, bypass your
form and send data directly to the server (say, by using a URL query
string).

Either way, you can’t be certain that the data that shows up on the
server’s doorstep has been validated, so it’s up to your server script to
ensure that the data is legit before processing it. Happily, as you see in
the next few sections, PHP is loaded with features that make validating
data straightforward and painless.

Checking for required fields
If one or more fields in your form are mandatory, you can check those
fields on the server by using PHP’s empty() function:

empty(expression)

where expression is the literal, variable, expression, or function result
that you want to test.

The empty() function returns FALSE if the expression exists and has a
non-empty, non-zero value; it returns TRUE otherwise.

I’ll go through a complete example that shows one way to handle
validation errors on the server. First, here’s some HTML

(bk06ch03/example08.html):
<form>

 <div>

 <label for="user-name">Name</label>

 <input id="user-name"

 type="text"

 name="user-name">

 </div>

 <div>

 <label for="user-email">Email</label>

 <input id="user-email"

 type="email"

 name="user-email">

 </div>

 <button type="submit" onclick="submitForm()">Submit</button>

</form>

<article class="output"></article>

The form has two text fields, and there’s also an <article> tag that
you’ll use a bit later to output the server results.

On the server, I created a PHP file named validate-required-
fields.php:

<?php

 header('Content-Type: application/json');

 header('Access-Control-Allow-Origin: *');

 // Store the default status

 $server_results['status'] = 'success';

 // Check the user-name field

 if(isset($_GET['user-name'])) {

 $user_name = $_GET['user-name'];

 // Is it empty?

 if(empty($user_name)) {

 // If so, update the status and add an error message for the

field

 $server_results['status'] = 'error';

 $server_results['user-name'] = 'Missing user name';

 }

 }

 // Check the user-email field

 if(isset($_GET['user-email'])) {

 $user_email = $_GET['user-email'];

 // Is it empty?

 if(empty($user_email)) {

 // If so, update the status and add an error message for the

field

 $server_results['status'] = 'error';

 $server_results['user-email'] = 'Missing email address';

 }

 }

 // If status is still "success", add the success message

 if($server_results['status'] === 'success') {

 $message = "Success! Thanks for submitting the form, $user_name.";

 $server_results['message'] = $message;

 }

 // Create and then output the JSON data

 $JSON_data = json_encode($server_results, JSON_HEX_APOS | JSON_HEX_QUOT);

 echo $JSON_data;

?>

This script uses the $server_results associative array to store the data
that gets sent back to the browser. At first the array’s status key is set to
success. Then the script checks the user-name field from the $_GET
array: If the field is empty, the array’s status key is set to error and an
array item is added that sets an error message for the field. The same
process is then used for the user-email field. If after those checks the
array’s status key is still set to success (meaning there were no
validation errors), the array is updated with a success message. Finally,
the array is converted to JSON and outputted.

A successful submission outputs JSON that looks like this:
{

 "status": "success",

 "message": "Success! Thanks for submitting the form, Paul."

}

An unsuccessful submission outputs JSON that looks like this:
{

 "status": "error",

 "user-name": "Missing user name",

 "user-email": "Missing email address"

}

Back on the client, the form element’s submit event handler converts
and submits the form data, and then processes the result
(bk06ch03/example08.html):

async function submitForm(event) {

 event.preventDefault();

 // Get a reference to the form

 const form = document.querySelector('form');

 // Gather the form data

 const formData = new FormData(form);

 // Create the query string

 const queryParams = new URLSearchParams(formData).toString();

 // Submit the data as a GET request

 const response = await fetch(`http://localhost/php/validate-required-

fields.php?${queryParams}`);

 // Parse the data asynchronously

 const data = await response.json();

 // Get a reference to the output element, then display it

 const output = document.querySelector('.output');

 output.style.display = 'block';

 // Check the validation status

 if(data.status === 'success') {

 // Output the success result

 output.innerHTML = data.message;

 } else {

 // Output the validation error(s)

 let outputString = '<section>Whoops! There were errors:</section>';

 for (const key in data) {

 if (data.hasOwnProperty(key)) {

 if (key != 'status') {

 // Get the label text

 const label =

document.querySelector(`label[for=${key}]`).innerText;

 outputString += `<section>Error in ${label} field:

${data[key]}</section>`;

 }

 }

 }

 // Output the error result

 output.innerHTML = outputString;

 }

}

The asynchronous function gathers the form data, creates a query string
from that data, and uses fetch() to submit the data using a GET request.
The function then uses response.json() to parse the JSON returned by
the server. After setting up the output element, the function checks the
value of data.status: If it equals success, the script's success message
is displayed. Otherwise, the for() loop adds each error message to the
output element. Figure 3-6 shows an example.

FIGURE 3-6: Some example validation error messages returned from the server script.

Validating text data
Besides validating that a text field exists, you might also want to
perform two other validation checks on a text field:

The field contains alphabetic characters only: To ensure that the
field contains only lowercase or uppercase letters, use the
ctype_alpha() function:

ctype_alpha(text)

where text is your form field's text data. The ctype_alpha()
function returns TRUE if the field contains only letters or FALSE
otherwise.
The field length is greater than or equal to some minimum value,
less than or equal to some maximum value, or both. To check the
length of the field, use the strlen() function:

strlen(text)

where text is your form field's text data. The strlen() function
returns the number of characters in the field.

Here's some PHP code that performs these checks on a form field called
user-name (and bk06ch03/example09.html gives this script a whirl):

<?php

 header('Content-Type: application/json');

 header('Access-Control-Allow-Origin: *');

 // Store the default status

 $server_results['status'] = 'success';

 // Check the user-name field

 if(isset($_GET['user-name'])) {

 $user_name = $_GET['user-name'];

 // Is it empty?

 if(empty($user_name)) {

 // If so, update the status and add an error message for the

field

 $server_results['status'] = 'error';

 $server_results['user-name'] = 'Missing user name';

 } else {

 // Does it contain non-alphabetic characters?

 if(!ctype_alpha($user_name)){

 // If so, update the status and add an error message for the

field

 $server_results['status'] = 'error';

 $server_results['user-name'] = 'User name must be text';

 } else {

 // Does the user name contains less than 3 or more than 12

characters?

 if(strlen($user_name) < 3 || strlen($user_name) > 12) {

 // If so, update the status and add an error message for

the field

 $server_results['status'] = 'error';

 $server_results['user-name'] = 'User name must be 3 to 12

characters long';

 }

 }

 }

 }

 // If status is still "success", add the success message

 if($server_results['status'] === 'success') {

 $message = "Success! Thanks for submitting the form, $user_name.";

 $server_results['message'] = $message;

 }

 // Create and then output the JSON data

 $JSON_data = json_encode($server_results, JSON_HEX_APOS | JSON_HEX_QUOT);

 echo $JSON_data;

?>

Validating a field based on the data type
If you want to ensure the value of a field is a particular data type, PHP
offers a powerful function called filter_var() that can help:

filter_var(var, filter, options)

where:

var is the variable, expression, or function result you want to check.

filter is an optional constant value that determines the data type
you want to check. Here are some useful filters:

FILTER_VALIDATE_BOOLEAN: Checks for a Boolean value

FILTER_VALIDATE_EMAIL: Checks for a valid email address

FILTER_VALIDATE_FLOAT: Checks for a floating-point value

FILTER_VALIDATE_INT: Checks for an integer value

FILTER_VALIDATE_URL: Checks for a valid URL

options is an optional array that sets one or more options for the
filter. For example, FILTER_VALIDATE_INT accepts the options
min_range and max_range, which set the minimum and maximum
allowable integers. Here's the setup for a minimum of 0 and a
maximum of 100:

array('options' => array('min_range' => 0, 'max_range' => 100))

The filter_var() function returns the data if it’s valid according to the
specified filter; if the data isn’t valid, the function returns FALSE (or
NULL, if you're using FILTER_VALIDATE_BOOLEAN).

Here’s an example script (validate-integer-fields.php) that checks for
integer values within an allowable range (bk06ch03/example10.html
calls this script):

<?php

 header('Content-Type: application/json');

 header('Access-Control-Allow-Origin: *');

 // Store the default status

 $server_results['status'] = 'success';

 // Check the user-age field

 if(isset($_GET['user-age'])) {

 $user_age = $_GET['user-age'];

 // Is it empty?

 if(empty($user_age)) {

 // Add an error message for the field

 $server_results['status'] = 'error';

 $server_results['user-age'] = 'Missing age value';

 } else {

 // Is the field not an integer?

 if(!filter_var($user_age, FILTER_VALIDATE_INT)){

 // Add an error message for the field

 $server_results['status'] = 'error';

 $server_results['user-age'] = 'Age must be an integer';

 } else {

 // Is the age not between 14 and 114?

 $options = array('options' => array('min_range' => 14,

'max_range' => 114));

 if(!filter_var($user_age, FILTER_VALIDATE_INT, $options)) {

 // Add an error message for the field

 $server_results['status'] = 'error';

 $server_results['user-age'] = 'Age must be between 14 and

114';

 }

 }

 }

 }

 // If status is "success", add the success message

 if($server_results['status'] === 'success') {

 $message = "Success! You don't look a day over " . intval($user_age -

1) . ".";

 $server_results['message'] = $message;

 }

 // Create and then output the JSON data

 $JSON_data = json_encode($server_results, JSON_HEX_APOS | JSON_HEX_QUOT);

 echo $JSON_data;

?>

The script uses filter_var($user_age, FILTER_VALIDATE_INT) twice:
first without and then with the options parameter. The first instance just
checks for an integer value, whereas the second checks for an integer
between 14 and 114. The integer check is redundant here, but I added
both so you could get a feel for how filter_var() works.

Validating against a pattern
If you want to use a regular expression to validate a field value, PHP
says “No problem!” by offering you the preg_match() function. Here's
the simplified syntax:

preg_match(pattern, string)

where:

pattern is the regular expression, which you enter as a string. Note,
too, that the regular expression must be surrounded by slashes (/).

string is the string (such as a form field value) that you want to
match against the regular expression.

The preg_match() function returns TRUE if string matches pattern,
and FALSE otherwise.

For example, suppose you want to check an account number to ensure
that it uses the pattern AA-12345 — that is, two uppercase letters, a
hyphen, and then five numbers. Assuming that the value is stored in a
variable named $account_number, here’s a preg_match() function that
will validate the variable (refer to validate-with-pattern.php and
bk06ch03/example11.html in this book’s example files):

preg_match('/[A-Z]{2}-[0-9]{5}/', $account_number)

Regular Expressions Reference

 You can validate form data using regular expressions either in
the web browser by adding a pattern attribute to the field or on the
server by using PHP's preg_match() function. To help you get the
most out of these powerful techniques, the rest of this chapter takes
you through some examples that show you how to use the regular
expression symbols. In the examples that follow, remember to
surround the regular expression with slashes (/) when you use it in
the preg_match() function; you don’t need the slashes when you
use the regular expression as a pattern attribute value.

Here are the symbols you can use in your regular expressions:

\d: Matches any digit from 0 through 9:

Regular Expression String Match?

\d\d\d "123" Yes

\d\d\d\d "123" No

\d\d\d "12C" No

\d\d\d-\d\d\d-\d\d\d\d "123-555-6789" Yes

\D: Matches any character that's not a digit from 0 through 9:

Regular Expression String Match?

\D\D\D "AB!" Yes

\D\D\D "A1B" No

\D-\D\D\D\D "A-BCDE" Yes

\w: Matches any character that's a letter, a digit, or an underscore (_):

Regular Expression String Match?

\w\w\w "F1" Yes

\w\w\w "F+1" No

A\w\ "A" Yes

A\w\ "A!" No

\W: Matches any character that's not a letter, a digit, or an underscore
(_):

Regular Expression String Match?

\W\W\W\W "<!--" Yes

\W\W\W "<a>" No

1\W\ "10" No

1\W\ "1!" Yes

. (dot): Matches any character that's not a newline:

Regular Expression String Match?

…. "ABCD" Yes

…. "123" No

A.. "A@B" Yes

\s: Matches any whitespace character, such as the space, tab (\t),
newline (\n), and carriage return (\r):

Regular Expression String Match?

\d\d\d\s\d\d\d\d "123 4567" Yes

\d\d\d\s\d\d\d\d "123-4567" No

\d\d\d\s\d\d\d\d "123 4567" No

\S: Matches any non-whitespace character:

Regular Expression String Match?

\d\d\d\S\d\d\d\d "123 4567" No

\d\d\d\S\d\d\d\d "123-4567" Yes

A\SB "A+B" Yes

[]: Matches whatever characters are listed between the square
brackets. The [] symbol also accepts a range of letters or digits or
both:

Regular Expression String Match?

[+-]\d\d\d "+123" Yes

[+-]\d\d\d "$123" No

[2468]-A "2-A" Yes

[2468]-A "1-A" No

[(]\d\d\d[)]\d\d\d-\d\d\d\d "(123)555-6789" Yes

[A-Z]\d\d\d "A123" Yes

[A-Z]\d\d\d "a123" No

[A-Za-z]\d\d\d "a123" Yes

[0-5]A "3A" Yes

[0-5]A "6A" No

[0-59]A "9A" Yes

 Remember that the range [0-59] matches the digits 0 to 5 or
9 and not the range 0 to 59.
[^]: Matches everything but whatever characters are listed between
the square brackets. As with the [] symbol, you can use letter or

digit ranges.

Regular Expression String Match?

[^+-]\d\d\d "+123" No

[^+-]\d\d\d "123" Yes

[^2468]-A "2-A" No

[^2468]-A "1-A" Yes

[^A-Z]\d\d\d "A123" No

[^A-Z]\d\d\d "a123" Yes

[^A-Za-z]\d\d\d "#123" Yes

[^0-5]A "3A" No

[^0-5]A "6A" Yes

[^0-59]A "9A" No

\b: Matches one or more characters if they appear on a word
boundary (that is, at the beginning or the end of a word). If you place
\b before the characters, it matches if they appear at the beginning of
a word; if you place \b after the characters, it matches if they appear
at the end of a word.

Regular Expression String Match?

\bode "odeon" Yes

\bode "code" No

ode\b "code" Yes

ode\b "odeon" No

\bode\b "ode" Yes

\B: Matches one or more characters if they don't appear on a word
boundary (the beginning or the end of a word). If you place \B before
the characters, it matches if they don’t appear at the beginning of a

word; if you place \B after the characters, it matches if they don't
appear at the end of a word.

Regular Expression String Match?

\Bode "odeon" No

\Bode "code" Yes

ode\B "code" No

ode\B "odeon" Yes

\Bode\B "code" No

\Bode\B "coder" Yes

?: Matches if the character preceding it appears just once or not at
all:

Regular Expression String Match?

e-?mail "email" Yes

e-?mail "e-mail" Yes

e-?mail "e--mail" No

e-?mail "e:mail" No

*: Matches if the character preceding it is missing or if it appears one
or more times:

Regular Expression String Match?

e-*mail "email" Yes

e-*mail "e-mail" Yes

e-*mail "e--mail" Yes

e-*mail "e:mail" No

+: Matches if the character preceding it appears one or more times:

Regular Expression String Match?Regular Expression String Match?

e-+mail "email" No

e-+mail "e-mail" Yes

e-+mail "e--mail" Yes

e-+mail "e:mail" No

{n}: Matches if the character preceding it appears exactly n times:

Regular Expression String Match?

lo{2}p "loop" Yes

lo{2}p "lop" No

\d{5} "12345" Yes

\d{5}-\d{4} "12345-6789" Yes

{n,}: Matches if the character preceding it appears at least n times:

Regular Expression String Match?

lo{2,}p "loop" Yes

lo{2,}p "lop" No

lo{2,}p "looop" Yes

\d{5,} "12345" Yes

\d{5,} "123456" Yes

\d{5,} "1234" No

{n,m}: Matches if the character preceding it appears at least n times
and no more than m times:

Regular Expression String Match?

lo{1,2}p "loop" Yes

lo{1,2}p "lop" Yes

Regular Expression String Match?

lo{1,2}p "looop" No

\d{1,5} "12345" Yes

\d{1,5} "123456" No

\d{1,5} "1234" Yes

^: Matches if the characters that come after it appear at the beginning
of the string:

Regular Expression String Match?

^Java "JavaScript" Yes

^Java "HotJava" No

^[^+-]?\d\d\d "123" Yes

^[^+-]?\d\d\d "+123" No

$: Matches if the characters that come before it appear at the end of
the string:

Regular Expression String Match?

Java$ "JavaScript" No

Java$ "HotJava" Yes

\d\d\.\d%$ "12.3%" Yes

\d\d\.\d%$ "12.30%" No

 If you need to include one of the characters from a regular
expression symbol as a literal in your expression, escape the
character by preceding it with a backslash (\). For example, suppose
you want to see if a string ends with .com. The following regular
expression won't work because the dot (.) symbol represents any
character except a newline:

.com$

To force the regular expression to match only a literal dot, escape the
dot, like this:

\.com$

|: Place this symbol between two patterns, and the regular
expression matches if the string matches one pattern or the other.
(Don't confuse this symbol with JavaScript’s OR operator: ||.)

Regular Expression String Match?

^(\d{5}|\d{5}-\d{4})$ "12345" Yes

^(\d{5}|\d{5}-\d{4})$ "12345-6789" Yes

^(\d{5}|\d{5}-\d{4})$ "123456789" No

 The preceding examples use parentheses to group the two
patterns together. With regular expressions, you can use parentheses
to group items and set precedence, just as you can with JavaScript
expressions. A regular expression of the form ^(pattern)$ means
that the pattern defines the entire string, not just some of the
characters in the string.

Chapter 4
Coding Static Web Pages

IN THIS CHAPTER
 Getting comfy with the difference between static and dynamic

pages
 Setting up and cloning a GitHub repository
 Pushing changes to the repository
 Creating an HTML template file
 Generating static HTML files with PHP
 Deploying your static files to GitHub Pages

With static HTML, [the] story is pretty simple. You…write the code
(including your content). Then, once it’s on the server, it’s always like
that. There’s no background processing going on — your site is always
right there in its finished form.

— BRIAN JACKSON
One of the unfortunate hallmarks of web coding and development over
the past dozen years or so is an ever-increasing level of complexity for
the developer. New web coding frameworks get released alarmingly
frequently, with each new “solution” boasting a learning curve even
steeper than the previous one. (A framework, just so you know, is a set
of tools and resources for building and managing websites.) A solid
framework is probably a necessity when you’re building an enterprise-
level site, but do you need one for small or even medium-sized projects?

My answer to that question is a resounding “No!” Precisely zero
frameworks are used in this book. (This edition even removed the
jQuery code from the previous edition because modern JavaScript no
longer needs jQuery.) My belief is that when web development uses

nothing but pure HTML, CSS, JavaScript, and PHP, web development is
easier to learn and a joy to master. Appreciating the inherent simplicity
of using these languages in their pure state has been one of the main
goals of this book.

In this chapter, you double-down on that simplicity by exploring the
purest kind of website: one that consists of nothing but static HTML,
CSS, and JavaScript files.

Static? Dynamic? What Am I Even
Talking About?

Before diving into the code, I should take a second to make sure you’re
comfortable with this chapter’s basic dichotomy: static versus dynamic.

First, a dynamic web page is one where some of the page content resides
in a web server database and where that content can change after the
page has been deployed. Why would page content change? Quite a few
reasons:

If new data gets added to the server database, the web page content
changes to reflect that new data.
If existing data gets modified on the server database, the web page
content changes to reflect that modification.
If the user requests different data (say, by submitting a form), the
web page content changes to reflect that request.

Dynamic web pages are flexible, but they can be a little on the slow side
because the page is relying on a server connection and a database query
for at least some of its content. Dynamic web pages can also be user-
unfriendly because, especially when using Fetch API POST requests to
fetch data, the URL doesn’t change, so the user can’t bookmark what
might appear to be a “new” page or navigate a history of page changes.

To help solve these and other problems, a static web page is one where
the complete page content is written to an HTML file and that file

doesn’t change unless you, as the developer, make changes directly to
the file and then deploy your changes. With no server connection or
database queries in sight, static web pages load blazingly fast and are
always bookmarkable and navigable by users.

Building Your Own Static Site
Generator

The traditional way of building a static website is to code the HTML
files manually, link to whatever images, CSS, and JavaScript the page
requires, and then deploy everything to the server. If you need to tweak
the content or code, you fire up your trusty editor, make the changes, and
then redeploy the file.

This method works fine for the smallest websites, but as your site grows,
the inefficiencies become all the more glaring. For example, if you have
a navigation bar on each page, adding or changing a link is no big deal
for a few pages, but it’s a huge timesuck for a few dozen pages.
Similarly, if you decide to redesign your site, propagating the new
design to more than a handful of pages is no one’s idea of a good time.

That’s why, once your site grows beyond even just a few pages, you
should consider setting up your own static site generator (often
shortened to SSG), which is a server app that consists of the following
components:

A data structure (such as an array or a MySQL database) that
contains the content unique to each page: title, subtitle, text and
HTML tags, and so on
PHP files that contain the common components of all your pages,
such as the page header and footer
An HTML file that serves as a template for all your pages
A PHP script that brings the above three components together to
create each HTML file for your website

The script in that last point is the heart of your SSG, so here’s a closer
look at how the script works its static magic:

1. If the page content is in a database, connect to the database, use a
query to return the data, and then store the data in an array.

2. Set up a loop to iterate through each page in the array. For each page,
do the following:

a. Create an output buffer.
b. Include your page template in the output buffer.
c. Write all the buffered content to an HTML file.

At the end of the loop, you’ll have a shiny, new set of HTML files,
which you can then deploy to the web. (Not sure what a “buffer” is? No
worries: All will be revealed shortly.)

Using GitHub to Store Your Static
Site Files

Once you’ve generated your static site files, it’s certainly possible to use
FTP or a similar technology to upload those files to a web host of your
choice. The only downside to this approach is that when you generate
new files or revise existing files, you must manually keep track of what’s
new and changed and then upload those changes as needed. Similarly, if
you rename a file or delete a file, you must log in to your server to
propagate those changes to the server versions of the files.

That’s no great burden, for sure, but in this chapter I’m going to show
you a method where you can automate much of the uploading and
deployment of your site. The secret is to use GitHub
(https://github.com) to store your static files. GitHub is an online
service for storing and managing the code for programming projects.
GitHub is a vast and exceedingly complex tool that’s used by
programming teams all over the world. Fortunately, for the purposes of

https://github.com/

your static site projects, you can ignore 99 percent of GitHub’s features.
Instead, you’ll use GitHub to make two things easier for these projects:

Use a few simple GitHub commands to quickly and easily upload
any changes you make to your static files (including file additions,
changes, renames, and deletions).
Deploy your static site using a web host that automatically checks
your GitHub storage for changes. When the host detects a change —
such as a new, changed, renamed, or deleted file — the host
redeploys your static site right away.

Best of all, the most popular tools that deploy from your GitHub account
offer free web hosting for all but the largest of sites. And since GitHub
also offers a free plan, you can deploy almost any static website for
exactly zero dollars. Sweet!

Getting started with GitHub
Before getting to the specifics of using GitHub to store your static site
files, you need to perform a few housekeeping chores: setting up your
GitHub account, generating a personal access token, and installing the
Git software. The next three sections provide the details.

Setting up an account
Your first task is to set up a GitHub account, which you can do by
navigating to https://github.com and then clicking Sign Up. You enter
your email address, a password, and a username, and then, after a
security check or two, you’re good to go. When you get to the point in
the process where you’re asked to choose a plan, be sure to click
Continue for Free.

Generating a personal access token
You’ll be accessing your GitHub stuff remotely, so you won’t be
surprised to hear that there’s a tightly guarded security barrier that your
GitHub-related commands have to pass through. The method that
GitHub uses to prevent unauthorized folks from also being able to pass
through that barrier is the personal access token, which is a string of 40

https://github.com/

random characters. The next item on your GitHub setup to-do list is to
generate a personal access code for your static website project. Here’s
how it’s done:

1. Use your favorite web browser to navigate to
https://github.com.

2. Sign in to your GitHub account, if you’re not signed in
automatically.
GitHub takes you to your Dashboard page.

3. Click your account avatar in the upper-right corner, and then
click Settings.

4. At the bottom of the left sidebar, click Developer Settings.
5. Select Personal Access Tokens⇒  Tokens (Classic).
6. Select Generate New Token⇒  Generate New Token (Classic).

The New Personal Access Token (Classic) page appears.
7. In the Note text box, name the token.
8. In the Expiration list, select when your token expires.

When your token expires, you’ll need to generate a new one if you
still need access. So, you have a couple of ways to go here:

If you need access to GitHub for only a certain amount of
time (for example, once you’ve deployed your site, you won’t
be making any changes to it), set the expiration time to an
interval that takes you just beyond the time you need.
If you need access to GitHub indefinitely (for example, you
expect to make regular changes to your site even after you
deploy it), choose whatever expiration interval you’re
comfortable with. GitHub will send you an email when your
token is about to expire, and it’s relatively easy to regenerate
an existing token.

https://github.com/

 You might be sorely tempted to choose No Expiration
to avoid the hassle of regenerating your token. However, if
you choose to give your token no expiration date and it is
compromised, you’ve just given the attacker eternal access to
your stuff. It’s not worth it.
The rest of the page presents a dishearteningly long list of
check boxes that you use to specify what actions can be
performed using this token.

9. To keep things simple, select only the Repo check box, as shown
in Figure 4-1.

FIGURE 4-1: Select only the Repo check box to make your life easier.

10. Scroll down to the bottom of the page and then click Generate
Token.

GitHub generates your new token and then displays it, as shown in
Figure 4-2.

 This is the only time that GitHub will show you the token, so
be sure to complete the next two steps to store your token
somewhere safe.

11. Click the copy icon (labeled in Figure 4-2) to the right of your
token.

12. Paste the token into a file so that you always have a copy of it
nearby.
Make sure the text file isn’t stored in a folder that other people can
access.

FIGURE 4-2: GitHub displays your new personal access token just once.

Installing Git
Your only other startup task is to download the Git software to your
computer:

Git for Windows: Head to https://git-scm.com/download/win
and download the 32-bit or 64-bit version of Git. (To learn your
system type, select Start⇒  Settings, click System, click About, and
then read the System Type text, which will say something like 64-

https://git-scm.com/download/win

bit operating system.) Run the downloaded file to install Git.
(The installer asks a ton of questions, but you're fine leaving the
default options selected throughout the install procedure.)
Git for macOS: Install Homebrew from https://brew.sh/. Then
open Terminal, type brew install git, and then press Return to install
Git.

Setting up a GitHub repository for your project
A GitHub storage location is called a repository (often shortened to
repo) and you typically set up one repository for each of your static
website projects. Here are the steps to follow to create a new repository
on the GitHub website:

1. Use your closest web browser to navigate to https://github.com.

2. Sign in to your GitHub account, if you’re not signed in
automatically.
GitHub takes you to your Dashboard page.

3. Start a new repo using one of the following methods:
If you see the Create Your First Project sidebar, click the
Create Repository button.
If you see the Top Repositories sidebar, click New.
Click Create New (+) in the GitHub toolbar, and then click
New Repository.

You end up at the Create a New Repository page.
4. In the repository name text box, type the name you want to use

for your repo.
Your name can be any combination of letters, numbers, hyphens (-),
underscores (_), and periods (.). As you type your repo name,
GitHub checks to make sure you haven’t already used the name in
your account and, as shown in Figure 4-3, tells you the name is
available if you haven't.

https://brew.sh/
https://github.com/

FIGURE 4-3: GitHub checks to make sure you haven’t already used the name for
another repo.

5. Choose who can access your repo:
Public: Anyone with internet access can view your repo’s
files.
Private: Only you can see your repo.

Later you learn how to deploy your repository to GitHub Pages. If
you’re using a GitHub free account, you must set your repository’s
visibility to public. (If you want to deploy a private repo, upgrade to
a GitHub Pro account.)

6. Ignore the other repo options and click Create Repository.
GitHub creates a new repo for you.

After GitHub creates the repo, it drops you off at the repo’s home page,
which will look something like the one shown in Figure 4-4. Later, once
you’ve uploaded your static site files, a list of those files will appear
here.

FIGURE 4-4: The repo home page includes the all-important address of the repository
folder (.git).

You don’t need worry about too much here, with the important exception
of the location of the repository folder, which is the .git URL pointed
out in Figure 4-4. You’re going to need this address when you clone the
repo in the next section.

Cloning the GitHub repository to your computer
Once you’ve created a repo on GitHub, you’re ready to make a local
copy of the repo on your computer. In GitHub lingo, making a local
copy is called cloning the repo.

To get started, first open your computer’s command-line app:

Windows 11: Press Win+S to start a search, type terminal, and then
click the Terminal app in the search results. (Alternatively, type cmd
and then click the Command Prompt app.)

macOS: Click the Spotlight icon in the menu bar, type terminal, and
then click the Terminal app in the search results.

With the command line in front of you, your first task is to navigate to
the directory into which you want to clone your GitHub repo. Note that
the cloning process creates a new subdirectory that uses the repo name,
so in this step you’re navigating to what will be the parent directory of
your cloned repo.

For example, if you clone a repo named my-static-site into
c:\xampp\htdocs, your cloned repo will reside in the
c:\xampp\htdocs\my-static-site directory. So, in this case, you first
navigate to the c:\xampp\htdocs directory.

You navigate to the parent directory by typing the cd command, a space,
and the path of the parent directory:

cd path-to-parent-directory

Replace path-to-parent-directory with the path you want to use. For
example, in Windows 11 the command might look like this:

cd c:\xampp\htdocs

In macOS, the command might look like this:
cd /Applications/XAMPP/xamppfiles/htdocs

Press Enter or Return to make it so.

With that done, clone the repo by running the git clone command,
followed by Enter or Return:

git clone repository-folder-url.git

Replace repository-folder-url.git with the URL of your repo folder,
as pointed out earlier in Figure 4-4. Here's an example:

git clone https://github.com/paulmcfe/my-static-site.git

 One easy way to avoid typos is to click the copy icon to the right
of the URL (refer to Figure 4-4). At the command line, type git
clone, type a space, then paste the copied URL.

You’ll be prompted to authenticate your GitHub credentials. There are
two possibilities here:

You see the Connect to GitHub dialog box: Click the Token tab,
paste your personal access token into the text box (as shown in
Figure 4-5), then click Sign In.

FIGURE 4-5: In the Connect to GitHub dialog box, use the Token tab to paste your
personal access code.

You see a command line prompt for your username: Type your
GitHub username and press Enter or Return. Now you’ll be
prompted for your password. However, instead of entering your
GitHub password here, you need to paste your personal access token.
If, after pasting the token, you don’t see the token (or even dots

representing the token), that’s fine: Just press Enter or Return to
continue and all will be well.

Either way, if you see a warning along the lines of You appear to have
cloned an empty repository, nod your head knowingly and move on
with your life.

Once your repo is cloned, navigate to the repo directory with the
following command:

cd repo-name

Replace repo-name with the name of your repo.

Staging, committing, and pushing changes to the
repository
Your cloned repository is empty now, but you'll soon be adding lots of
static files to the directory, editing exiting files, and renaming and
deleting files. You need to regularly send all your changes to the remote
repository on GitHub. That’s a three-step process:

1. Stage the changes by telling Git which file or files you want to
send:

git add .

2. Commit the changes by confirming that you want to send them:
git commit -m "Commit message"

Replace Commit message with a short message describing the
changes you made (such as “Updated page title” or “Generated static
pages”).

3. Push the changes by sending them to the remote repo:
git push origin main

This command tells Git to update the remote repository (designated
by origin) with the committed changes from the local repository
(designated by main).

Forging Your HTML Template File
I mention earlier that if you were to just cobble together all your static
HTML files by hand, a serious time commitment is required when you
need to make a significant change to the files. And the more files you
have, the more onerous the job.

One of the major timesaving features of getting PHP to generate your
static files is that you can regenerate your entire site in seconds flat if
you set everything up right. The key to this apparent miracle is that you
manually build just a single HTML file, called a template. Your PHP
script uses that template to build all your other static HTML files. Later,
when you want to make a change to your site, you change only the
template and then run your PHP script to regenerate all the files based on
that changed template. And just like that, you're done!

Here’s a template file (refer to bk06ch04/template.php in this chapter’s
example files) that I’ll use as an example:

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title><?php echo $page['title']; ?></title>

 <link href="styles.css" rel="stylesheet">

 </head>

 <body>

 <header>

 <h1>My Static Site</h1>

 <p class="subtitle">"Look, ma, no server!"</p>

 </header>

 <nav>

 <?php include "nav.html" ?>

 </nav>

 <main>

 <article>

 <h2><?php echo $page['title']; ?></h2>

 <h3><?php echo $page['subtitle']; ?></h3>

 <p>

 <?php echo $page['content']; ?>

 </p>

 <p>

 Next page: <?php echo $next_page; ?>

 </p>

 </article>

 </main>

 <footer>

 © <?php echo date("Y"); ?> Paul McFedries

 </footer>

 </body>

</html>

The first thing to note about this file is that it mostly consists of HTML
tags and text. These are the tags and text common to all the site pages.

The nav section contains the following:

<?php include "nav.html" ?>

This is PHP code to insert the text and code from a file named nav.html.
The key here is PHP's include statement:

include file;

where file is the path and name of the file with the code and text you
want to include. If the template file and the include file reside in the
same directory, you don’t need to include the path.

 You have to use the include statement only if your static
website requires multiple templates. If your site needs just one
template file, you might as well just plop the tags and text from the
other file directly into the template.

Finally, the template file also includes several instructions to insert the
current contents of PHP variables, expressions, and data structures. For
example, both the title element and the h2 element include the
following:

<?php echo $page['title']; ?>

As you see a bit later, the PHP script that acts as the static site generator
includes an associative array named $page that includes an item named
title that stores the title of the page currently being generated. The

preceding statement uses echo to write the current value of
$page['title']' to the page.

Similarly, the following statement writes the current value of the
$next_page variable to the page:

<?php echo $next_page; ?>

And, in the footer element, the following statement writes the current
year to the page:

<?php echo date("Y"); ?>

Using PHP to Generate the Static
Pages

Once you've set up your template as I describe in the preceding section,
you’re ready to code your static site generator in PHP. The assumption
with any SSG is that the information unique to each page resides in a
data structure somewhere on your server. The basic idea behind any SSG
is that you gather all that page data into an array, loop through the array,
and within each iteration of the loop you use the current array data to
generate that page.

Access the unique page data
The unique page data will almost always reside in a MySQL database.
Your SSG would connect to that database, query the database to return
the unique page data, and then store the result in an array. However, for
this example, I simplify things by using an array of associative arrays,
each of which contains the unique page data:

<?php

// Put the unique page data into an array of arrays

$pages = [

 [

 'filename' => 'index.html',

 'title' => 'Home Page',

 'subtitle' => 'The Home Page Subtitle',

 'content' => 'This is the content for the home page.'

], [

 'filename' => 'page1.html',

 'title' => 'Page 1',

 'subtitle' => 'The Page 1 Subtitle',

 'content' => 'This is the content for Page 1.'

],

 [

 'filename' => 'page2.html',

 'title' => 'Page 2',

 'subtitle' => 'The Page 2 Subtitle',

 'content' => 'This is the content for Page 2.'

],

 [

 'filename' => 'page3.html',

 'title' => 'Page 3',

 'subtitle' => 'The Page 3 Subtitle',

 'content' => 'This is the content for Page 3.'

]

];

Building the rest of the static site generator
The secret sauce of any PHP static site generator is the ob_start()
function. This function turns on output buffering, which means that all
PHP output goes to a buffer (essentially a memory location). In
particular, anything you echo, print, or include goes into this buffer.
Crucially, any file you include into the buffer takes on the current scope
of the PHP script, so any PHP variables or data structures in that scope
get resolved in the included file. So, for the purposes of the SSG,
including the template file in the buffer enables that file to access the
$pages array as well as any in-scope variables.

Here's the code that loops through the $pages array:

// Set up some variables

$total_pages = count($pages);

$current_page = 1;

// Loop through each page and generate the static HTML file

foreach ($pages as $page) {

 // Start buffering the output

 ob_start();

 // Create the link to the next page

 if ($current_page === $total_pages) {

 $current_page = 1;

 $next_page = '' . $pages[0]

['title'] . '';

 } else {

 $next_page = '' .

$pages[$current_page]['title'] . '';

 }

 // Include the template file

 include 'template.php';

 // Save the buffered content

 $htmlContent = ob_get_clean();

 // Save the content to the static HTML file

 file_put_contents($page['filename'], $htmlContent);

 echo "Static file " . $page['filename'] . " generated!\r\n";

 // Increment the current page number

 $current_page++;

}

?>

After declaring a couple of variables that the code later uses to construct
the link to the next page, a foreach loop iterates through the $pages
array, with the current page represented as $page. The code runs
ob_start() to begin output buffering, and constructs the link to the next
page, which gets stored in the $next_page variable. The generator then
includes the template.php file to add it to the buffer.

At this point, the script is done outputting stuff to the buffer, so the
buffer content is stored as follows:

$htmlContent = ob_get_clean();

The ob_get_clean() function returns the content of the buffer (which
gets stored in the $htmlContent variable), and then cleans out the buffer.
Next the SSG outputs the content to the static HTML file:

file_put_contents($page['filename'], $htmlContent);

The file_put_contents() function puts what's stored in the
$htmlContent variable into the file given by $page['filename'].

Generating the static files
Before you generate your website's static files, make sure all of the
following are in the repository folder that Git created earlier when you
cloned your GitHub repository:

Your HTML template file
Your support files (images, CSS files, and so on)
Your PHP static site generator file

You can now run the static site generator as follows:

Windows 11: In Terminal or Command Prompt, navigate to the
repository folder, and then run the following command:

C:\xampp\php\php ssg

macOS: In Terminal, navigate to the repository folder, and then run
the following command:

/Applications/xampp/xamppfiles/bin/php ssg

In both cases, replace ssg with the name of your static site generator file.
Also, modify the path if you installed XAMPP in a folder other than the
default. When you run the file, you’ll see an output similar to the one
shown in Figure 4-6.

FIGURE 4-6: The output of the static site generator.

Pushing your files to GitHub

 Once your static site generator has done its job, it’s time to get
your files on GitHub. As a refresher, here are the three commands
you need to run from the repository folder (pressing Enter or Return
after each):

git add .

git commit -m "Uploading static files"

git push origin main

Repeat as needed each time you make changes to any of your files or
each time you regenerate your static pages. (It’s a best practice to modify
the commit message to reflect the change or changes you made.)

With that done, you're ready to deploy your static website.

Deploying Your Static Website
Once you’ve used your PHP static site generator script to build your
static web pages and once you’ve pushed all your static site files to
GitHub, aren’t you done? After all, the files are now online, right? True,
but a GitHub repository doesn’t have the capability of serving your files
to web browsers. No, for your static pages to form a true website, you
need to deploy them to a web host.

As I mention earlier, it’s certainly possible to use FTP to upload your
static site files to any web host. However, in this chapter I introduce you
to GitHub repositories because you can configure certain web hosts to
automatically deploy your website from a specified GitHub repository.
Once you have such a web host configured, every time you push
changes to your GitHub repository, the web host automatically redeploys
your website and your changes are online lickety-split (usually in less
than a minute).

Happily, one of the companies that offers such hosting is GitHub itself,
which is the easiest route because you’ve already got a GitHub account
set up and you don’t have to leave GitHub to configure the deployment.

If you’re using a GitHub free account, your repository must have public
visibility. To deploy a private repository, you need to upgrade to GitHub
Pro.

 If your repository is currently private, you can switch it to public
by displaying the repository on GitHub, clicking Settings (the one
in the toolbar, to the right of the Insights command), scrolling down
to the bottom of the page (to the ominously named Danger Zone
section), clicking Change Visibility, and then clicking Change to
Public. Follow the confirmations and other prompts that appear.

 I provide the instructions for deploying your static site
repository to GitHub Pages, but of course you’re free to look
elsewhere for hosting. Two free web hosts that can deploy directly
from a GitHub repository are Cloudflare Pages
(https://pages.cloudflare.com/) and Netlify
(https://netlify.com/).

GitHub Pages comes with a few restrictions, but the only ones that
matter to you are that your website size can’t be larger than 1GB and
you get a monthly bandwidth cap of 100GB. (Bandwidth is the amount
of data per month that your site transfers to web browsers.) These
generous caps won’t be a problem for your site.

Follow these steps to deploy your repo to GitHub Pages:

1. Navigate to https://github.com and sign in, if you’re not signed
in already.

2. Click the repository you want to deploy.
If you don’t see the repo in the left sidebar, click Show More to
display more repos.

3. In the repository toolbar, click Settings.

https://pages.cloudflare.com/
https://netlify.com/
https://github.com/

4. In the sidebar, click Pages.
The repo’s GitHub Pages page appears.

5. In the Branch section, click the drop-down list that currently
says None and then click main to select that branch, as shown in
Figure 4-7.
GitHub adds a Select Folder list, but you can ignore it.

6. Click Save.
GitHub deploys your repo.

Refresh the page and you should now see a message that says Your site
is live at URL, where URL is the address of the Pages site. Figure 4-8
shows an example. Click Visit Site to give your newly deployed static
site a test drive.

FIGURE 4-7: Select your repo’s main branch for the deployment.

FIGURE 4-8: Refresh the page to see the address of your repo's Pages deployment.

 The URL of your GitHub Pages site is
https://username.github.io/repo/, where username is your
GitHub username and repo is the name of the repo you deployed.
However, if you have your own domain name, you can use that
name with your deployed site instead. Follow Steps 1 through 4 in
the preceding list to display your repo’s GitHub Pages page, type
your domain in the Custom Domain text box, and then click Save.
Follow the instructions that appear for verifying that you own the
domain.

Book 7
Building Web Apps

Contents at a Glance
Chapter 1 Planning a Web App

What Is a Web App?

Planning Your Web App: The Basics

Chapter 2: Making a Web App Responsive
Defining a Responsive Layout

Going with the Flow: Fluid Layouts

Querying Your Way to Responsiveness: Adaptive Layouts

Working with Images Responsively

Exploring the Principles of Mobile-First Development

Chapter 3: Making a Web App Accessible
Why You Need to Make Your Apps Accessible

Understanding Web Accessibility

Making Your App Structure Accessible

Making Text Accessible

Making Media Accessible

Buffing Up Your App Accessibility Semantics

Making Your Apps Keyboard-Friendly

Ensuring Sufficient Color Contrast

Validating the Accessibility of an App

Chapter 4: Securing a Web App
Web App Security: Nutshell Version

Understanding the Dangers

Sanitizing Incoming Data

Escaping Outgoing Data

Securing File Uploads

Securing Passwords

Setting Up a Secure Directory Structure

Understanding PHP Sessions

Creating a Back-End Initialization File

Chapter 1
Planning a Web App

IN THIS CHAPTER
 Learning about web apps
 Figuring out your app’s functionality
 Determining your app’s data requirements
 Planning your app’s workflow
 Visualizing your app’s interface

What you can do, or dream you can, begin it,

Boldness has genius, power, and magic in it.

— JOHANN WOLFGANG VON GOETHE
There are many reasons to get and stay interested in web coding and
development. Here are a just a few: the challenge of learning something
new; the confidence that comes from figuring out hard or complex
problems; the satisfactions that inhere from getting code to work; the
desire to get a job in web development; the feeling that you’re operating
right at the leading edge of the modern world. These are all great and
motivating reasons to code for the web, but there’s another reason to
dive deep into CSS and JavaScript and all the rest: as an outlet for your
creative side.

Sure, anybody who learns a bit of HTML and a few CSS properties can
put up pages of information, but as a full-stack web developer who also
knows JavaScript, MySQL, and PHP, you have all the tools you need to
create bold and beautiful apps for the web. That’s where the real
creativity lies: having a vision of something cool, interesting, and fun
and then using code to realize that vision for other people to see and use.
This minibook helps you unleash the right side of your brain and make

your creative vision a reality by showing you a few crucial upgrades to
your web coding and development skills and know-how. First up: the all-
important planning process.

What Is a Web App?
If you go to the web home for a company called Alphabet
(https://abc.xyz), you get a general introduction to the company, plus
some information for investors, news releases, links to corporate
documents such as the company bylaws, and so on. But Alphabet is also
the parent company for some of the web’s most iconic spots:

Google (www.google.com): Search the web.

Gmail (https://mail.google.com): Send and receive email
messages.
Google Maps (https://maps.google.com): Locate and get
directions to places using maps.
YouTube (www.youtube.com): Play and upload videos.

What’s the difference between the parent Alphabet site and these other
sites? Lots, of course, but I think two differences are most important:

Each of the other sites is focused on a single task or topic: searching,
emailing, maps, or videos.
Each of the other sites offers an interface that enables the user to
operate the site in some way. For example, Google has a simple
search form, whereas Gmail looks like an email inbox and offers
commands such as Compose and Reply.

 In other words, the Alphabet home is a basic website that’s
really just a collection of documents you can navigate, whereas the
likes of Google, Gmail, Google Maps, and YouTube are more like

https://abc.xyz/
https://www.google.com/
https://mail.google.com/
https://maps.google.com/
https://www.youtube.com/

the applications you use on your computer. They are, in short, web
apps, because although they reside on the web and are built using
web technologies such as HTML, CSS, JavaScript, MySQL, and
PHP, they enable you to perform tasks and create things just like a
computer application does.

Fortunately, you don’t have to have an idea for the next YouTube or
Gmail to get started coding web apps. (Although, hey, if you do, I say go
for it!) Web apps can be anything you want, as long as they enable you
or your users to do something. If that something happens to be fun,
creative, interesting, or useful, congratulations: You’ve made the world a
better place.

Planning Your Web App: The Basics
If you’re like me, when you come up with an exciting idea for a web
app, the first thing you want to do is open your trusty text editor and start
bashing out some code. That’s a satisfying way to go, but believe me,
that satisfaction dissipates fast when you’re forced to go back and redo a
bunch of code or restructure your database because, in your haste, you
took a wrong turn and ended up at a dead end or too far from your goal.

I plea, then, for just a bit of restraint so that you can spend the first hour
or two of your project thinking about what you want to build and laying
out the steps required to get there. Think of it like planning a car trip.
You know your destination, but it’s unlikely you’ll want to just get in the
car and start driving in the general direction of your goal. You need to
plan your route, load up with supplies such as gas, water, and food,
gather tools such as a GPS, and so on. To figure out the web-
development equivalents of such things, it helps to ask yourself five
questions:

 What is my app’s functionality?
What are my app’s data requirements?

How will my app work?
How many pages will my app require?
What will my app’s pages look like?

The next few sections go through these questions both in a general way
and more specifically with an app idea called FootPower!, which is a
simple app for logging and viewing three foot-propelled activities:
walking, running, and cycling.

What is my app’s functionality?
The first stage in planning any web app is understanding what you want
the app to do. You can break this down into two categories:

User functions: These are the tasks that users performs when they
operate whatever controls your app provides. The standard four tasks
are given by the unfortunately named CRUD acronym: creating,
reading, updating, and deleting.
App functions: These are tasks that your app performs outside the
interface controls. Examples are creating user accounts, signing users
in and out, handling forgotten passwords, and backing up data.

For FootPower!, here’s a list of the user functions I’d implement:

Creating new activities, each of which records activity details such
as the type of activity and the activity date, distance, and duration
Viewing previous activities, with the capability to filter the activities
by date and type
Editing an existing activity
Deleting an activity

Here are the app functions I’d implement:

Creating users
Verifying new users by sending a verification email

Signing existing users in and out
Maintaining users' app settings
Handling forgotten passwords
Deleting user accounts

What are my app’s data requirements?
Web apps don’t necessarily have to use a back end. If your web app is a
calculator, for example, you’d need to present only the front-end
interface to the user; no back-end database or Fetch API calls are
required. But if your app requires persistent data — which might be data
you supply or data created by each user —you need to store that data in
a MySQL database and use Fetch API calls to transfer that data between
the browser and the server.

 Before you load up phpMyAdmin, however, you need to sit
down and figure out what you want to store in your database. Web
app data generally falls into three categories:

User data: If your app has user accounts, you need to store account
data such as the username or email address, the password, profile
settings, and site preferences.
User-generated data: If your app enables users to create things, you
need to save that data so that it can be restored to users the next time
they sign in.
App data: If your app presents data to users, you need to store that
data in MySQL. You might also want to store behind-the-app-scenes
data such as analytics and visitor statistics.

For an app such as FootPower!, the data requirements would fall into
two segments:

The app would have user accounts, so the app would need a MySQL
table to store each account’s email address, password, verification
status, and a few site preferences.
Users would be recording their foot-propelled movements, so the app
would need two tables to store this data:

Each user would create a log of their activities, so the app
would need a table to record the data for each of these logs,
basically just a unique log ID, the ID of the user who owns
the log, and the date the log was created.
Within each user’s log would be the activities themselves,
which the app would store in a separate table that includes a
unique ID for each activity, the user’s log ID, and fields for
each chunk of activity data: type, date, distance, and duration.

How will my app work?

 Once you know what you want your app to do and what data
your app requires, you’re ready to tackle how your app works. This
is called the app’s workflow, and it covers at a high level what the
app does and the order in which it does those things. A simple
flowchart is usually the way to go here: Just map out what happens
from the time users type in your app URL to the time they leave the
page.

Figure 1-1 shows the workflow I envision for the FootPower! app.

FIGURE 1-1: The workflow for the FootPower! app.

How many pages will my app require?
Your app’s workflow should tell you fairly specifically how many pages
your app needs. Most web apps are focused on a single set of related
tasks, so your users will spend most of their time on the page that
provides the app’s main interface, usually the home page. However, your
app will need other pages to handle tasks such as registering users,
signing in users, and displaying account options. Record every page you
need; this information will act as an overall to-do list for the front end.

Here’s a potential list of pages for the FootPower! app:

The home page, which would require two versions:
The unregistered or signed-out version of the home page,
which would serve as a kind of ad for the app
The signed-in version, which would show the user’s activity
log and enable log-based tasks such as creating, filtering,
editing, and deleting activities

A page that enables new users to register

A page letting new users know that a verification email has been sent
A sign-in page
A page that enables the user to edit and delete activities
A password reset page
An account options page
An account delete page

What will my app’s pages look like?
Before you start laying down your HTML and CSS code, you need to
have a decent sense of what you want your app’s pages to look like.
Sure, all of that might be in your head, but it really pays in the long run
to get those images down on paper with a sketch or two. These sketches
don’t have to be fancy in the least. Just take a pen, pencil, or your
favorite Crayola color and rough out the overall structure.

Simple forms (such as those for signing in or resetting a password) don’t
require much effort, but for more elaborate pages, such as your app’s
home page, you need to flesh out the design a bit: header, navigation,
main content, sidebar, footer, and so on.

Figure 1-2 shows an example sketch for the FootPower! app’s home
page.

FIGURE 1-2: A sketch of the home page for the FootPower! app.

With your web app plan in place, you're ready to start coding the app. In
the next chapter, you learn how to make your web app's layout
responsive.

Chapter 2
Making a Web App Responsive
IN THIS CHAPTER

 Using Flexbox, Grid, and viewport units for fluid layouts
 Using media, container, and user preference queries for adaptive

layouts
 Making your page typography responsive
 Delivering images responsively
 Getting to know the mobile-first approach to layout

The web’s greatest strength, I believe, is often seen as a limitation, as a
defect. It is the nature of the web to be flexible, and it should be our role
as designers and developers to embrace this flexibility and produce
pages which, by being flexible, are accessible to all.

— JOHN ALLSOP
A web app is something like the online equivalent of a desktop program,
but that doesn’t mean you should build your web app to look good and
work properly only on desktop-sized screens. Why not? For the simple
reason that your app’s visitors will be using a wide range of device sizes,
from PCs with gigantic displays several feet wide, all the way down to
smartphones with screens just a few inches wide. On the modern web,
one size definitely does not fit all, so you need to plan your app so that
its user experience (UX, to the cognoscenti) — that is, what visitors see
and interact with — is positive for everyone.

In this chapter, you investigate the rich world of responsive web design,
which enables your web app to work well and look good on everything
from a smartphone to smart TV. You learn how to use Flexbox or Grid or
both to make your layouts fluid with just a few properties; how to use
queries to make your layouts adaptive; and how to deliver images with

responsiveness in mind. You also dive into the biggest trend in web app
layout: the mobile-first approach.

Defining a Responsive Layout
To make your web app look good and operate well on any size screen,
you need to plan your app with responsiveness in mind. A responsive
web app is one that changes its layout, styling, and often also its content
to ensure that the app works on whatever screen size or device type the
reader is using.

To understand why you need to code responsively from the start of your
web app, consider the two main nonresponsive layouts you could
otherwise use:

Fixed width: A layout in which the width of the content is set to a
fixed size. In this case, if the fixed width is greater than the width of
the screen, most of the time the user must scroll horizontally to get to
all the content, as shown in Figure 2-1 (check out
bk07ch02/example01.html in this book’s example files).

FIGURE 2-1: When a web app has a fixed width, users with small screens must
scroll horizontally to get to all the content.

No width: A layout in which the content has no set width. You may
think that having no width would enable the text and images to wrap
nicely on a small screen, and you’d be right. However, the problem
is on larger screens, where your text lines expand to fill the browser
width. As shown in Figure 2-2 (check out
bk07ch02/example02.html), those lines can become ridiculously
long, to the point where scanning the lines becomes just about
impossible.

FIGURE 2-2: When a web app has no maximum width, the lines of text can become too
long for comfortable reading.

You could describe both of these scenarios as “don’t-care” layouts,
because neither one concerns itself with what device or screen size is
being used. If you don’t want to be a “don’t-care” developer, you need to
build “care” into your web apps right from the start. How do you do
that? By taking all (not some, all) of the following into account with
each line of code you write:

Device type: These days, people who surf to your app may be using
a phone, tablet, notebook computer, desktop computer, or any of the
various smart devices now available: TV, watch, refrigerator, lawn
mower, and so on. All these devices have different screen sizes, and
your goal should be to design your app so that it looks good and
works well on every screen size.
Browser window size: Not every computer user who visits your app
will do so with their browser window maximized. Some people
prefer a relatively small window; others choose to use their operating
system’s split-screen feature; still others may dynamically resize the
browser window depending on your app content. The point is that
you can’t design your app with the idea that your visitors will use
only a few common viewport sizes.
Screen orientation: Smartphone and tablet users can easily switch
their devices from portrait to landscape orientation, and some swivel
(or rotating) monitors can also make the same switch. Your app
needs to gracefully handle the change from one orientation to
another without breaking a sweat.

User zoom level: Some folks navigate the web with their browser’s
zoom level cranked up. That is, instead of the default 100 percent
zoom level, some people use 125, 150, or even 200 percent. Your
app should still be readable and usable even at these higher
magnifications.
User default font size: Rather than (or sometimes in addition to)
raising the zoom level, some people amp up the default font size
from 16px to 20px, 24px, 32px, or even higher. Your app should not
only honor that change (by not styling your font sizes using an
absolute unit, such as pixels) but also look okay and work properly at
these higher font sizes.
User preferences: Many of the people who visit your app will have
customized their operating system to use settings such as dark mode,
high-contrast colors, and reduced motion in animation effects. Your
app should acknowledge these preferences by checking for them and
implementing the necessary CSS when a preference is detected.
Device and network performance: Lots of people traipse the web
using underpowered devices, slow network connections, and limited
bandwidth. Your app shouldn’t leave these people behind by
burdening them with unnecessary data or features.

 You can use your browser’s dev tools to simulate slower
network speeds. In Chrome (most other browsers are similar), open
the dev tools (for example, by right-clicking the web page and then
clicking Inspect), click the Network tab, click the Throttling list (it
says No Throttling, by default), and then select a network speed:
Fast 3G, Slow 3G, or even Offline. You can also click Add to create
a custom throttling profile. To simulate a slower device CPU, click
the Performance tab, click the capture settings icon (gear), and then
use the CPU list to select a slowdown option (4x Slowdown or 6x
Slowdown). You can now reload your app to test its performance
with these simulated slowdowns in place.

A responsive web app is one that successfully handles all these different
scenarios. That might sound like a daunting task, but modern CSS is
powerful enough that you can get all or most of the way to your
responsive goal by adopting one of the following approaches:

Fluid layout: A layout that adjusts smoothly in response to small
changes in the browser environment, such as a changing viewport
size
Adaptive layout: A layout that adjusts only when certain predefined
criteria are met, such as the viewport width crossing a specified
threshold

 Note that these are not either/or choices. Relatively simple apps
may use only fluid or only adaptive techniques, but more complex
apps may combine elements of both techniques.

The next two sections explain fluid and adaptive layouts in more detail.

Going with the Flow: Fluid Layouts
The early days of responsive design were all about desktop versus
mobile users, to the point where CSS designers were required to build
two entirely separate sites: one site that worked fine on desktops and
another site that was optimized for mobile users.

That strategy was madness, for sure, but there remains a lingering odor
of the desktop/mobile dyad in modern web development circles, where
it’s common to use responsive techniques (usually media queries; check
out the section “Querying Your Way to Responsiveness: Adaptive
Layouts,” later in this chapter) to make sure an app looks good on
mobile device screens and in browser windows maximized on desktop
monitors, but that’s it. However, I guarantee that a large percentage of
your users will visit your app using a browser window that’s in between
those sizes.

To ensure that your app looks good and works the way it should no
matter what size browser window the user has, or even when the user
changes the window size on the fly, you need to build your app using
fluid-layout techniques. What is a fluid layout, anyway? It’s a big
subject, but for this section’s purposes, I can narrow it to the following:

Block-level elements naturally fill the space available.
Block-level elements expand as the viewport expands and shrink as
the viewport shrinks.
Block-level elements wrap onto multiple rows (or columns) naturally
as the viewport gets smaller.
Large text (not body text) expands and contracts along with the
viewport.
Image sizes expand and contract along with the viewport.

In the ideal fluid layout, you use CSS to give the web browser a few
guidelines about how you want your layout to work, but then you leave
it up to the browser to figure out the rest.

How Flexbox makes an app fluid
The best strategy you can use to create a fluid layout is to deploy
Flexbox for one-dimensional layouts and CSS Grid for two-dimensional
layouts. I discuss CSS Grid in the next section. Here I focus on the
inherent responsiveness of Flexbox-based layouts. (Check out Book 2,
Chapter 4 for all the Flexbox details.)

First, you can get flex items to naturally fill the space available in the
flex container and expand and contract along with the viewport by
adding a single declaration to each flex item:

flex: 1;

This is equivalent to setting the following three declarations:
flex-grow: 1;

flex-shrink: 1;

flex-basis: 0;

flex-grow: 1 enables the items to expand along the primary axis as the
viewport size changes; flex-shrink: 1 enables the items to contract
along the primary axis as the viewport size changes; and flex-basis: 0
sets no restriction on the size of the items (except for not shrinking any
smaller than the minimum content size).

If all your flex items have similar content and similar box model
properties (padding, and so on), setting flex: 1 on each item means you
end up with equal-size columns (if you're using flex-direction: row)
or rows (if you’re using flex-direction: column).

Setting flex: 1 on all flex items means you're not particular about the
item sizes in the main axis direction (such as width for flex-direction:
row). However, for many layouts, you’ll want some control over item
sizes, such as setting minimum widths for an article element and an
aside element. If these elements normally lay out side by side, you'll
have an overflow problem when the viewport width shrinks below the
combined minimum widths of the two elements. To fix that problem
fluidly, tell the browser to wrap the flex items when there isn’t enough
room to display them side by side:

flex-wrap: wrap;

For example, check out the following code (bk07ch02/example03.html):

HTML (abbreviated version):
<header>

 …

</header>

<nav>

 …

</nav>

<main>

 <article>

 <h2>

 Irate Grammarians Will See You in Court, Mister!

 </h2>

 <p>

 KALAMAZOO, Michigan—A group of disgruntled grammarians calling

themselves "Mad, We Are, As Hell" has filed a number of civil lawsuits over

the past few weeks. The targets of these suits are writers, raconteurs, and

professional man-in-the-street interviewees who, they claim, are inveterate

violators of the rules of grammar.

 </p>

 etc.

 </article>

 <aside>

 <h3>Related Stories</h3>

 <p>

 It's Official: Teen Instant Messages Nothing But Gibberish

 </p>

 etc.

 </aside>

</main>

CSS:
body {

 max-width: 60rem;

}

main {

 display: flex;

 flex-wrap: wrap;

}

article {

 flex: 3;

 min-width: 22rem;

}

aside {

 flex: 1;

 min-width: 16rem;

}

This main element is a two-column flex container: an article element
on the left and an aside element on the right. The body element has a
maximum width of 60rem that's inherited by the main element, so by
setting flex: 3 on the article element and flex: 1 on the aside
element, these columns take up the full width of the container, as shown
in the desktop screen in Figure 2-3.

FIGURE 2-3: The web app as it appears in a desktop browser viewport.

The code also sets minimum widths on the article element (22rem) and
the aside element (16rem), so when the browser viewport width drops
below 38rem (the combined minimum widths of the two elements), the
main element's flex-wrap: wrap declaration kicks in, and the aside
element wraps, so now you have a single-column layout, as shown in
Figure 2-4.

How CSS Grid makes an app fluid
Depending on your app content, CSS Grid can be a great choice for
turning a static layout into a fluid one. (Check out Book 2, Chapter 4 to
learn how CSS Grid works.) Grid has many options for building in
responsiveness, but the following three techniques will get you there in
most cases:

Use fr units to allow grid items to fill the available space in the grid
container.

FIGURE 2-4: In a smaller viewport, the main element becomes a single column
(left) because the aside element has wrapped (right).

Let the browser do some of the work for you by specifying only a
column template or a row template (not both).
In your template, use the auto-fit keyword to let the browser
perform the column-width or row-height calculations automatically.

For example, the following declaration tells the browser to automatically
fit the container width with equal-sized (1fr) columns that are no less

than 15rem wide:

grid-template-columns: repeat(auto-fit, minmax(15rem, 1fr));

Here's an example that puts this declaration to work
(bk07ch02/example04.html):

HTML (abbreviated):
<header>

 <h1>The Vibrant Edges of Language</h1>

 <p class="subtitle">In which our intrepid writers let loose with talk of

word play in all its forms</p>

</header>

<main>

 <p>

 We have a deep-rooted delight in the comic effect of words in English,

and not just in advertising jingles but at the highest level of endeavor.

—BILL BRYSON, <i>The Mother Tongue</i>, 1990

 </p><p>

 etc.

</main>

CSS:
main {

 display: grid;

 grid-template-columns: repeat(auto-fit, minmax(15rem, 1fr));

 gap: 2rem;

}

main > p:nth-child(even) {

 background: hsl(208deg 50% 80%);

}

On a larger screen, the main element is a four-column grid, as shown in
Figure 2-5.

FIGURE 2-5: The grid layout as it appears in a desktop browser viewport.

Reduce the width of the viewport a bit and the layout automatically
switches to a three-column grid, as shown in Figure 2-6.

FIGURE 2-6: The grid layout as it appears in a tablet viewport.

Reduce the viewport width even more and eventually the layout
automatically switches to a two-column layout, and then a single-column

layout, as shown in Figure 2-7.

Taking advantage of viewport units
One of the easiest ways to build fluidity into your layouts is to use the
viewport units that I mention in Book 2, Chapter 2. Here they are again,
in Table 2-1.

I should also mention a few new viewport units that have been available
in most major browsers for a little while but don’t yet have universal
support. These viewport units were created to handle the inconvenient
fact that most mobile browsers hide their user interface (UI) features
(such as the toolbar and address/search bar) when you scroll down the
page, and then show those features when you scroll back up. This means
you’re really dealing with three viewports:

Small viewport: The viewport available when the browser UI is
shown. This viewport is small because the browser UI takes up a
portion of the screen.

FIGURE 2-7: The grid layout as it appears in a smartphone viewport.

TABLE 2-1 CSS Viewport Measurement Units

Unit Name Measured Relative toUnit Name Measured Relative to

vw viewport width 1/100 of the viewport width

vh viewport height 1/100 of the viewport height

vmin viewport minimum 1/100 of the viewport's smaller dimension

vmax viewport maximum 1/100 of the viewport’s larger dimension

Large viewport: The viewport available when the browser UI is
hidden. This viewport is large because the browser UI no longer
takes up a portion of the screen.
Dynamic viewport: The browser viewport currently displayed,
which could be small or large depending on the user’s scrolling
behavior.

Given these viewports, Table 2-2 lists the new units that are based on
these sizes.

TABLE 2-2 New CSS Viewport Measurement Units

Unit Name Measured Relative to

svw small viewport width 1/100 of the small viewport width

svh small viewport height 1/100 of the small viewport height

svmin small viewport minimum 1/100 of the small viewport's smaller dimension

svmax small viewport maximum 1/100 of the small viewport’s larger dimension

lvw large viewport width 1/100 of the large viewport width

lvh large viewport height 1/100 of the large viewport height

lvmin large viewport minimum 1/100 of the large viewport's smaller dimension

lvmax large viewport maximum 1/100 of the large viewport’s larger dimension

dvw dynamic viewport width 1/100 of the dynamic viewport width

dvh dynamic viewport height 1/100 of the dynamic viewport height

dvmin dynamic viewport minimum 1/100 of the dynamic viewport's smaller dimension

dmax dynamic viewport maximum 1/100 of the dynamic viewport’s larger dimension

 As I write this, these new viewport units have just over 90
percent browser support. To keep an eye on this support level, use
the following Can I Use page: https://caniuse.com/viewport-
unit-variants.

The advantage of viewport units is that they automatically scale along
with the changing viewport size, so they’re fluid by default. If the user
changes the size of the browser window or rotates their device to a
different orientation, a property that uses a viewport-based unit will
automatically scale to match the new viewport width or height.

For example, if you’re using a grid layout and you’ve set gaps with the
row-gap and column-gap properties, you may want those gaps to grow
and shrink along with the viewport. Here's one way to accomplish this
(bk07ch02/example05.html):

column-gap: 2vw;

row-gap: 2vh;

Making typography fluid
Although many developers use viewport units for features such as grid
gaps, padding, margins, and even element widths and heights, by far the
most common use case for viewport units is fluid typography. That is, by
setting your font-size properties to values that use viewport units, your
type will scale along with the viewport size.

Note that this doesn’t mean doing something like this:
font-size: 1.5vmax;

The problem is that this isn’t an accessible approach because it overrides
the user’s custom font size setting. A better way to go is to combine a
rem unit (for accessibility) and a viewport unit (for fluidity) by using the
CSS calc() function.

https://caniuse.com/viewport-unit-variants

The calc() function takes two or more literal values or expressions,
performs one or more arithmetic operations on those values, and then
returns the result of that calculation, which is then assigned to whatever
property you're working with. Here’s the syntax:

property: calc(expression);

where:

property is the CSS property to which you want to assign the
calc() result.

expression is two or more CSS measurement values — called the
operands of the expression — with each pair interspersed with a
symbol — known as an operator — that defines the type of
calculation to perform:

operand: This is usually a literal value such as 50px or 10rem,
but it can also be an expression or even another calc()
function. You can mix measurement units.
operator: The calc() function supports four operations:
addition (which uses the + operator), subtraction (-),
multiplication (*), and division (/). If you use multiple
operators in the expression, note that multiplication and
division are normally performed before addition and
subtraction. You can force calc() to perform a particular
operation first by putting parentheses () around the operation.

Here are a few calc() functions with some example expressions:

calc(50vw + 10px)

calc(100vh - 5rem)

calc(10% * 3)

calc(100% / 8)

calc(100vw - (5rem + 10px))

In the last example, calc() performs the addition 5rem + 10px first
because it's in parentheses, and then calc() performs the subtraction.

For fluid font sizes, you’d use calc() as in this example:

font-size: calc(0.75rem + 1vmax);

A calculation like this is suitable for regular text. For headings, you'll
need to experiment a bit to figure out what suits your app. For example,
an h1 element might use the following declaration:

font-size: calc(1.75rem + 2vmax);

Introducing your best fluid friend: clamp()
The problem with using viewport units for font sizes is that you lose
some control over the final value of whatever property you’re working
with. That’s by design, of course, because part of the value proposition
for a fluid layout is to cede some control to the browser and let it do
more of the responsive heavy lifting.

However, viewport-based font sizes, although they can look fine at
intermediate screen sizes, can become unreadably small at the smallest
viewport widths and comically large when faced with the largest
viewports. Fortunately, you can turn to the powerful clamp() function to
set minimum and maximum values for your fluid calculations:

property: clamp(min, expression, max);

where:

property is the CSS property to which you want to assign the
clamp() result.

min is the lowest value that can be assigned to property.

expression is the preferred value that you want assigned to
property. This can be a literal value, an expression, or a CSS
function, such as calc().

max is the highest value that can be assigned to property.

The idea behind clamp() is that the browser evaluates the expression
parameter and then assigns a value to the property as follows:

If the expression value is between min and max, the browser uses
the expression result as the property value.

If the expression value is less than min, the browser uses min as the
property value.
If the expression value is greater than max, the browser uses max as
the property value.

For example, if the smallest size you want for your regular text is
1.25rem and the largest size is 1.75rem, the following clamp() function
will do the job (bk07ch02/example06.html):

font-size: clamp(1.25rem, 0.75rem + 1vmax, 1.75rem);

Querying Your Way to
Responsiveness: Adaptive Layouts

In Book 3, Chapter 4, I talk about controlling JavaScript using if…else
statements, where a script runs one block of code if a specified
expression is true and a different block of code if that expression is false.

CSS has something similar called a query, where you test for a particular
condition and, if that condition is true, the browser applies one or more
styles. If the condition is false, the browser just skips over those styles.
(So, a query is like a JavaScript if statement without the else part.)

CSS offers quite a few query types, but for your purposes here, you can
consider just the following three:

Media query: A query that interrogates some aspect of the screen,
usually the viewport width
Container query: A query that examines some feature of a parent or
ancestor element, such as the element's width or orientation
User preference query: A special type of media query that checks
whether the user has declared a preference for a particular feature,

such as dark mode

In each case, the point is to use the query to create an adaptive layout,
which is a layout that changes depending on the result of the query. In
each case, you can specify a declaration block that the browser applies if
the query is true. This makes adaptive layouts more powerful than fluid
layouts because you can apply just about any CSS rule you want when a
query is true:

You can hide a displayed element or show a hidden element.
You can modify an existing layout, such as changing a three-column
grid to a one- or two-column grid.
You can switch to a different layout type, such as from Grid to
Flexbox.
If you’re using Flexbox, you can change the order of the elements.
You can modify any CSS property, such as font-size, width, and
margin.

The next three sections take you through the specifics of each query
type.

Interrogating the screen with media queries
By far the most common type of adaptive layout uses a CSS feature
called a media query, which is the @media keyword, an expression that
evaluates to either true or false, and a code block consisting of one or
more style rules. (Since the media query starts with @, the at symbol,
this type of CSS mega-rule is called an at-rule.) The expression
interrogates some feature of the viewport, usually its width. If that
expression is true for the current device, the browser applies the media
query's style rules; if the expression is false, the browser ignores the
media query’s rules. Here’s the syntax:

@media (expression) {

 declarations

}

where:

expression is a property-value pair that the browser uses to test the
current device viewport.
declarations are the style declarations that the browser applies if
expression is true.

There are lots of different possibilities for expression, but the vast
majority of media queries test for a viewport width that's either less than
or equal to some value or greater than or equal to some value.

To test for a viewport width that’s greater than or equal to some value,
use the min-width property:

@media (min-width: value) {

 declarations

}

where value is a length value using any of the standard CSS
measurement units.

To test for a viewport width that's less than or equal to some value, use
the max-width property:

@media (max-width: value) {

 declarations

}

where value is a length value using any of the standard CSS
measurement units.

Here's an example (bk07ch02/example07.html):

HTML:
<header>

 <h1>News of the Word</h1>

 <p class="subtitle">Language news you won't find anywhere else (for good

reason!)</p>

</header>

CSS:

@media (max-width: 40rem) {

 .site-logo {

 display: none;

 }

}

This media query looks for a viewport width of 40rem or less. When
that’s true, the rule inside the media query block runs, which sets the
display property to none for the header image (which uses the class
site-logo). As shown in Figure 2-8, the logo appears in a tablet-sized
viewport but doesn't appear in the smartphone-sized viewport shown in
Figure 2-9.

FIGURE 2-8: The header logo appears in a tablet-sized viewport.

FIGURE 2-9: On a smartphone-sized viewport, the media query expression is true, so the
header logo is hidden.

 RANGE SYNTAX FOR MEDIA
QUERIES

Coming soon to a stylesheet near you: range syntax for media queries. Range syntax
enables you to use comparison operators (check out Book 3, Chapter 3) such as less
than (<) and greater than or equal (>=) along with properties such as width to build your
media query expressions. For example, the range syntax equivalent for the media
query example looks like this:

@media (40rem <= width <= 60rem) {

 declarations

}

Monitor the Can I Use page https://caniuse.com/css-media-range-syntax to learn
when there's enough browser support to use range syntax in your web projects.

 You can specify multiple expressions in your media queries. For
example, if you separate expressions with the keyword and, the
browser applies the style rules only if all the expressions are true:

@media (expression1) and (expression2) {

 declarations

}

Similarly, if you separate expressions with the keyword or, the browser
applies the style rules if one or more of the expressions are true:

@media (expression1) or (expression2) {

 declarations

}

For example, if you wanted to target viewport sizes between 40rem and
60rem, you'd do this:

@media (min-width: 40rem) and (max-width: 60rem) {

 declarations

}

Laying out trees instead of forests with container
queries
The media queries that I talk about in the preceding section have been a
staple of CSS layout since at least 2009 and are even supported by
Internet Explorer 9 and later. The chief advantage of media queries over

https://caniuse.com/css-media-range-syntax

the fluid techniques I talk about earlier (check out “Going with the Flow:
Fluid Layouts”) is that when a media query expression is true, you can
write very specific style rules for the browser to apply to one or more
elements.

But media queries, although still useful and relevant, are starting to show
their age a bit for two reasons:

Media queries almost always interrogate the size of the entire
viewport.
Modern web design is focused on the idea of the component, which
is a standalone collection of elements, particularly one that gets
reused in different contexts.

For example, a component for a product might have a photo of the
product, a header with the product name, some body text describing the
product, and some action buttons related to the product. Here are some
example contexts where this component may get used:

On the product landing app, this component may take up most of the
viewport.
On the site home app, the product may be featured with a large card.
On the product catalog app, the component may be a medium-sized
card.
In the site’s navigation sidebar, the component may be a small card,
perhaps without the image.

These different contexts require different layouts for the component.
Media queries don’t work well in this scenario because they examine
only the size of the whole viewport, and in each of the preceding
contexts, the viewport size may not change.

So, it’s no wonder the entire CSS community is abuzz with excitement
over a new adaptive layout technology called container queries. These
queries enable you to examine the width (and a few other properties) of
a parent element (the container that gives these queries their name) and

then apply style rules to the child and descendant elements whenever
that width (or whatever) meets your specified criteria.

So, for example, assuming that your product component is wrapped in a
parent element, such as a div, a container query would examine, say, the
width of that div and apply different styles to the child and descendant
elements — the image, heading, text, and links — depending on the
result.

 As I write this, container queries have only recently become
supported by all major browsers, so they're not quite ready for
production use. However, there’s a good chance container queries
will have near-universal support (say, over 90 percent) by the time
you read this, so check out the following Can I Use page to find out
where things stand: https://caniuse.com/css-container-
queries.

Setting up the query container
To work with container queries, you first set up an element as the query
container. This will be the parent or ancestor of the child or descendant
elements you want to style. To set up an element as a query container,
use the container-type property:

element {

 container-type: value;

}

where:

element is the parent or ancestor of the elements you want to style.

value specifies the dimension or dimensions to use in the container
query. Use inline-size if in your container query you want to
interrogate only the container's width (assuming a horizontal inline
direction). Use size instead if you want to interrogate width or
height or both in your container query.

https://caniuse.com/css-container-queries

Here’s an example (bk07ch02/example08.html) that sets up the default
layout for a product card:

HTML:
<div class="card-container">

 <div class="card-wrapper">

 <img class="card-image" src="images/inflatable-dartboard.png"

alt="Inflatable dartboard product photo">

 <div>

 <h3 class="card-title">Inflatable Dartboard</h3>

 <p class="card-description">

 Yes, it's the world-famous inflatable dartboard! No hassle

setup! Comes with an easy-to-use inflation tube. Just take a deep breath and

blow. And blow. Keep going. Anyway, within a few hours, you'll be ready to

play darts. Now only $1,999! Patch kit sold separately.

 </p>

 <div class="card-actions">

 <button class="card-button learn-more">Learn more</button>

 <button class="card-button add-to-cart">Add to cart</button>

 </div>

 </div>

 </div>

</div>

CSS:
.card-container {

 container-type: inline-size;

}

.card-wrapper {

 display: grid;

 gap: 1.5rem;

 grid-template-columns: auto auto;

 grid-template-rows: auto;

}

.card-image {

 min-width: auto;

 height: auto;

 object-fit: cover;

 object-position: center;

 overflow: hidden;

}

.card-title {

 text-align: left;

}

.card-actions {

 display: flex;

 gap: 1rem;

 justify-content: flex-start;

}

Of particular interest is the parent div with class card-container. That
div is styled in the CSS as a query container:

.card-container {

 container-type: inline-size;

}

Figure 2-10 shows the default card.

FIGURE 2-10: A product card in its default layout.

 If you want to have multiple query containers on your app, you
need to name each container by adding the container-name
property to the container element:

element {

 container-type: value;

 container-name: name;

}

Querying the container

With your query container set up, you're ready to query it using the
@container at-rule:

@container (expression) {

 declarations

}

where:

expression is an expression that the browser uses to test some
property of the container, such as its width.
declarations are the style declarations that the browser applies if
expression is true.

For example, here's a container query for the product card from the
preceding section that applies its style rules when the container’s width
is less than 25rem:

@container (width < 25rem) {

 .card-wrapper {

 align-items: center;

display: block;

 padding: 1rem;

 }

 .card-image {

 display: none;

 }

 .card-title {

 margin-top: 0;

 }

}

Figure 2-11 shows the resulting card when its container is less than
25rem wide.

FIGURE 2-11: The product card layout when the parent element is less than 25rem wide.

As with media queries, you can also use multiple expressions in your
container queries. Separate expressions with and to apply the rules only
when every expression is true; separate expressions with or to apply the
rules only when at least one of the expressions is true.

Here's a container query for the product card from the preceding section
that applies its style rules when the container’s width is greater than
25rem and less than 35rem:

@container (width > 25rem) and (width < 35rem) {

 .card-wrapper {

 grid-template-columns: auto;

 grid-template-rows: auto auto;

 }

 .card-image {

 width: 100%;

 height: 10rem;

 }

 .card-title {

 text-align: center;

 }

 .card-actions {

 justify-content: center;

 }

}

Figure 2-12 shows the resulting card layout when the container is
between 25rem and 35rem wide.

FIGURE 2-12: The product card layout when the parent element is between 25rem and
35rem wide.

Working with container query units

After you've set up an element as a query container, you’re free to size
that element’s children and descendants using container query units,
which are measurement units that are relative to the dimensions of the
query container. Table 2-3 lists the available container query units you
can use.

TABLE 2-3 CSS Container Query Measurement Units

Unit Name Measured Relative to

cqw container width 1/100 of the container width

cqh container height 1/100 of the container height

cqmin container minimum 1/100 of the container's smaller dimension

cqmax container maximum 1/100 of the container’s larger dimension

Respecting your visitors with user preference
queries
Through their operating system’s settings, users can express certain
preferences related to how their device looks and operates. For example,
many people choose to use either a light color scheme or a dark color
scheme, as shown in Figure 2-13.

FIGURE 2-13: Choosing either a light or a dark color scheme in macOS.

You can use a CSS media query to detect some of these user preferences
and style your app accordingly. Here’s the general syntax:

@media (preference: value) {

 declarations

}

where:

preference is a keyword that specifies which preference you're
detecting.
value is the preference setting your query is looking for.

declarations are the style declarations that the browser applies if
preference matches value.

Although more preferences are in the offing, for now you can detect
three. Here are the associated keywords and values:

prefers-color-scheme: Detects whether the user has set a
preference for the color scheme. The two values you can query are
dark or light. The usual procedure here is to set up your app
assuming the light color scheme, and then use something like the
following to apply darker colors if the dark color scheme preference
is detected:

@media (prefers-color-scheme: dark) {

 /* Dark color scheme colors go here */

}

 If you use the hsl() function for your colors, one easy way
to convert a light color to a dark variant is to subtract the lightness
value from 100 while keeping the hue and saturation values the
same. For example, if the light color is hsl(180deg 50% 80%), the
corresponding dark mode color will be hsl(180deg 50% 20%).

prefers-contrast: Detects whether the user has set a preference for
higher or lower contrast colors to be used. The values you can query
are no-preference (the user hasn't set a contrast preference), more
(the user prefers higher contrast), less (the user prefers lower
contrast), or custom (the user has set a custom contrast level). Most

users who set this preference prefer higher-contrast colors, which
you can detect as follows:

@media (prefers-contrast: more) {

 /* Higher-contrast colors go here */

}

prefers-reduced-motion: Detects whether the user has set a
preference for a reduced level of animation effects and similar
nonessential motion on the screen. The values you can query are no-
preference (the user hasn't set a reduced motion preference) or
reduced (the user prefers reduced motion). Here’s a media query that
detects whether the user prefers reduced motion and, if so, sets all
animations to their minimums:

@media (prefers-reduced-motion: reduce) {

 *,

 ::after,

 ::before {

 animation-duration: 0.01ms;

 animation-iteration-count: 1;

 transition-duration: 0.01ms;

 scroll-behavior: auto;

 }

}

 You can use the browser dev tools to test these preferences
without having to toggle them in your operating system’s settings
app. In Chrome, open the dev tools, click the customize and control
dev tools icon (three vertical dots near the upper-right corner of the
dev tools pane), choose More Tools ⇒   Rendering, and then use the
controls that emulate each user preference.

Working with Images Responsively
When planning a web app, you always need to consider the effect of
images, both on your design and on your users.

Making images responsive
On the design side, you need to ensure that your images scale
responsively, depending on the screen width or height. For example, if
the user’s screen is 1,024 pixels wide, an image that’s 800 pixels wide
will fit with no problem, but that same image will overflow a 400-pixel-
wide screen. You create responsive images with the following CSS rule:

image {

 max-width: 100%;

 height: auto;

}

 Here, image is a selector that references the image or images you
want to be responsive. Setting max-width: 100% enables the image
width to scale smaller or larger as the viewport (or the image's
container) changes size, but also mandates that the image can’t
scale larger than its original width. Setting height: auto cajoles
the browser into maintaining the image’s original aspect ratio by
calculating the height automatically based on the image’s current
width.

 Occasionally, you’ll want the image height instead of its width
to be responsive. To do that, you use the following variation on the
preceding rule:

image {

 max-height: 100%;

 width: auto;

}

Delivering images responsively
On the user side, delivering images that are far larger than the screen
size can be a major problem. Sure, you can make the images responsive,
but you’re still sending a file that's larger than necessary down the tubes,

which won’t be appreciated by mobile surfers using slow connections
with limited data plans.

Instead, you need to deliver to the user a version of the image file that’s
appropriately sized for the device screen. For example, you might
deliver the full-size image to desktop users, a medium-sized version to
tablet folks, and a small-sized version to smartphone users. That sounds
like a complex bit of business, but HTML lets you handle everything
from the comfort of the tag. The secret? The sizes and srcset
attributes.

 The sizes attribute is a collection of expression-width pairs:

The expression part specifies a screen feature, such as a minimum or
maximum width, surrounded by parentheses.
The width part specifies how wide you want the image displayed on
screens that match the expression.

For example, to specify that on screens up to 600 pixels wide, you want
an image displayed with a width of 90vw, you'd use the following
expression-width pair:

(max-width: 600px) 90vw

 A typical sizes attribute is a collection of expression-width
pairs, separated by commas. Here’s the general syntax to use:

sizes="(expression1) width1,

 (expression2) width2,

 etc.,

 widthN"

Note that the last item doesn’t specify an expression. This syntax tells
the web browser that the specified width applies to any screen that
doesn’t match any of the expressions.

Here’s an example:
sizes="(max-width: 600px) 90vw,

 (max-width: 1000px) 60vw,

 30vw"

 The srcset attribute is a comma-separated list of image file
locations, each followed by the image width and letter w. Here's the
general syntax:

srcset="location1 width1w,

 location2 width2w,

 etc.">

This syntax gives the browser a choice of image sizes, and it picks the
best one based on the current device screen dimensions and the preferred
widths you specify in the sizes attribute. Here's a full example:

<img src="images/img-small.jpg" alt=""

 sizes="(max-width: 600px) 90vw,

 (max-width: 1000px) 60vw,

 30vw"

 srcset="images/img-small.jpg 450w,

 images/img-medium.jpg 900w,

 images/img-large.jpg 1350w">

Figure 2-14 shows how the browser serves up different images for
different screen sizes (bk07ch02/example09.html).

 The sizes and srcset attributes don't always work the way you
might expect. For example, if the browser finds that, say, the large
version of the image is already stored in its cache, it will usually
decide that it’s faster and easier on the bandwidth to just grab the
image from the cache and scale it instead of going back to the
server to download a more appropriately sized file for the current
screen.

FIGURE 2-14: With the tag’s sizes and srcset attributes on the job, the browser
serves up different versions of the image for different screen sizes.

Exploring the Principles of Mobile-
First Development

If you’ve been hanging around the web for a while, you probably
remember the days when you’d surf to a site using a small screen such as
a smartphone or similar portable device, and instead of getting the
regular version of the site, you’d get the mobile version. In rare cases,
this alternate version would be optimized for mobile viewing and
navigation, but more likely it was just a poor facsimile of the regular site
with a few font changes and all the interesting and useful features
removed.

From the web developer’s viewpoint, the poor quality of those mobile
sites isn’t all that surprising. After all, who wants to build and maintain
two versions of the same site? Fortunately, the days of requiring an
entirely different site to support mobile users are long gone. Yes, using
responsive web design enables you to create a single site that looks and
works great on everything from a wall-mounted display to a handheld
device. But in modern web development, there’s a strong case to be
made that all web apps should be built from the ground up as though
they were going to be displayed only on mobile devices. In the rest of
this chapter, you explore the principles and techniques behind this
mobile-first approach to web development.

Embracing mobile-first web development
As I discuss earlier in this chapter, when you develop a web app to look
good and work well on a desktop-sized screen, you can employ a
number of responsive tricks to make that same code look good and work
well on a mobile device screen:

Set up a Flexbox or Grid layout that automatically adjusts to any size
screen.
Use viewport units, particularly with font sizes.

Use media queries to remove elements when the screen width falls
below a specified threshold.

 That third technique — the one where you remove stuff that
doesn’t fit on a smaller screen — is known in the web coding trade
as regressive enhancement (RE). RE has ruled the web development
world for many years, but lately there’s been a backlash against it.
Here’s why:

RE relegates mobile screens to second-class web citizenship.
RE leads to undisciplined development because coders and designers
inevitably stuff a desktop-sized screen with content, widgets, and all
the web bells and whistles.

 What’s the solution? You’ve probably guessed it by now:
progressive enhancement, which means starting with content that
fits on the smallest screen size that you need to support and then
adding components as the screen gets bigger. When the original
content represents what’s essential about your app and the base
screen width is optimized for mobile devices — especially today’s
most popular smartphones — you’ve got yourself a mobile-first
approach to web development.

Let me be honest right off the top: Mobile-first web development is
daunting because if you’re used to having the giant canvas of a desktop
screen to play with, starting instead with a screen that’s a mere 360 or
400 pixels across can feel claustrophobic. However, I can assure you that
it seems that way only because of the natural tendency to wonder how
you’re possibly going to shoehorn your massive app into such a tiny
space. Mobile-first thinking takes the opposite approach by ignoring (at
least at the beginning) large screens and focusing instead on what works

best for mobile screens, which after all, represent the majority of your
app visitors. Thinking the mobile-first way isn’t hard; it just means
keeping a few key design principles in mind.

Mobile first means content first
One of the biggest advantages of taking a mobile-first approach to web
development is that it forces you to prioritize. That is, a mobile-first
design means that you include in the initial layout only those app
elements that are essential to the user’s experience of the app. This
essential-stuff-only idea is partly a response to having a smaller screen
size in which to display that stuff, but it’s also a necessity for many
mobile users who are surfing with sluggish internet connections and
limited data plans. It’s your job — no, scratch that, it’s your duty — as a
conscientious web developer to make sure that those users aren’t served
anything superfluous, frivolous, or in any other way nonessential.

That’s all well and good, I hear you thinking, but define superfluous and
frivolous. Good point. The problem, of course, is that one web
developer’s skippable appetizer is another’s essential meat and potatoes.
Only you can decide between what’s inconsequential and what’s vital,
depending on your app goals and your potential audience.

So, the first step toward a mobile-first design is to decide what’s most
important in the following content categories:

Text: Decide what words are essential to get your app’s
message across. Usability expert Steve Krug tells web designers to
“Get rid of half the words on each page, then get rid of half of what’s
left.” For a mobile-first app, you may need to halve the words once
again. Be ruthless. Does the user really need that message from the
CEO or your About Us text? Probably not.
Images: Decide what images are essential for the user, or whether
images are needed at all. The problem with images is that, although
everyone likes a bit of eye candy, that sweetness comes at the cost of

screen real estate and bandwidth. If you really do need to include an
image or two in your mobile-first page, at least serve up smaller
images to your mobile visitors. To learn how to do that, check out
“Working with Images Responsively,” earlier in this chapter.
Navigation: All users need to be able to navigate your site, but the
recent trend is to create gigantic menus that include links to every
section and app on the site. Decide which of those links are truly
important for navigation and just include those in your mobile-first
layout.
Widgets: Modern web apps are festooned with widgets for social
media, content scrollers, photo light boxes, automatic video
playback, and, of course, advertising. Mobile users want content
first, so consider ditching the widgets altogether. If there’s a widget
you really want to include and you’re sure it won’t put an excessive
burden on either the app’s load time or the user’s bandwidth, push
the widget to the bottom of the page.

Pick a testing width that makes sense for your site

 For most websites, testing a mobile-first layout should begin
with the smallest devices, which these days means smartphones
with screens that are 360 pixels wide. However, you don’t
necessarily have to begin your testing with a width as small as
360px. If you have access to your site analytics, they should tell
you what devices your visitors use. If you find that all or most of
your mobile users are on devices that are at least 400 pixels wide,
that’s the initial width you should test for your mobile-first layout.

Get your content to scale with the device
For your mobile-first approach to be successful, it’s paramount that you
configure each app on your site to scale horizontally with the width of
the device screen. You do that by adding the following <meta> tag to the
head section of each app:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

This instructs the web browser to do two things:

Set the initial width of the page content to the width of the device
screen.
Set the initial zoom level of the app to 1.0, which means that the
page is neither zoomed in nor zoomed out.

Build your CSS the mobile-first way
When you're ready to start coding the CSS for your app, understand that
the style definitions and rules that you write will be your app defaults —
that is, these are the styles the browser will display on all devices, unless
you’ve defined one or more media queries (or container queries) to
override these defaults. You shouldn’t have to write any special rules as
long as you follow a few basic tenets of responsive web design:

 Use the viewport units for measures such as width and
padding.
Use the rem units for font sizes.

Make all your images responsive.
Use Grid or Flexbox for the app layout. If you’re using Flexbox, be
sure to apply flex-wrap: wrap to any flex container.

It's also important to make sure that your mobile-first layout renders the
content just as you want it to appear on the mobile screen. This means
avoiding any tricks such as using the Flexbox order property to mess
around with the order of the app elements.

Finally, and perhaps most important, be sure to hide any unnecessary
content by styling that content with display: none.

In the end, your mobile-first CSS should be the very model of simplicity
and economy.

Choose a non-mobile breakpoint that makes sense
for your content
Your mobile-first CSS code probably includes several elements that
you've hidden with display: none. I assume you want to show those
elements eventually (otherwise, you’d have deleted them), so you need
to decide when you want them shown. Specifically, you need to decide
what the minimum screen width is that will show your content
successfully.

Note that I didn’t say that you should decide when to show your hidden
content based on the width of a target device. For example, for years
developers considered a screen to be wide enough when it was at least as
wide as an iPad screen in portrait mode, which for the longest time was
768 pixels. Fair enough, but today Apple offers five iPad models, each
with a different screen width.

 Devices change constantly, and it’s a fool’s game to try to keep
up with them. Forget all that. Instead, decide what minimum width
is best for your app when the hidden content is made visible. How
can you do that? Here’s one easy way:

1. Load your app into the Chrome web browser.
2. Display Chrome’s developer tools.

Press either Ctrl+Shift+I (Windows) or ⌘  +Shift+I (Mac).
3. Use your mouse to adjust the size of the browser window:

If the developer tools are below or undocked from the
browser viewport, drag the right or left edge of the browser
window.
If the developer tools are docked to the right or left of the
browser viewport, drag the vertical bar that separates the
developer tools from the viewport.

4. Read the current viewport dimensions, which Chrome displays
in the upper-right corner of the viewport.
The dimensions appear as width x height, in pixels.

5. Narrow the window to your mobile-first testing width (such as
360px).

6. Increase the width and, as you do, watch how your layout
changes.
In particular, watch for the width where the content first looks the
way you want it to appear in larger screens. Make a note of that
width.

 The width where your full content looks good is the basis for a
CSS media query breakpoint that you’ll use to display the elements
hidden in the mobile-first layout. For example, say that your
mobile-first layout hides the aside element and that you found that
your full content looks right at a width of 742px. You then can set
up the following media query (using 750px for a round number):

@media (min-width: 750px) {

 aside {

 display: block;

 }

}

This media query tells the browser that when the screen width is 750px
or more, display the aside element.

Chapter 3
Making a Web App Accessible

IN THIS CHAPTER
 Understanding the case for accessibility on the web
 Learning how people with disabilities surf the web
 Structuring your pages for accessibility
 Making images and other web page media accessible
 Choosing accessible colors
 Validating your page accessibility

The power of the Web is in its universality. Access by everyone
regardless of disability is an essential aspect.

— TIM BERNERS-LEE
If you’re lucky enough to have good eyesight, adequate hearing, decent
motor skills, and a brain that does its job well (most of the time,
anyway), it’s easy to lull yourself into thinking that everyone who visits
your web app will have had the same luck in life. Falling into that trap
means you’ll build your app thinking that if it looks good and works
well for you, it will also look good and work well for all your visitors.

In this chapter, I explain why, no matter how good a hand you’ve drawn
in life, it’s thoughtful, ethical, and smart to remember that there are lots
of people — I’m talking a billion people worldwide — who’ve been
given tougher cards to play in the form of some kind of significant
disability. In this chapter, I hope to convince you that your web apps, no
matter how simple, are simply not done until you’ve made them
accessible to everyone, regardless of their abilities. In this chapter, I
show you that configuring your web apps to make them accessible to
every visitor is not only the right thing to do but also an easy thing to do.

Why You Need to Make Your Apps
Accessible

If you were opening a brick-and-mortar retail operation, it’s very
unlikely that you’d design your storefront with barbed wire blocking the
door! Sure, certain agile or freakishly long-legged people might still be
able to enter your store by leaping or stepping over the barbed wire, but
why on earth would you design things to prevent everyone else from
entering? You wouldn’t, of course, because that level of inaccessibility is
obviously counter productive and, well, silly.

When you design a web app that looks good and works well only for
people with able eyes and ears and sufficient control over their limbs and
mind, you’re essentially blocking access to your app with the digital
equivalent of barbed wire.

Accessibility is a right
The United Nations Convention on the Rights of Persons with
Disabilities requires stakeholders to take measures to “promote access
for persons with disabilities to new information and communications
technologies and systems, including the Internet.” In other words, access
to the web is nothing less than a fundamental human right.

When planning a web app, the thoughtful developer remains aware at all
times that the people who visit and use the app come with different
abilities. When planning a web app, the ethical developer understands
that even though every person is different, they all have an equal right to
use the app. When you give everyone equal access to your web app,
you’re making your app accessible.

Accessibility, then, is not only a right but also the right thing to do.

 In online discussions and essays, accessibility is often shortened
to a11y: that is, the letter a, followed by the number 11, and then the

letter y. Why 11? Because that’s how many letters there are between
the a and y in accessibility. Also, a11y looks like the word ally,
which underlines the idea that anyone who implements accessibility
features is an ally to the people with disabilities.

Accessibility brings other benefits
I’m sure that all the incentive you need to make your web apps
accessible to all comers is that doing so is morally and ethically correct.
However, making your apps accessible does bring other benefits.

For example, an app built with accessibility in mind is also a search-
engine-friendly app, meaning that your accessible app will rank higher
in search results than a similar, nonaccessible app.

An accessible app also provides benefits for non-disabled groups, such
as people who surf with images turned off or who have to deal with
extremely slow internet speeds.

Finally, it’s easy to make a business case for going accessible:

Accessibility gives you instant access to a big market: According
to the World Health Organization, about 1.3 billion people have
some form of significant disability, and it’s estimated that those
billion-plus people wield a spending power in excess of six trillion
dollars. That’s a lot of zeroes! If you want to sell things on your site,
why exclude such a huge chunk of the market?
Accessibility may also be the legally required thing to do: In
many jurisdictions, it’s now illegal for commercial websites to be
inaccessible. Most countries have policies in place that require
businesses to offer equal access to all. If your business website has
global reach, failing to make the site accessible subjects your
company to huge legal risk.
Accessibility makes you look good: Making your business apps
accessible to all creates goodwill, puts a shine on your brand, and
makes you part of the solution, not part of the problem.

 Whatever motivates you to make your apps accessible is
awesome. However, making any web app one hundred percent
accessible to one hundred percent of your visitors, while perhaps a
noble and worthy goal, is impossible, as upcoming pages explain.

Understanding Web Accessibility
Isn’t it a burden to have to add features to your apps to make them
accessible? Nope, not even close. As long as you build your apps with
equal access in mind from the get-go, incorporating accessible features
takes little effort on your part.

As you see later in this chapter, web accessibility isn’t hard or onerous to
implement. Or, I should say, it’s not hard or onerous to implement if you
understand who requires accessible features and why they require them,
and what types of assistive technologies are used by people with
disabilities. The next couple of sections tell you everything you need to
know.

Understanding who needs accessibility
One of the main complaints about web innovation these days is that web
developers are building apps and services that solve only the developers’
own problems. Food-delivery, groceries-to-your-door, and pet-sitting
services are just a few of the many examples. The problem here is
thinking that if I have a problem that needs to be solved, everybody else
in the world must also want that problem solved. More broadly, these
apps are examples of a web developer assuming that everyone who uses
a site is basically just like the developer.

To really get accessibility, the first step is to understand deeply one
simple fact:

Your users are not you.

In particular, an alarmingly high portion (estimates range from 5 to 20
percent) of the people who visit your site live with some form of
disability to a varying degree.

 ACCESSIBILITY ISN’T ABOUT ONLY
PEOPLE WITH DISABILITIES

Although the focus of your accessibility efforts should be on accommodating users with
disabilities as best you can, it’s important to remember that your accessibility tweaks
also help a wide range of other users, including the following:

Users who surf the web using nonstandard devices, such as smart TVs, smart
watches, and game consoles. These devices often either lack mouse support
or offer only a rudimentary capability to move and click a pointer. So, in that
sense, users of these devices have many of the same challenges as people
with motor disabilities.

Users with slow internet connections, restrictive bandwidth caps, or low-power
computers may surf the web with images turned off, which makes sites load
faster and uses less bandwidth. So, these users are similar to people with
visual impairments in that they rely on your descriptions of your app images.

Users who surf the web using mobile devices such as smartphones and tablets
usually don’t have access to a mouse. Therefore, site features that rely on, say,
hovering a mouse pointer over a page object won’t work for those users, which
makes them similar to people who don’t have the ability to use a mouse.

With these users in mind, you can see that accessibility can be defined in the broadest
sense as making your website functional for as many people as possible.

What types of disability am I talking about? Planning for accessibility
means taking the following conditions into account:

Visual: Includes full or partial blindness, color-blindness, and
reduced vision
Auditory: Includes full or partial deafness, difficulty hearing, the
inability to hear sounds at certain frequencies, and tinnitus

Motor: Includes the inability to use a pointing device such as a
mouse, restricted movement, lack of fine motor control, excessive
trembling or shaking, and slow reflexes or response times
Cognitive: Includes learning disabilities, focusing problems,
impaired memory, and extreme distractibility

In each case, the disability may have been something present at birth or
could have come about through disease or trauma. However, it’s also
important to remember that one or more of these disabilities may be the
result of simply getting older. Folks who are no longer spring chickens
(or even summer chickens, for that matter) could have reduced visual
acuity, partial or complete deafness, reduced motor control, and mild to
significant cognitive impairment. And because the planet's population
(with just a few exceptions) is rapidly getting older, the number of
people surfing the web with some form of disability is only going to
grow.

Learning about assistive technologies for web
surfing
Knowing that many people who visit your apps will have some type of
disability doesn’t do you much good unless you also know how that
disability changes their web experience. How does a person with limited
eyesight “read” a web app? How does someone who can’t control a
mouse “click” a link?

The answer to these and similar questions is that most people with
disabilities use some form of software or hardware tool to help them surf
to, read, navigate, and interact with a web app. These tools fall under the
rubric of assistive technology (AT), and knowing the tools that users
with disabilities turn to is crucial in helping you design your web apps to
be accessible.

Assistive technologies for visual disabilities
People with limited eyesight use a variety of AT to make screen
elements easier to see:

Screen magnifier: A hardware device or software utility that
magnifies a portion of the screen. Windows offers the Magnifier
program; macOS, iOS, and iPadOS have the Zoom feature; and
Android has the Magnification setting.
The web browser’s Zoom feature: All the major web browsers
offer a Zoom command that magnifies the entire page.
Custom browser text size: All major browsers enable the user to set
a custom text size.

For users who are blind or nearly blind, a screen reader is the AT of
choice. A screen reader is a software program that reads aloud whatever
text appears on a web page, including the following:

Headings
Page text
Link text
Descriptions of images and other media

Third-party screen readers are available, but all operating systems have
built-in screen readers, including Narrator for Windows and VoiceOver
for macOS. Having free access to the powerful screen reader in your
operating system is great news because it means you can crank it up and
try surfing the web with it to get a feel for how it works.

Assistive technologies for auditory disabilities
People with poor hearing often use special headphones or hearing aids to
boost sound input. For people who are deaf or nearly deaf, however, you
can make a couple of accommodations:

If your app has video content, the video should include the capability
to turn on captions.
If your app has audio content, provide a link to a transcript of the
audio.

Assistive technologies for motor disabilities

Some people with profound motor disabilities can surf the web (or use
any computer function) only with a head-pointer device. However, for
most people with a motor disability, the major problem is that they lack
sufficient control to operate a mouse or trackpad. Instead, they rely on
the keyboard to interact with web apps, so your apps need to be
navigable via keyboard input. See “Making Your Apps Keyboard-
Friendly,” later in this chapter.

Assistive technologies for cognitive disabilities
Some people with certain types of cognitive impairment use software
tools to help them focus on the task at hand. You can also set up your
web apps to help people focus and to avoid unnecessary confusion:

Don’t add bling to your apps just for the sake of being flashy. Keep
your app design as simple as possible.
Keep your navigation and layout consistent across all your pages.
Provide clear and simple instructions for tasks such as filling out
forms.
Wherever possible, stick to web conventions such as underlined link
text.

Making Your App Structure
Accessible

By far the easiest way to get a big jump on making your web apps
accessible is by baking accessibility into the HTML structure itself.
Does this mean jumping through a bunch of new hoops and learning a
lot of new tags and attributes? Nope. Quite the opposite: It really means
using headings and semantic sectioning elements just the way I talk
about using them earlier in the book (see Book 2, Chapter 1).

Using headings hierarchically
Users of screen readers often get a feel for a page by navigating through
its headings. To assist such users, you should first ensure that each

heading makes sense when read aloud and accurately describes the
contents of the section to follow. You should also use headings in a way
that honors their built-in hierarchy:

Use only one h1 element per page: That h1 element should be the
page title.
Use h2 for headings: For all the main headings on your page, use
the h2 element.

Use h3 for subheadings, and so on: Inside each h2 element, the
main subheadings should be h3 elements. Similarly, within an h3 the
main sub-subheadings should be h4 elements; within an h4 the main
sub-sub-subheadings should be h5 elements, and within an h5 the
main sub-sub-sub-subheadings should be h6 elements.

Don't skip headings: Don't go from, say, an h2 to an h4 just because
you feel like it or prefer the look of the text (see the next item).
Don't use headings for decorative purposes: Don’t use a heading
just because you need something bold or because you like the size of
that heading’s text. That’s what CSS is for.

Using semantic sectioning elements
You certainly could build your app with nothing but styled div elements
(and an alarming number of web coders do exactly that!), but the result
is not only messy and unstructured but also an accessibility nightmare.
Why? Because a screen reader or other assistive tech has nothing to grab
onto, so to speak. Sure, it will still speak (or whatever) the page content,
but there will be no context.

Fortunately, it doesn’t take you any longer to build your app using the
semantic sectioning elements — such as header, nav, main, article,
and footer — that I talk about in Book 2 Chapter 1. This approach not
only provides welcome structure to the page layout but also gives you
accessibility for free because these so-called landmarks help assistive
tech make sense of the page and screen readers will include the
underlying semantic meaning as part of the readout.

For example, when a screen reader comes across a nav element, it will
usually say “navigation,” and when it comes across a header element, it
will usually say “banner.”

Making Text Accessible
Almost all web apps are mostly text, so if you can make your text
accessible, you've gone a long way towards making your app accessible.
Here are a few pointers to bear in mind:

Don’t use absolute measurement units for text sizes: One of the
first things someone with poor eyesight might do before surfing the
web is customize their browser with a larger default text size. If you
then style your text with an absolute measurement unit such as
pixels, you override that larger default size. You have suddenly
become extremely unpopular with that person and with everyone
else who has taken the trouble to adjust their browser’s text.
Accessible text starts with text sizes that use a relative measurement
unit, such as em or rem.

Make sure the text is readable: Don't size your text ridiculously
small, and make sure there’s sufficient contrast between the text
color and the background color (see “Ensuring Sufficient Color
Contrast,” later in this chapter).
Make link text descriptive. For each link on your page, the link text
should describe what lies on the other side of the link. Screen readers
speak link text aloud, so if your link just says “Click” or “Click
here,” you’re not telling your visitor anything useful about where the
link goes.
Do this:

Learn more about kumquats

Don’t do this:
To learn more about kumquats, click here

Don’t hide text if you don’t have to: It’s possible to use CSS or
JavaScript to temporarily hide text that doesn’t need to be displayed
at the moment. For example, you can create tabs where the content
of one tab is visible and the content of the other tabs is not. The
standard way of making some text not visible is to hide it, but that
plays havoc with screen readers, which don’t see the hidden text. So,
if you can help it, never hide your page text.

Making Media Accessible
Web page text is inherently accessibility-friendly because screen readers
speak it aloud by default. With a bit of care, you can make your text
easier to read for people with less than perfect eyesight. Unfortunately,
that friendliness doesn’t apply to web page media, including images,
videos, and audio snippets. These elements are harder to make
accessible, but there’s still plenty you can do to make sure that all your
visitors can enjoy your page media elements (or at least know what
they're missing).

Specifying alt text for images
To help visually impaired users or users who are surfing with images
turned off, you can use the tag’s alt attribute to provide a
description for each significant image on your page. For the visually
impaired, a screen reader reads aloud the value of every tag's alt
attribute, so important or structural images should include a brief
description as the alt value:

Here are some notes on writing useful alt text:

Keep it short. Longwinded descriptions are rarely needed or useful.
Say directly what the image represents.
Include meaningful details from the image. Here, meaningful means
relevant to the context of the page or surrounding text.

Don't repeat any info that’s already in the surrounding text.
You don’t need to add an alt value for purely decorative images, but
you must include the alt tag (set to an empty string: alt="") or your
HTML code won't validate.

Making other media accessible
Compared to images, video and audio content take a bit more work to
make them accessible, which essentially means doing one of the
following:

Audio content: Auditorily impaired users can’t hear content
delivered via the audio element. You can support these users by
making a transcript of the audio available.
Video content: Visually impaired users can’t see content delivered
via the video element, while auditorily impaired users can't hear the
video element’s audio track. For the former, you can create an audio
description track that provides a narration of what's happening in the
video. For the latter, a transcript of the video’s audio track should be
made available and your video should have closed captions or
subtitles that appear while the video is playing.

One way of making captions or subtitles appear while a video is playing
is to create a Web Video Text Tracks (WebVTT) file, which is a text file
that contains time cues and text to display during those cues.

 The building of a WebVTT text file is straightforward, but it’s
beyond the scope of this book. Fortunately, an excellent description
of the format is on the Mozilla Developer Network at
https://developer.mozilla.org/en-

US/docs/Web/API/WebVTT_API.

Once you have your WebVTT file (which uses the .vtt extension), you
then use the track element to let the browser know the file is available

https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API

for a video element:

<track kind="type" src="filename">

where:

type is the type of track. For value, you can use any of the following
keywords: subtitles (this is the default), captions, descriptions
(descriptions of the video content), or chapters (chapter titles only).

filename is the filename (and path, if the file resides in a directory
other than the one that stores the HTML file) of the WebVTT file.

You insert the <track> tag between the <video> and </video> tags, like
so:

<video

 src="/media/videos/kumquats.mp4"

 controls

 <track

 kind="captions"

 src="/media/cc/kumquats-captions.vtt">

</video>

Buffing Up Your App Accessibility
Semantics

Whenever you're wearing your “accessibility” hat, one of the key
questions you need to ask yourself for each element on your app is,
“What might an assistive technology need to know about this element?”
That is, what information do you need to provide so that a screen reader
or similar AT can determine the purpose of the element?

In other words, you want to make the meaning of each element clear,
and the info you provide about the meaning of each element is referred
to as accessibility semantics. Over the next few sections, I talk about a
few ways that you can enhance the accessibility semantics of your apps.

Adding form field labels

In Book 6, Chapter 2, I talk about the label element, which you can use
to associate a text label or caption with a form field. You can use two
methods:

Implicit label: Surround the form field with <label> and </label>
tags, and insert the label text either before or after the field. Here's an
example:

<label>

 Favorite vegetable:

 <input type="text">

</label>

Explicit label: Insert an id value into the field tag, set the <label>
tag's for attribute to the same value, and insert the label text between
the <label> and </label> tags. Here's a for instance:

<label for="fave-veg">Favorite vegetable:</label>

<input id="fave-veg" type="text">

Adding the <label> tag provides two accessibility wins:

It enables the user to select the field by also clicking the label. This
approach increases the target area for clicking, which helps users
with unsteady hands.
The label text is now associated with the field, which means a screen
reader will read out the label text when the user selects the field.

Be sure to add a label for every <input> tag, as well as each <select>
and <textarea> tag.

Understanding ARIA roles, state, and properties
The World Wide Web Consortium is home to the Web Accessibility
Initiative (WAI), which aims to make the web an accessible place for
everyone. One of the key WAI technologies is Accessible Rich Internet
Applications (ARIA), is a collection of roles, states, and properties
designed to bring accessibility semantics to every element of your web
app's user interface:

ARIA role: A keyword that defines what type of user interface
control a page element represents. For example, if you’ve coded a
div element to look and work like a command button, that element’s
role is button. You assign a role to an element using the role
attribute, like so:

<div role="button">Apply Changes</div>

ARIA property: A value that describes some aspect of the user
interface control. For example, if you want to include placeholder
text in an editable div element, you can let assistive technologies
know about the placeholder by adding the aria-placeholder
attribute:

<div

 contenteditable

 role="textbox"

 aria-placeholder="user@domain.com">

</div>

ARIA state: A keyboard or value that specifies the current condition
of the user interface control. For example, if your web application
uses a div element as an on/off switch but that element is currently
disabled, you can signal that disabled state to assistive technologies
by setting the aria-disabled attribute to true:

<div role="switch" aria-disabled="true"></div>

The three main categories of ARIA roles are

Landmark roles
Section structure roles
Widget roles

 I talk about the roles in each of these categories in the next few
sections. However, it's important to understand that you don’t need
to use ARIA roles if you use semantic HTML elements because

those elements have implicit roles that are understood by assistive
technologies. For example, the button element has an implicit
button role, so there's no need to include role="button" in the
<button> tag. See https://developer.mozilla.org/en-
US/docs/Web/Accessibility/ARIA/Roles/ for a satisfyingly
complete look at the ARIA roles.

Landmark ARIA roles
Landmark ARIA roles identify major structural elements of the app, and
assistive technologies use these landmarks to enable the user to navigate
quickly through the major sections of a app. Table 3-1 lists the landmark
roles and their corresponding HTML semantic elements.

TABLE 3-1 Landmark ARIA Roles

ARIA Role HTML Semantic Element

banner header

complementary aside

contentinfo footer

form form

main main

navigation nav

region section

search N/A

The search role doesn't have an equivalent HTML element, but most of
the time you’ll use it within a form element, like this:

<form role="search">

 Your search controls go here

</form>

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/

 The point of landmark roles (and their corresponding HTML
sectioning elements) is to give assistive tech a forest-instead-of-the-
trees view of the page. Therefore, don’t overuse landmark roles or
you run the risk of your page appearing to be nothing but trees!

Section structure ARIA roles
Section structure ARIA roles identify sections of page content with a
specific purpose. Most section structure ARIA roles have a semantic
HTML equivalent, but a few don’t, and I list those in Table 3-2.

Table 3-3 lists the section structure ARIA roles that have semantic
HTML equivalents. In each case, it's best to use the semantic HTML
elements instead of the ARIA roles.

Widget ARIA roles
Widget ARIA roles identify interactive user interface elements. Table 3-4
lists those widget ARIA roles that don't have semantic HTML
equivalents.

TABLE 3-2 Section Structure Roles without HTML
Equivalents

ARIA Role Description

feed
Identifies a scrollable list of items where new items are added as the
user scrolls to the bottom of the list

math Identifies a mathematical expression

none (or
presentation) Hides an element's implicit ARIA role from assistive technologies

note Identifies a section with content that is ancillary to the main app topic

toolbar Identifies a section with controls that are meant to be used as a toolbar

tooltip
Identifies text that appears when the user hovers the mouse pointer
over an element or gives the element focus via the keyboard

TABLE 3-3 Section Structure Roles with HTML
Equivalents

ARIA Role HTML Semantic Element

article article

cell td

definition dfn

figure figure

heading h1 through h6

img img or picture

list ol or ul

listitem li

meter meter

row tr

rowgroup tbody, thead, or tfoot

rowheader th

table table

term dfn or dt

TABLE 3-4 Widget Roles without HTML Equivalents

ARIA
Role Identifies

combobox
An input control that enables the user to either type a value or select a
value from a list

menu A control that enables the user to select an item from a list of choices

menubar A control that contains a set of menu widgets

scrollbar
A app object that controls vertical or horizontal scrolling within a viewing
region

searchbox A text box control used specifically to input text for a search operation

ARIA
Role Identifies

slider An input control that enables the user to choose from a range of values

spinbutton An input control that enables the user to increment or decrement a value

switch An input control that the user can alternate between the on and off state

tab A control that, when selected, displays its associated tabpanel widget

tablist A control that contains a set of tab widgets

tabpanel A control that contains the content of the currently selected tab widget

tree
A widget that enables the user to select one or more items from a
hierarchical set

treegrid A tabular version of a tree widget

treeitem An item in a tree widget

There are also a few widget ARIA roles that have semantic HTML
equivalents, as I outline in Table 3-5. In each case, it's best to use the
semantic HTML elements instead of the ARIA roles because all modern
assistive technologies understand the semantic HTML elements and
adding ARIA roles could create confusion for the user.

TABLE 3-5 Widget Roles with HTML Equivalents

ARIA Role HTML Semantic Element

button button

checkbox input type="checkbox"

link a

option option

progressbar progress

radio input type="radio"

textbox input type="text"

Differentiating semantic app elements of the same type

One problem you run into when trying to accommodate screen readers in
your code is when you have multiple semantic page elements of the
same type. For example, your app might have two nav elements: one in
the page header, another in the page article, as shown here:

<header>

 <nav>

 <h3>Site Navigation</h3>

 Site navigation code goes here

 </nav>

</header>

<main>

 <article>

 <nav>

 <h3>Article Navigation</h3>

 Article navigation code goes here

 </nav>

 </article>

</main>

How can a screen reader user find out what each nav element does? One
option is to navigate through the elements to see what each one contains,
a time-consuming and burdensome process. A better way is to add an id
attribute to the h3 element within each nav element, and then use the
aria-labelledby attribute in the nav element to specify the id of the
associated heading. Here's the updated example:

<header>

 <nav aria-labelledby="site-navigation">

 <h3 id="site-navigation">Site Navigation</h3>

 Site navigation code goes here

 </nav>

</header>

<main>

 <article>

 <nav aria-labelledby="article-navigation">

 <h3 id="article-navigation">Article Navigation</h3>

 Article navigation code goes here

 </nav>

 </article>

</main>

For example, within the header element, the <h3> tag now has an id
attribute with the site-navigation value. In the nav element, the aria-
labelledby attribute is also given the site-navigation value. This tells
the screen reader that the Site Navigation text describes this particular
nav element.

What if your user interface doesn't have a handy h3 (or whatever)
element to act as the label? No problemo. You can use the aria-label
attribute directly in the tag you want to label:

<header>

 <nav aria-label="Site Navigation">

 Site navigation code goes here

 </nav>

</header>

<main>

 <article>

 <nav aria-label="Article Navigation">

 Article navigation code goes here

 </nav>

 </article>

</main>

Making Your Apps Keyboard-
Friendly

Many users with disabilities lack the dexterity or the ability to use a
mouse or other pointing device. Many of those users navigate and
interact with web apps using the keyboard, so it's vital that your web
apps be keyboard-friendly.

Out of the box, HTML offers the following keyboard support:

Form controls and links are navigable via the keyboard.
All other HTML elements are not navigable via the keyboard.
Pressing Tab moves the focus forward from the current element to
the next navigable element, where forward refers to the direction that

the elements appear in the HTML source code.
Pressing Shift+Tab moves the focus backward from the current
element to the previous navigable element, where backward refers to
the reverse direction that the elements appear in the HTML source
code.
For navigable elements that have multiple components — such as a
group of radio buttons or a selection list — once the user places the
focus on the element, the user can navigate the components inside
the element by pressing the arrow keys.
Pressing the spacebar selects the current element. When a button
element has the focus, for example, pressing the spacebar is the same
as clicking the button; when a check box has the focus, pressing the
spacebar toggles the check box between the selected (checked) and
nonselected (unchecked) state.

The order in which the app elements receive the focus as you press Tab
is called — no surprises here— the tab order. What is surprising is that
the tab order isn’t set in stone, meaning that you can both add elements
to it and remove elements from it. The next two sections provide the
details.

 Another way you can ramp up the keyboard friendliness of your
web app is to assign shortcut keys to user interface controls.
Defining keyboard shortcuts falls under the spell of JavaScript and I
cover that technique in Book 6, Chapter 2.

Adding an element to the tab order
If you stick with native HTML elements, there’s probably nothing extra
you need do for accessible keyboard access. However, what if you have,
say, a div or span element that you want to be accessible by pressing
Tab or Shift+Tab? That's no problem because all that’s required is
plopping tabindex="0" into the tag, like this:

<div role="tablist" tabindex="0">

When the web browser sees tabindex="0" inside a tag, it automatically
adds that element to the tab order, so users will be able to navigate to the
element using Tab or Shift+Tab. How awesome is that?

Removing an element from the tab order
Every once in a while, you might end up with a navigable page element
that you don't want in the tab order. For example, if an element is
disabled, there’s no point in users navigating to it using Tab or
Shift+Tab.

To remove an element from the tab order, insert tabindex="-1" into the
element’s tag, like so:

<button tabindex="-1">

 Can't touch this

</button>

When the web browser stumbles upon tabindex="-1" inside a tag, it
removes that element from the tab order, so users pressing Tab or
Shift+Tab will skip right over it.

Ensuring Sufficient Color Contrast
Some people — even some people with decent eyesight — have trouble
reading web page text if there isn't sufficient contrast between the color
of the text and the color of the background. For example, it’s
distressingly common these days to see either light gray text on a
slightly lighter gray background (see Figure 3-1, left) or dark gray text
on a slightly darker gray background (see Figure 3-1, right). Some web
designers think this is cool, but the rest of us might use some saltier
language to describe it.

The examples in Figure 3-1 are admittedly a bit extreme, but you
shouldn’t assume that just because you can easily read your text,
everyone will have just as easy a time. Lots of people with either a
visual impairment or aging eyes have trouble reading text that appears
insufficiently darker or lighter than the background.

FIGURE 3-1: Light text on a light background (left) and dark text on a dark background
(right).

So, how do you know when the foreground and background colors
you’ve chosen have enough color contrast? You can turn to a
measurement called the contrast ratio, which compares the hue and
luminance (brightness) of one color with the hue and luminance of
another. The result is a number greater than or equal to one with the
following properties:

The lower the number, the lower the contrast between the two colors.
The higher the number, the greater the contrast between the two
colors.
A contrast ratio of 1 means the two colors are the same (or close
enough to being the same).

Okay, so what is sufficient color contrast? The world’s web accessibility
gurus have decreed that a contrast ratio of 4.5 or higher is what you need
to shoot for. Happily, you don’t have to worry about calculating contrast
ratios yourself. Instead, you can use an online tool called WebAIM (Web
Accessibility In Mind) Contrast Checker, which is available at
https://webaim.org/resources/contrastchecker/. In both the
Foreground Color and Background Color boxes, either enter an RGB
hex color code or click the color swatch to choose a color. Instantly, the
app spits out the contrast ratio (see Figure 3-2).

https://webaim.org/resources/contrastchecker/

FIGURE 3-2: Use the WebAIM Contrast Checker to find out the contrast ratio between any
two colors.

Validating the Accessibility of an
App

Keeping track of all the accessibility tweaks I discuss in this chapter
might seem daunting. What if you miss something? That’s a legit
concern, but the web can help. Once your app is on the web, you can
check its accessibility by heading over to the Web Accessibility
Evaluation Tool (WAVE) at http://wave.webaim.org, shown in Figure
3-3.

http://wave.webaim.org/

FIGURE 3-3: The Web Accessibility Evaluation Tool will let you know if your app has any
accessibility faux pas.

Paste your web app’s address into the text box and press Enter or Return
to see a report that includes the following:

Missing semantic elements
Skipped heading levels
Too-small text
Too-low color contrast ratios

Chapter 4
Securing a Web App

IN THIS CHAPTER
 Getting familiar with security issues
 Sanitizing data coming into the server
 Sanitizing data going out from the server
 Securing file uploads and user passwords
 Setting up secure directories and sessions

“I saw the head of the company on CNN or something. He said nobody
could get into their network. Their security systems were foolproof. I
wanted to see if that was true.” “Were they?” “As a matter of fact, yeah,
they were foolproof. The problem is that you don’t have to protect
yourself against fools. You have to protect yourself against people like
me.”

— JEFFERY DEAVER
Like it or not (and I suspect not), we live in a world populated by a small
but determined band of miscreants who spend all their time, energy, and
intellect trying to deface, destroy, or exploit web apps just like the ones
you want to build. And make no mistake: If you put an unprotected web
app online, sooner or later (almost certainly sooner) it will be found by
one or more (almost certainly more) of these evildoers and bad things
will inevitably ensue.

So, grab yourself a marker and a piece of paper, write the word
SECURITY in big, bold letters, and tape the paper to your cat’s forehead
as a constant reminder that building a web app really means building a
secure web app. And I don’t mean building your app and then bolting on
some security features at the very end — no, you need to bake in the
security goodness right from the start.

Fortunately, if you implement multiple lines of defense — a strategy
sometimes called defense in depth — you can inoculate your app against
all but the most determined attacks. In this chapter, you dive deep into
the all-important world of web app security. You learn what dangers
your web apps might encounter and how to keep an innocent web app
safe in the face of those dangers.

Web App Security: Nutshell Version
As important as web app security is, you might be surprised to hear that
I can summarize it with just two axioms:

Never trust data sent to the server. For example, if you
have a form with a text field, an attacker can insert a specially
constructed text string that forces MySQL to perform unwanted
actions, such as deleting data. Alternatively, it’s possible for an
attacker to submit data to the server without using your form at all.
Always control data sent from the server. When you send data
back to the web page, you need to be sure that you’re not sending
anything dangerous. For example, if an attacker uses a form’s text
field to submit a <script> tag with malicious JavaScript code, and
you then redisplay the form’s values without checking them, that
script will execute. Similarly, if you use the server to store sensitive
data such as sign-in passwords and private information, you need to
install safeguards so that this data doesn’t fall into the wrong hands.

The following section takes you through the most common security
problems.

Understanding the Dangers
It often seems that there are almost as many security exploits as there are
lowlifes trying to compromise our apps. However, the most common

security dangers fall into four main categories: SQL injection, cross-site
scripting, insecure file uploads, and unauthorized access.

SQL injection

 Probably the most common exploit, SQL injection involves
inserting some malicious code into an ordinary SQL command,
such as a SELECT or DELETE statement. Consider the following sign-
in form:

<form>

 <label for="username">User name:</label>

 <input id="username" type="text" name="user">

 <label for="password">Password:</label>

 <input id="password" type="password" name="pass">

</form>

When this form is submitted, a PHP script to sign in the user might look,
in part, like this:

<?php

 $user = $_POST['user'];

 $pass = $_POST['pass'];

 $sql = "SELECT *

 FROM users

 WHERE username='$user' AND password='$pass'";

?>

That works fine as long as the user types a legit username and password,
but what happens if some scoundrel types admin' # in the user field and
nothing in the password field? Here’s the resulting value of the $sql
variable:

SELECT * FROM users WHERE username='admin' #' AND password=''

The key here is the hash symbol (#), which marks the beginning of a
comment in an SQL command, meaning that the rest of the line is
ignored. (MySQL also uses -- to mark the start of a comment.) That is,
the actual SQL command that gets processed is this:

SELECT * FROM users WHERE username='admin'

Congratulations, some criminal has just signed in as the administrator!

As another example, suppose your web app has a button that, when
clicked, deletes an item from the current user’s data. Your Fetch API call
might pass along a user-id and an item-id, meaning that your PHP
script would do something like the following to remove the specified
item:

<?php

 $user_id = $_POST['user-id'];

 $item_id = $_POST['item-id'];

 $sql = "DELETE

 FROM items

 WHERE userid='$user_id' AND itemid='$item_id'";

?>

Looks fine from here, but suppose some fiend passes the following as
the user-id value: whatever' OR 1=1 #. Assuming the item-id value is
blank, here’s the resulting $sql variable value:

DELETE FROM items WHERE userid='whatever' OR 1=1 #' AND itemid=''

Taking the comment symbol (#) into account, the actual command looks
like this:

DELETE FROM items WHERE userid='whatever' OR 1=1

The 1=1 part always returns TRUE, so the result is that the command
deletes everything from the items table!

Cross-site scripting (XSS)

Cross-site scripting (usually shortened to XSS) is a way of
surreptitiously forcing an innocent user to launch an attacker's
malicious script. This happens most often when the malefactor uses
a phishing email or similar ruse to trick the user into visiting a page
that spoofs a form used on a legitimate site.

For example, suppose the form asks the user to enter their credit card
number and password. If this were a normal form submission and the

user entered either the wrong credit card number of the wrong password,
the PHP script on the server might redisplay the form to ask the user to
try again:

<?php

 $cc = $_POST['credit-card'];

 $pw = $_POST['password'];

 // Code that checks these inputs goes here

 // If one or both inputs are invalid:

 echo '<input type="text" name="credit-card" value="' . $cc . '">';

 echo '<input type="password" name="password">';

?>

Note, in particular, that this “helpful” script redisplays the credit card
value (stored in the $cc variable) in the text field. Imagine, then, that our
attacker’s spoofed form actually sends the following text instead of the
credit card number:

"><script>alert('Ha ha!');</script><a href="

Here’s the resulting HTML (which I tidied up a bit so you can see what’s
going on):

<input type="text" name="credit-card" value="">

<script>

 alert('Ha ha!');

</script>

<input type="password" name="password" value="">

What happens here? That’s right: The JavaScript code between the
<script> and </script> tags executes and, believe me, in the real
world it’s unlikely to just display an innocuous alert box.

Insecure file uploads

 If your web app allows users to upload files — for example, you
might want to allow each user to upload a small image to use as a
profile avatar —you open a new can of security worms because a
malicious user can

Upload huge files, which tax the server’s resources.
Upload a nasty script instead of, say, an image.
Overwrite existing server files.

Unauthorized access

 If your web app requires users to sign in with a username (or
email address) and password, keeping those passwords secure is of
paramount importance. Otherwise, an unauthorized interloper could
sign in as a legitimate user and destroy or tamper with that user’s
data, post messages or other content under that user’s name, and
even delete the user’s account.

Sanitizing Incoming Data
Defending your web app begins with sanitizing any data sent to the
server. The five main ways to sanitize data are converting, filtering, data
type checking, whitelisting, and using prepared statements.

Converting incoming data
Converting incoming data means encoding the input’s potentially
dangerous characters to harmless equivalents. The most useful PHP
function for this is htmlspecialchars(), which takes a string input and
converts the following special characters to an HTML entity code or an
HTML character code:

Character Name Is converted toCharacter Name Is converted to

< less than <

> greater than >

" double quote "

' single quote '

& ampersand &

Here’s an example (bk07ch04/example01.html):

HTML:
<form>

 <label for="message">Send me a message:</label>

 <textarea id="message" name="message">

 <script>

 alert("Take that!")

 </script>

 </textarea>

 <button>Submit</button>

</form>

<label for="output">Output:</label>

<div id="output">

</div>

JavaScript (with error-checking code removed for clarity):
// Get a reference to the form

const form = document.querySelector('form');

// Listen for the submit event

form.addEventListener('submit', async (event) => {

 // Prevent the default form submission

 event.preventDefault();

 // Get the form data

 const formData = new FormData(form);

 // Ship it via fetch() POST

 const response = await

fetch('http://localhost/webcoding/bk07ch04/example01.php', {

 method: 'POST',

 body: formData

 });

 // Get the sanitized string

 const data = await response.text();

 // Output the (no longer dangerous) string

 document.querySelector('#output').innerText = data;

});

Here’s the PHP code (bk07ch04/example01.php; I removed the error-
checking code for clarity):

<?php

 header('Content-Type: application/html');

 header('Access-Control-Allow-Origin: *');

 $msg = $_POST['message'];

 // Convert the string to harmless characters

 echo htmlspecialchars($msg);

?>

In the HTML form, note the text in the textarea element:

<script>

 alert("Take that!")

</script>

Yikes! Not to worry, though, because the PHP script sanitizes it to
harmless text, as shown below the Output: label in Figure 4-1.

 A similar PHP function is htmlentities(), which takes a string
input and converts any special characters (not just the five listed
previously) to either an HTML entity code, if one exists, or to an
HTML character code.

FIGURE 4-1: When this form is submitted, the JavaScript code in the text area gets
sanitized.

Filtering incoming data
Filtering incoming data means removing unwanted characters from an
input. This step is useful for security — for example, by stripping
dangerous characters from, say, an email field — but it's useful also for
sanitizing incoming data. For example, if your app expects a particular
input to be an integer, it’s helpful to strip any characters that aren’t digits
or the characters plus (+) and minus (-).

To filter incoming data, use PHP's filter_input() function and specify
one or more of the function’s sanitizing filters:

filter_input(input_type, input, filter)

where:

input_type is a constant that specifies the type of input. Use
INPUT_GET for GET requests; use INPUT_POST for POST requests.

input is the input value you want to sanitize.

filter is a constant that determines the characters you want to
remove from input. Here are some useful filters:

FILTER_SANITIZE_EMAIL: Removes all characters except
letters, numbers, and the following: !#$%&'*+-?^_`{|}~@.[]

FILTER_SANITIZE_NUMBER_FLOAT: Removes all characters
except numbers, decimal point (.), thousands separator (,),
scientific notation (e and E), plus (+), and minus (-). To allow
decimals, add the FILTER_FLAG_ALLOW_FRACTION flag; to
allow the thousands separator, add the
FILTER_FLAG_ALLOW_THOUSAND flag; to allow scientific
notation, add the FILTER_FLAG_ALLOW_SCIENTIFIC flag. Note
that, of these last three flags, you can use only one at a time.
FILTER_SANITIZE_NUMBER_INT: Removes all characters
except numbers, plus (+), and minus (-).

FILTER_SANITIZE_SPECIAL_CHARS: HTML-encodes less than
(<), greater than (>), single quote ('), double quote ("),
ampersand (&), and control characters such as tab, line feed,
and carriage return.
FILTER_SANITIZE_URL: Removes all characters except letters,
numbers, and the following: $-_.+!*'(),{}|\\^~
[]`<>#%";/?:@&=

Here's an example (bk07ch04/example02.html):

HTML:
<form>

 <fieldset>

 <legend>Submit your score:</legend>

 <label for="name">Name:</label>

 <input type="text" id="name" name="name" value="<script>alert('Here

comes trouble!')</script>">

 <label for="email">Email:</label>

 <input type="text" id="email" name="email" value="<script>alert('Uh

oh!')</script>">

 <label for="age">Age:</label>

 <input type="text" id="age" name="age" value="#42#">

 <label for="score">Score:</label>

 <input type="text" id="score" name="score" value="1,024.5">

 <button>Submit</button>

 </fieldset>

</form>

<p>

<label for="output">Output:</label>

<div id="output">

</div>

JavaScript (with error-checking code removed for clarity):
// Get a reference to the form

const form = document.querySelector('form');

// Listen for the submit event

form.addEventListener('submit', async (event) => {

// Prevent the default form submission

 event.preventDefault();

 // Get the form data

 const formData = new FormData(form);

 // Ship it via fetch() POST

 const response = await

fetch('http://localhost/webcoding/bk07ch04/example02.php', {

 method: 'POST',

 body: formData

 });

 // Get the filtered data

 const data = await response.json();

 // Output the data

 const output = document.querySelector('#output');

 for (let key in data) {

 if (data.hasOwnProperty(key)) {

 output.insertAdjacentHTML('beforeend', '<div>');

 output.insertAdjacentText('beforeend', `${key}: ${data[key]}`);

 output.insertAdjacentHTML('beforeend', '<\div>');

 }

 }

});

The form contains four text fields used to gather the user’s name, email
address, age, and score (which might be a rating or similar value). (Note

that, in a production form, you’d use HTML’s built-in field types: email
for the email field and number for the age and score fields.) Note that the
default values I assigned to each field are either dangerous (the script
elements in the name and email fields) or contain extra characters (the #
characters in the age field) or unwanted characters (the comma in the
score field).

Here's the PHP script called by the fetch() function
(bk07ch04/example02.php; I removed the error-checking code for
clarity):

<?php

 header('Content-Type: application/json');

 header('Access-Control-Allow-Origin: *');

// Filter the name field

 $name = filter_input(INPUT_POST, 'name', FILTER_SANITIZE_SPECIAL_CHARS);

 // Filter the email field

 $email = filter_input(INPUT_POST, 'email', FILTER_SANITIZE_EMAIL);

 // Filter the age field

 $age = filter_input(INPUT_POST, 'age', FILTER_SANITIZE_NUMBER_INT);

 // Filter the score field

 $score = filter_input(INPUT_POST, 'score', FILTER_SANITIZE_NUMBER_FLOAT,

FILTER_FLAG_ALLOW_FRACTION);

 // Put the filtered data into an array

 $form_data = array('name' => $name,

 'email' => $email,

 'age' => $age,

 'score' => $score);

 // Convert the array to JSON

 $JSON_data = json_encode($form_data, JSON_HEX_APOS | JSON_HEX_QUOT);

 // Output the JSON

 echo $JSON_data;

?>

The JavaScript code grabs the returned JSON data, loops through the
resulting object, and displays the filtered values, as shown in Figure 4-2.

Checking the data type of incoming data
Data type checking means testing the data type of the input to ensure
that it matches what’s expected. PHP calls this character type checking,
and it offers the following functions:

ctype_alnum(input): Returns TRUE if input contains only letters
or numbers or both
ctype_alpha(input): Returns TRUE if input contains only letters

FIGURE 4-2: When this form is submitted, the Output area shows the filtered form
values.

ctype_digit(input): Returns TRUE if input contains only
numbers

ctype_lower(input): Returns TRUE if input contains only
lowercase letters
ctype_upper(input) : Returns TRUE if input contains only
uppercase letters

Here’s an example (bk07ch04/example03.html):

HTML:
<form>

 <fieldset>

 <legend>Dad Joke Generator</legend>

 <label for="joke-number">Joke # (1-50):</label>

 <input type="text" id="joke-number" name="joke-number" value="#42">

 <button>Submit</button>

 </fieldset>

</form>

<p>

<label for="output">Joke:</label>

<div id="output">

</div>

JavaScript (with error-checking code removed for clarity):
// Get a reference to the form

const form = document.querySelector('form');

// Listen for the submit event

form.addEventListener('submit', async (event) => {

 // Prevent the default form submission

 event.preventDefault();

 // Get the form data

 const formData = new FormData(form);

 // Ship it via fetch() POST

 const response = await

fetch('http://localhost/webcoding/bk07ch04/example03.php', {

 method: 'POST',

 body: formData

 });

 // Get the data

 const data = await response.text();

 // Output the data

 const output = document.querySelector('#output');

 output.textContent = data;

});

The form contains a single text field where the user inputs a number
between 1 and 50, each of which corresponds to a different Dad joke on
the server. The default value is #42, which isn’t a number.

Here’s the PHP script called by the fetch() function
(bk07ch04/example03.php; I removed the error-checking code for
clarity):

<?php

 header('Content-Type: application/text');

 header('Access-Control-Allow-Origin: *');

 // Make sure we have the joke-number input

 if (isset($_POST['joke-number'])) {

 // Make sure the joke number input is numeric

 if (!ctype_digit($_POST['joke-number'])) {

 // If not, alert the user

 echo 'The joke must be a number!
';

 echo 'Please try again.';

 exit(0);

 }

 }

 // Store the joke number, subtracting 1 to allow for the 0-based array

 $dad_joke_num = $_POST['joke-number'] - 1;

 // Here come the jokes

 $dad_jokes = [

 "Time flies like an arrow; fruit flies like a banana.",

 "I used to be a baker because I kneaded dough.",

 "I used to play piano by ear, but now I use my hands.",

 "Why was the broom late? It over swept.",

 "I'm reading a book about anti-gravity. It's impossible to put

down!",

etc.

];

 // Output the joke as text

 echo $dad_jokes[$dad_joke_num];

?>

The PHP script uses ctype_digit() to check whether the input value is
numeric. If it isn’t, the script returns a message to the user, as shown in
Figure 4-3; otherwise, the script returns the requested joke as text.

FIGURE 4-3: If the user submits a non-numeric value, the PHP script returns a message to
try again.

Whitelisting incoming data
Whitelisting means allowing only certain values in an input. For
example, suppose the input is an account number of the form 12-3456,
that is, two numbers, a hyphen (-), and then four numbers. You can’t use
ctype_digit() on this value directly because of the hyphen, but you can
temporarily remove the hyphen and then check the resulting value:

$acct_num = $_POST['account-number'];

$allowed = '-';

$new_input = str_replace($allowed, '', $acct_num);

if(ctype_digit($new_input) === false) {

 exit(0);

}

This code uses the str_replace() function to replace hyphens with the
empty string (which removes them) and then runs ctype_digit() on the
result.

 If your input has multiple acceptable characters, you can
whitelist them all by setting the $allowed variable to an array:

$allowed = array(',', '.', '$');

Using prepared statements
As I show earlier in this chapter, the nastiness that is SQL injection
works by tricking an innocent SQL statement into running malevolent
code. You can (and should) try to prevent that by sanitizing your form
inputs, but MySQL also offers a powerful technique that gives you
exquisite control over the type of data that gets included in an SQL
statement. The technique is called prepared statements (or sometimes
parameterized statements or parameterized queries), and it means you
no longer send an SQL statement directly to the database server. Instead,
the query now proceeds in three separate stages:

1. The preparation stage.
This stage involves running an SQL-like statement through
MySQLi's mysqli_prepare () method. Most importantly, you
replace each external value (that is, each value received from a web
form) with a question mark (?), which acts as a placeholder for the
value. The statement you’ve thus prepared acts as a kind of template
that MySQLi will use to run the query.

2. The binding stage.
This stage involves using MySQLi’s mysqli_stmt_bind_param()
method to define each external value as a parameter, and then bind
that parameter to the prepared statement. Specifically, MySQLi
replaces each ? placeholder with a parameter. The binding specifies a
data type (such as a string or integer) for each parameter.

3. The execution stage.
The final stage runs MySQLi’s mysqli_stmt_execute() method on
the prepared statement. This hands off the running of the SQL

command to the server, which uses the combination of the prepared
statement template and the bound parameters to run the SQL
operation.

Because the server knows what data types to accept for the external
values, it can’t run injected SQL code as actual code. Instead, it treats
the injection as text (or whatever data type you specify), and the SQL
operation runs in complete safety.

Here’s an example (bk07ch04/example04.html):

HTML:
<form>

 <fieldset>

 <legend>Customer Orders By Employee</legend>

 <label for="customer">Customer:</label>

 <select id="customer" name="customer">

 <option value="ALFKI">Alfreds Futterkiste</option>

 <option value="ANATR">Ana Trujillo Emparedados y helados</option>

 <option value="ANTON">Antonio Moreno Taqueria</option>

etc.

 </select>

 <label for="employee">Employee:</label>

 <select id="employee" name="employee">

 <option value="5">Steven Buchanan</option>

 <option value="8">Laura Callahan</option>

 <option value="1">Nancy Davolio</option>

 <option value="9">Anne Dodsworth</option>

 <option value="2">Andrew Fuller</option>

 <option value="7">Robert King</option>

 <option value="3">Janet Leverling</option>

 <option value="4">Margaret Peacock</option>

 <option value="6">Michael Suyama</option>

 </select>

 <button>Submit</button>

 </fieldset>

</form>

<p>

<label for="output">Orders:</label>

<div id="output">

</div>

JavaScript (with error-checking code removed for clarity):

// Get a reference to the form

const form = document.querySelector('form');

// Listen for the submit event

form.addEventListener('submit', async (event) => {

 // Prevent the default form submission

 event.preventDefault();

 // Get the form data

 const formData = new FormData(form);

 // Ship it via fetch() POST

 const response = await

fetch('http://localhost/webcoding/bk07ch04/example04.php', {

 method: 'POST',

 body: formData

 });

 // Get the data

 const data = await response.json();

 // Get a reference to the output element and then clear it

 const output = document.querySelector('#output');

 output.innerHTML = '';

 // Check for no data returned

 if (data.length === 0) {

 output.innerText = "No orders returned. Please try again with a

different customer and/or employee."

 }

 // Iterate the returned array of orders

 data.forEach((orderData, index) => {

 // Insert a section element to hold the order data

 output.insertAdjacentHTML('beforeend', `<section

id="order-${index}">`);

 // Get a reference to the new section element

 let order = document.querySelector(`#order-${index}`);

 // Iterate the object contained in the current array item (orderData)

 for (let key in orderData) {

 // Insert a div element to hold the order data

 order.insertAdjacentHTML('beforeend', '<div>');

 order.insertAdjacentText('beforeend', `${key}:

${orderData[key]}`);

 order.insertAdjacentHTML('beforeend', '<\div>');

 }

 output.insertAdjacentHTML('beforeend', '</section>');

 });

});

The HTML sets up two selection lists: one for customers and one for
employees. The idea behind this form is to query the database to return
all customer orders placed by a particular employee. The JavaScript
gathers the form data, submits it to the server using the Fetch API, and
then processes the result, which is an array of objects, where each object
contains the order data.

The fetch() method calls example04.php, which contains the following
code (bk07ch01/example04.php; I removed some of the error-checking
code for clarity):

<?php

 header('Content-Type: application/json');

 header('Access-Control-Allow-Origin: *');

 // Make sure we have the customer input

 if (isset($_POST['customer'])) {

 // Make sure the customer input is alpha

 if (!ctype_alpha($_POST['customer'])) {

 // If not, alert the user

 echo 'The customer must be only letters!
';

 echo 'Please try again.';

 exit(0);

 }

 }

 // Filter and store the customer code

 $customer = filter_input(INPUT_POST, 'customer',

FILTER_SANITIZE_SPECIAL_CHARS);

 // Make sure we have the employee input

 if (isset($_POST['employee'])) {

 // Make sure the employee input is numeric

 if (!ctype_digit($_POST['employee'])) {

 // If not, alert the user

 echo 'The employee must be a number!
';

 echo 'Please try again.';

 exit(0);

 }

 }

 // Filter and store the employee code

 $employee = filter_input(INPUT_POST, 'employee',

FILTER_SANITIZE_NUMBER_INT);

 // Store the database connection parameters

 $host = 'localhost';

 $user = 'root';

 $password = '';

 $database = 'northwind';

 // Create a new MySQLi object with the database connection parameters

 $connection = mysqli_connect($host, $user, $password, $database);

 // Declare a string for the query template

 // Use ? to add a placeholder for each external value

 $sql = "SELECT *

 FROM orders

 INNER JOIN customers

 ON orders.customer_id = customers.customer_id

 WHERE orders.customer_id = ?

 AND orders.employee_id = ?";

 // Prepare the statement template

 $stmt = mysqli_prepare($connection, $sql);

 // Bind the parameters (one string, one integer)

 mysqli_stmt_bind_param($stmt, "si", $customer, $employee);

 // Execute the prepared statement

 mysqli_stmt_execute($stmt);

 // Get the results

 $result = mysqli_stmt_get_result($stmt);

 // Get the query rows as an associative array

 $rows = mysqli_fetch_all($result, MYSQLI_ASSOC);

 // That's it for now

 mysqli_close($connection);

 // Convert the array to JSON

 $JSON_data = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT);

 // Output the JSON

 echo $JSON_data;

?>

The code checks and sanitizes the POST input and stores the data in two
variables: $customer and $employee. The code then declares the string
$sql to the SQL text, but with ? placeholders used instead of the
external values. The code runs the mysqli_prepare ($connection,
$sql) method to create the prepared statement, which is stored in the
$stmt variable. Now the code runs mysqli_stmt_bind_param() to bind
the external values:

mysqli_stmt_bind_param(statement, types, parameter(s))

where:

statement is a reference to the prepared statement.

types is a string that specifies, in order, the data type of each
parameter. The four possible values are s (string), i (integer), d
(double; that is, a floating-point value), and b (blob; that is, a binary
object, such as an image).
parameter(s) is one or more parameters you want to bind. If you
have multiple parameters, separate them with commas.

The code runs the mysqli_stmt_execute($stmt) method to run the
prepared statement, and then uses mysqli_stmt_get_result($stmt) to
get the result of the SQL operation. The code stores the query rows in
the $rows associative array, which is then converted to JSON (see the
next section to learn about the json_encode() function) and outputted.
Figure 4-4 shows an example output.

FIGURE 4-4: A database query rendered safe by using prepared statements.

Escaping Outgoing Data
Before you send data back to the web page, you need to ensure that
you're not sending back anything that could produce unexpected or even
malicious results. That means converting problematic characters such as
ampersand (&), less than (<), greater than (>), and double quotation mark
(") to HTML entities or character codes. This is called escaping the data.

How you do this depends on how you’re returning the data:

If you’re returning strings via echo (or print): Apply the
htmlentities() function to each string that might contain data that
needs to be escaped:

echo htmlentities($user_bio);

If you’re returning JSON via echo (or print): Apply the
json_encode() function to the data and specify one or more flags
(separated by |) that specify which values you want encoded:
JSON_HEX_AMP (ampersands), JSON_HEX_APOS (single quotations),
JSON_HEX_QUOT (double quotations), or JSON_HEX_TAG (less than and
greater than). Here’s an example:

$JSON_text = json_encode($rows, JSON_HEX_APOS | JSON_HEX_QUOT |

JSON_HEX_TAG);

echo $JSON_text;

Securing File Uploads
Here are a few suggestions to beef up security when allowing users to
upload files:

Restrict the maximum file upload size. If you have access to
php.ini, change the upload_max_filesize setting to some
relatively small value, depending on what types of uploads you're
allowing. For example, if users can upload avatar images, you might
set this value to 2MB.

Verify the file type. Run some checks on the uploaded file to make
sure its file type conforms to what your web app is expecting. For
example, check the file extension to make sure it matches the type
(or types) of file you allow. If you’re expecting a binary file such as
an image, run PHP’s is_binary() function on the uploaded file; if
this function returns FALSE, you can reject the upload because it
might be a script (which is text).

Use PHP’s FTP functions to handle the upload. If you have access
to an FTP server, PHP’s built-in FTP functions are a secure way to
handle the file upload:

ftp_connect(): Sets up a connection to the FTP server

ftp_login(): Sends your login credentials to the FTP server

ftp_put(): Transfers a file from the user's PC to the server

ftp_close(): Disconnects from the FTP server

Securing Passwords
If your web app has registered users who must sign in with a password,
it’s essential that you do everything you can to enable users to create
strong passwords and to store those passwords on the server is a secure
way.

 Letting users create strong passwords means following these
guidelines:

Don’t place any restrictions on the character types (lowercase letters,
uppercase letters, numbers, and symbols) that can be used to build a
password.
Do require that users form their passwords using at least one
character from three or, ideally, all four character types.
Don’t set a maximum length on the password. Longer passwords are
always more secure than shorter ones.
Do set a minimum length on the password. Eight characters is
probably reasonable.

Here are some suggestions for storing and handling passwords securely:

Don’t transfer passwords in a URL query string. Query strings
are visible in the browser window and get added to the server logs,
so any passwords are exposed.
Don’t store passwords in plain text. If you do, and your system
gets compromised, the attacker will have an easy time wreaking
havoc on your users' accounts.
Do store passwords encrypted. You encrypt each password using a
hash, which is a function that scrambles the password by performing
a mathematical function that’s easy to run but extremely difficult to
reverse. PHP makes it easy to hash a password by offering the
password_hash() function.

Do salt your passwords. A salt is random data added to the
password before it gets hashed, which makes it even harder to
decrypt. Salting is handled automatically by the password_hash()
function.
Do allow users to change their passwords. It’s good (though
seldom followed) practice to change your password regularly, so you
should offer this capability to your users.
Don’t send a password over email. Email is sent as plain text, so
it’s easy for a malicious user to intercept the password.

Here’s an example (bk07ch04/example05.html):
<form>

 <fieldset>

 <legend>Create Account:</legend>

 <label for="email">Email:</label>

 <input type="email" id="email" name="email" value="user@example.com">

 <label for="password">Password:</label>

 <input type="password" id="password" name="password">

 <button>Create Account</button>

 </fieldset>

</form>

<p>

<label for="output">Output:</label>

<div id="output">

</div>

JavaScript (with error-checking code removed for clarity):
// Get a reference to the form

const form = document.querySelector('form');

// Listen for the submit event

form.addEventListener('submit', async (event) => {

 // Prevent the default form submission

 event.preventDefault();

 // Get the form data

 const formData = new FormData(form);

 // Ship it via fetch() POST

 const response = await

fetch('http://localhost/webcoding/bk07ch04/example05.php', {

 method: 'POST',

 body: formData

 });

 // Get the data

 const data = await response.text();

 // Output the data

 const output = document.querySelector('#output');

 output.innerHTML = data;

});

The HTML code sets up a form with two fields to create a user account:
one for the user’s email address and another for the user’s password. In
the JavaScript, the fetch() method calls example05.php, which
contains the following code (bk07ch01/example05.php; I removed some
of the error-checking code for clarity):

<?php

 header('Content-Type: application/text');

 header('Access-Control-Allow-Origin: *');

 // Filter and store the email address

 $email = filter_input(INPUT_POST, 'email', FILTER_SANITIZE_EMAIL);

 // Store the trimmed password without filtering it

 $password = trim($_POST['password']);

 // Hash the password

 $hashedPassword = password_hash($password, PASSWORD_DEFAULT);

 // This is where you'd store the credentials in your database.

 // For now, just output the credentials

 echo "Email: $email
Hashed password: $hashedPassword";

?>

The PHP code sanitizes the email input, trims the password to remove
any extra spaces, and then hashes the password. Note, however, that the
password isn't filtered because we don’t want to change the password.
This approach doesn't create a security problem because we store only
the hashed version of the password and would never send the raw
password to the browser.

From here, the script would normally connect to a MySQL database and
store the credentials. In the example script, I just send the credentials
(the email address and hashed password) back to the browser, as shown
in Figure 4-5.

FIGURE 4-5: An example of a hashed password.

Setting Up a Secure Directory
Structure

Your web app back-end work usually begins by setting up some
directories and subdirectories to store your app’s files. Doing this at the
start offers two benefits:

Organization: Even a small app can end up with quite a few
files, from PHP scripts to HTML code to external CSS and
JavaScript files. If you add your directories on-the-fly as they’re
needed, it’s a certainty they’ll end up a bit of a mess, with files
scattered hither and thither (as my grandmother used to say). It’s
better to come up with a sensible directory structure now and stick
with it throughout the development cycle.
Security: A smart back-end developer divides their files between
those that users need to view and operate the web app and those that
only do work behind the scenes. The former should be accessible to
the public, but it’s best to configure things so that the latter aren’t
accessible to anyone but you.

Okay, I hear you saying, “Organization I can get on board with, but
what’s all this about security?” Good question. The answer follows.

 When your app is on the web, it’s stored in a directory that the
web server makes publicly available to anyone who comes along.
This public accessibility means that it’s at least technically possible
for someone to gain direct access to the files stored in that
directory. That access isn’t a big thing for your HTML, CSS, and
JavaScript files, which anyone can easily view. However, it’s a
huge deal for your PHP files, which can contain sensitive
information such as your database credentials.

 To see how you prevent such unauthorized access, you need to
understand that every web app has a top-level directory, which is
known as either the web root or the document root. The web root is
the directory that the server makes accessible to the public, which

means that anything outside the web root is inaccessible to remote
users (while still being available to your web app).

So, your directory structure begins by creating one directory and two
subdirectories:

The directory is the overall storage location for your app. You can
name this whatever you want, but it’s probably best to use the name
of the app.
One subdirectory will be the web root. You might want to name your
web root public to reinforce that only files that should be publicly
accessible go in this subdirectory.
The other subdirectory will contain the PHP files that you don’t want
remote users to be able to access. You could name this subdirectory
private to remind you that this is where you put files that should not
have public access.

Defining PHP constants
It’s a rare web app that doesn’t have one or more variables that are used
throughout the back-end code but whose value must never change. For
example, when you’re managing server data, your PHP files are
constantly logging into the MySQL database, which requires credentials
such as a username and password. That username and password are the
same throughout your code, but your code will fail if, somehow, these
values get changed.

 A variable that never changes value sounds almost like an
oxymoron, so perhaps that’s why programmers of yore came up
with the idea of the constant, a special kind of variable that, once
defined with a value, can’t be changed. You set up a constant in
PHP by using the define() function:

define(name, value)

where:

name is the name of the constant. By convention, constant names are
all uppercase and don’t begin with a dollar sign ($).

value is the value of the constant. The value must be an integer,
floating point number, string, or Boolean.

Here’s an example:
define("GREETING", "Hello Constant World!")

It’s good web app practice to gather all your constants and put them in a
separate file, which you can then include in any other PHP file that
requires one or more of the constants. (I talk about how you include a
PHP file in another PHP file in the next section.) Here’s an example PHP
file that defines some database credentials for an app:

<?php

 define('HOST', 'localhost');

 define('USER', 'root');

 define('PASSWORD', '');

 define('DATABASE', 'northwind');

?>

You could name this file constants.php and add it to the app’s private
directory.

Including code from another PHP file
Most web apps are multi-page affairs, which means your app consists of
multiple PHP files, each of which performs a specific task, such as
creating data, retrieving data, or logging in a user. Depending on the
structure of your app, each of these PHP files will include some or all of
the following:

Constants used throughout the project
Database login credentials
Database connection code
Classes, functions, and other code used on each page
Common interface elements such as the header, app navigation,
sidebar, and footer

You don’t want to copy and paste all this code into each PHP file
because if the code changes, you have to update every instance of the
code. Instead, place each chunk of common code in its own PHP file and
save those files in a subdirectory. Earlier in this chapter, I explain that
you should create two common subdirectories for such files, one in the
public directory and one in the private directory.

To get a common file’s code into another PHP file, you could use PHP’s
include statement (refer to Book 6, Chapter 4). However, when it comes
to including code knickknacks such as constants, classes, functions, and
database connection code, it’s vital that such things are included only
once. To ensure that a file gets included only once, use PHP’s
include_once statement:

include_once file;

where file is the path and name of the file with the code you want to
include.

For example, earlier I showed a file named constants.php, stored in an
app’s private subdirectory. To include that file in another file located in
the same directory, you’d use the following statement:

include_once 'constants.php';

Alternatively, to include that file in another file located in the web root
directory, you’d use the following statement:

include_once '../private/constants.php';

The double dots (..) stand for “go up one directory,” so here they take
the script up to the app’s filesystem root, and from there the statement
adds the path to constants.php.

Understanding PHP Sessions
One of the biggest web app challenges is keeping track of certain bits of
information as the user moves from page to page within the app. For
example, when someone first surfs to the app’s home page, your PHP
code might store the current date and time in a variable, with the goal of,

say, tracking how long that person spends using the app. A worthy goal,
to be sure, but when the user moves on to another page in the app, your
saved date and time gets destroyed.

Similarly, suppose the user’s first name is stored in the database and you
use the first name to personalize each page. Does that mean every time
the user accesses a different page in your app, your code must query the
database just to get the name?

 The first scenario is ineffective and the second is inefficient, so
is there a better way? You bet there is: PHP sessions. In the PHP
world, a session is the period that users spend interacting with a
web app, no matter how many different app pages they navigate.

Starting a PHP session
You start a session by invoking the session_start() function:

session_start();

Once you’ve done that, the session remains active until the user closes
the browser window. Your web server also specifies a maximum lifetime
for a session, usually 1,440 seconds (24 minutes). You can check this by
running echo phpinfo() and looking for the session.gc_maxlifetime
value. You can work around this timeout in one of two ways:

By adding the session_start() function to each page, which
refreshes the session
By running PHP's session_status() function, which returns the
constant PHP_SESSION_NONE if the user doesn’t have a current session

How does a session help you keep track of information about a user? By
offering an array called $_SESSION, which you can populate with
whatever values you want to track:

$_SESSION['start_time'] = time();

$_SESSION['user_first_name'] = 'Biff';

$_SESSION['logged_in'] = 1;

Securing a PHP session
A PHP session is a vital link between your users and your app because it
enables you to store data that makes each user’s experience easier, more
efficient, and more seamless. However, because sessions are such a
powerful tool, the world’s dark-side hackers have come up with a
number of ingenious ways to hijack user sessions and thereby gain
access to session data.

A full tutorial on protecting your users from would-be session-stealers
would require an entire book, but there’s a relatively simple technique
you can use to thwart all but the most tenacious villains. The technique
involves a value called a token, which is a random collection of numbers
and letters, usually 32 characters long. How does a token serve to keep a
session secure? It’s a three-step process:

1. When the session begins, generate a new token and store it in the
$_SESSION array.

2. In each form used by your web app, include a hidden input field
(that is, an <input> tag where the type attribute is set to hidden) and
set the value of that field to the session’s token value.

3. In your PHP script that processes the form data, compare the value
of the form’s hidden field with the token value stored in the
$_SESSION array. If they’re identical, it means the form submission is
secure (that is, the form was submitted by the session user) and you
can safely proceed. If they’re different, however, it almost certainly
means that an attacker was trying to pull a fast one and your code
should stop processing the form data.

 You can create some random data in PHP in a bunch of ways,
but a good one for our purposes is
openssl_random_pseudo_bytes():

openssl_random_pseudo_bytes(length)

where length is an integer that specifies the number of random bytes
you want returned.

The openssl_random_pseudo_bytes() function returns a string of
random bytes, but byte values aren’t much good to us. We need to
convert the binary string to a hexadecimal string, and that’s the job of
PHP’s bin2hex() function:

bin2hex(str)

where str is the binary string you want to convert.

For example, 16 bytes will convert to 32 hex characters, so you can use
something like the following expression to generate a token:

bin2hex(openssl_random_pseudo_bytes(16));

This creates a value similar to the following:
387f90ce4b3d8f9bd7e4b38068c9fce3

For your session, you store the result in the $_SESSION array, like so:

$_SESSION['token'] = bin2hex(openssl_random_pseudo_bytes(16));

It’s also good practice to generate a fresh token after a certain period of
time has elapsed, say 15 minutes. To handle this, when the session starts
you use the $_SESSION array to store the current time plus the expiration
time:

$_SESSION['token_expires'] = time() + 900;

PHP’s time() function returns the number of seconds since January 1,
1970, so adding 900 sets the expiration time to 15 minutes in the future.
Your web app would then use each session refresh to check whether the
token has expired:

 if (time() > $_SESSION['token_expires']){

 $_SESSION['token'] = bin2hex(openssl_random_pseudo_bytes(16));

 $_SESSION['token_expires'] = time() + 900;

 }

Creating a Back-End Initialization
File

When performing any task, a typical web app must first run through a
number of back-end chores, including the following:

Setting the error reporting level
Starting a session for the current user, if one hasn’t been started
already
Creating a token for the session
Including common files, such as a file of constants used throughout
the app
Connecting to the database, if the app uses server data

You can cram some or all of these chores into a back-end initialization
file that you store in your web app’s private directory. Here’s an
example (bk07ch04/example06.php):

<?php

 // Make sure we see all the errors and warnings

 error_reporting(E_ALL | E_STRICT);

 // Start a session

 session_start();

 // Have we not created a token for this session,

 // or has the token expired?

 if (!isset($_SESSION['token']) || time() > $_SESSION['token_expires']){

 $_SESSION['token'] = bin2hex(openssl_random_pseudo_bytes(16));

 $_SESSION['token_expires'] = time() + 900;

 }

 // Include the app constants

 include_once 'constants.php';

 // Connect to the database

 $mysqli = mysqli_connect(HOST, USER, PASSWORD, DATABASE);

 // Check for an error

 if(!$mysqli) {

 echo 'Connection Failed!

 Error #' . mysqli_connect_errno()

 . ': ' . mysqli_connect_error();

 exit(0);

 }

?>

This code cranks up the error reporting to 11 for the purposes of
debugging, starts a new session, creates a session token (if needed),
includes the constants file (which contains the database credentials), and
then connects to the database and creates a MySQLi object.

To use this file, place the following PHP code at the top of all your web
page files:

<?php

 include_once '../private/initialization.php';

?>

 You want to use error_reporting(E_ALL | E_STRICT) when
you’re developing your web app because you want the PHP
processor to let you know when something’s amiss, either as an
error (E_ALL) or as non-standard PHP code (E_STRICT). However,
you certainly don’t want your app’s users to see these errors or
warnings, so when you’re ready for your web app to go live, edit
initialization.php to follow this statement:

error_reporting(E_ALL | E_STRICT)

with these statements:
ini_set('display_errors', 0);

ini_set('log_errors', 1);

ini_set('error_log', '../private/logs/error_log');

These statements configure PHP to not display errors onscreen but to log
them to a file, the name and path of which is specified in the final
statement.

Index

Symbols
-- (decrement) operator, 219, 223–224, 243

- (negation) operator, 219, 243

- (subtraction) operator, 219, 222, 243

! (NOT) logical operator, 238–240, 243

!= (inequality) operator, 229, 231, 243

!== (strict inequality) operator, 229, 235, 243

(id selector), CSS, 105–106

% (modulus) operator, 219, 225–226, 243

% (percent sign) wildcard character, 490

%= assignment operator, 220

&& (AND) logical operator, 238, 240–243, 252

(" ") quotation marks

internal, 380–381
mismatched, 554–555
PHP, 450
within strings, 212–213

* (multiplication) operator, 219, 224, 243

* regular expression symbol, 635

*= assignment operator, 220

. (property access) operator, 308

. regular expression symbol, 635

/ (division) operator, 104–105, 219, 224–225, 243

// commenting character, 198

/= assignment operator, 220

?: (ternary) operator, 236–237, 243

? regular expression symbol, 635

[] regular expression symbol, 635

[^] regular expression symbol, 635

[^c1-c2] regular expression symbol, 635

[c1-c2] regular expression symbol, 635

\" escape sequence, 213

\\ escape sequence, 213

\' escape sequence, 213

^= assignment operator, 220

_ (underscore) wildcard character, 490

{ } (braces), 275

{n,} regular expression symbol, 635

{n,m} regular expression symbol, 635

{n} regular expression symbol, 635

|| (OR) logical operator, 238, 239–243, 252

~ (subsequent-sibling combinator), CSS, 107

+ (addition) operator, 219, 220, 243

+ (concatenation) operator, 243

+ (next-sibling combinator), CSS, 108

+ operator, 410–411

+ regular expression symbol, 635

++ (increment) operator, 219, 220–222, 243

+= assignment operator, 220, 226

< (less than) operator, 229, 231–232, 243

< comparison operator, 489

<= (less than or equal) operator, 229, 232–233, 243

<= comparison operator, 489

<> comparison operator, 489

-= assignment operator, 220, 226

= comparison operator, 489

== (equality) operator, 229, 230, 243

=== (strict equality) operator, 229, 234, 243

> (child combinator), CSS, 106–107

> (greater than) operator, 229, 231, 243

-> (object) operator, 470

> comparison operator, 489

>= (greater than or equal) operator, 229, 232, 243

>= comparison operator, 489

" " (quotation marks)

internal quotation marks, 380–381
mismatched, 554–555
PHP, 450
quotation marks within strings, 212–213

A
a11y. See accessibility
abs() method, 412

absolute measurement units, 95
absolute positioning, CSS box model, 142, 144–146

accessibility, 725–746
accommodating different user needs, 728–729
app structure, 731–732

headings, 731–732
semantic sectioning elements, 732

assistive technologies, 729–731
for auditory disabilities, 731
for cognitive disabilities, 731
for motor disabilities, 731
overview, 729–730
for visual disabilities, 730

benefits, 727
color contrast, 744–745
as human right, 726
keyboard-friendly apps, 742–744

adding element to tab order, 743
overview, 742–743
removing element from tab order, 743–744

media, 733–735
alt text for images, 734

audio content, 734
overview, 733
video content, 734–735

overview, 725–726

semantics, 735–742
Accessible Rich Internet Applications, 736–742
form field labels, 736
overview, 735–736

text, 732–733
descriptive, 733
hidden text, 733
readability, 733
text size, 732–733

validating, 745–746

Accessible Rich Internet Applications (ARIA), 736–742
differentiating semantic app elements of same type, 741–
742
overview, 736–737
roles, 737–740

landmark, 737–738
section structure, 738–739
widget, 738, 740

activeElement property, 317

adaptive layouts, web design, 702–715
container queries, 706–713
media queries, 703–706
overview, 702–703
user preference queries, 713–715

add() method, 333–334, 335

addEventListener() method, 341–342

addition (+) operator, 219, 220, 243

after() method, 329

::after pseudo-element, 113

AI (artificial intelligence), 3
align-content property, 177

aligning items
CSS grid items, 176–177
CSS text, 99
Flexbox, 156–158

align-items property, 157–158, 177

Allsop, John, 687
Alphabet, 680
alternative text, HTML, 63
ancestor elements, 103
anchor tags, HTML, 69
AND (&&) logical operator, 238, 240–243, 252

AND logical operator, 491

Andrews, Rachel, 151

anonymous functions, JavaScript, 286–290
assigning to variable, 287–288
overview, 286–287
replacing function call with, 288–290

Apache, 26, 31
app functions, 681–682
app structure. See also web apps

headings, 731–732
semantic sectioning elements, 732

append() method, 328–329

Apple
Chrome for Mac

CSS, 523
JavaScript, 540

Firefox for Mac
CSS, 523
JavaScript, 540

inserting special characters into text, 73

apps
accessibility, 725–746

accommodating different user needs, 728–729
app structure, 731–732
assistive technologies, 729–731
benefits, 727
color contrast, 744–745
as human right, 726
keyboard-friendly, 742–744
media, 733–735
overview, 725–726
semantics, 735–742
text, 732–733
validating, 745–746

defined, 21–22, 680
overview, 679–680
planning, 681–685

app functions, 681–682
data requirements, 682–683
functionality, 681–682
page design, 684–685
pages needed, 684
user functions, 681–682
workflow, 683

responsive web design, 687–723
adaptive layouts, 702–715
fluid layouts, 689–702
images, 715–718
mobile-first development, 719–723
overview, 687–688

security, 747–779
back-end initialization file, 778–779
cross-site scripting, 750–751
directory structure, 772–775
escaping outgoing data, 767–768
file uploads, 768
insecure file uploads, 750–751
overview, 747–748
passwords, 768–771
PHP sessions, 775–777
sanitizing incoming data, 751–767
SQL injection, 748–750
unauthorized access, 751

ARIA (Accessible Rich Internet Applications), 736–742
differentiating semantic app elements of same type, 741–
742
overview, 736–737
roles, 737–740

landmark, 737–738
section structure, 738–739
widget, 738, 740

arithmetic operators, 219–226
addition operator, 220
arithmetic assignment operators, 220, 226
decrement operator, 223–224
division operator, 224–225
increment operator, 220–222
modulus operator, 225–226
multiplication operator, 224
subtraction operator, 222

arrays, 349–378
concat() method, 368

declaring, 350–351, 353–354
iterating, 355–365

to create new array, 361–362
down to a value, 362–364
every() method, 359

find() method, 364–365

forEach() method, 356–358

for…of loop, 358

to locate elements, 364–365
map() method, 361–362

overview, 355–356
reduce() method, 362–364

to test elements, 359–361
join() method, 369–370

length property, 367–368

manipulating, 367–378
multidimensional array, 366–367
overview, 349–350

PHP, 453–459
array values, 455–456
associative arrays, 454–455
declaring, 453–454
looping, 458
sorting, 456–457

pop() method, 370

populating with data, 351–355
arrays (continued)

declaring and, 353–354
looping and, 354–355
overview, 351–353

push() method, 371

reverse() method, 372

shift() method, 372

slice() method, 373–374

sort() method, 374–376

splice() method, 376–378

storing MySQL query results in, 508–509
unshift() method, 378

using spread operator with, 424–429

arrow functions, JavaScript, 290–292
<article> tag, 79–80

artificial intelligence (AI), 3
<aside> tag, 80–81

assistive technologies
for auditory disabilities, 731
for cognitive disabilities, 731
for motor disabilities, 731
overview, 729–730
for visual disabilities, 730

associative arrays, PHP, 454–455
async functions, 572–573
asynchronous operations, 570–577

async functions, 572–573
await operator, 573–575

chaining, 575–576
handling rejection responses, 576–577
overview, 570–572

Attwood, Jeff, 39
audio content, accessibility, 734
auditory disabilities, assistive technologies for, 731
author style sheets, 116
await operator, asynchronous operations, 573–575

B

\b escape sequence, 213

back end coding, 18–20
accessing data on servers, 19
bringing together with front end, 19–20
defined, 14
MySQL

adding data to table, 485–486
creating databases, 479–480
creating tables, 484–485
defined, 487
DELETE query, 499
designing tables, 480–484
inner joins, 492–497
INSERT query, 497–498
outer joins, 493–497
overview, 473–474
phpMyAdmin, 476–479
primary key, 486–487
queries, 475–476
query criteria, 489–492
querying the data, 487–499
SELECT query, 487–488
tables, 474–475
UPDATE query, 498
using PHP to access, 501–518

PHP, 443–471
arrays, 453–459
controlling flow of code, 459–464
expressions, 446–447
functions, 465–466
objects, 467–471
outputting data, 447–453
overview, 443–444
syntax, 445–446
variables, 446

storing data on servers, 19

back-end initialization file, 778–779
backing up data, 479
bandwidth, 42
before() method, 329–330

::before pseudo-element, 113

Beizer, Boris, 537
Berners-Lee, Tim, 725
BETWEEN…AND operator, MySQL, 490

binding stage, MySQL prepared statements, 762
block scope, JavaScript variables, 296–297
block-level elements, page flow, 135
<blockquote> tag, 66

blur event, web forms, 620

body property, 317

Boolean literals, 214
borders, CSS box model, 129–130

color, 130
defined, 129
styles, 130
width, 130

 tag, 61

braces, improper use of, 555–556
Brackets editor, 37
break mode, JavaScript

entering, 544–547
exiting, 547

break statement, JavaScript, 267–270

Brooks, Fred, 305

browsers
browser window events, 341
displaying Console window in, 542
rendering data to, 512–516
validating form data in

email fields, 633–634
invalid fields, 636–639
mandatory fields, 630–631
pattern matching, 634–636
restricting length of text field, 631–632
setting value limits on numeric field, 632–633

web page request process, 10–14
decoding, 12
mall metaphor, 14, 19
requests, 11–12
resources, 12–13
URLs, 10–11

window size, 689

bulleted lists, HTML, 70–71

C
calculateAge() function, 406

callback functions, 340
calling functions, JavaScript, 275–280

Can I Use
container queries support levels, 708
range syntax support levels, 706
viewport unit support levels, 699

Carrette, George, 379

cascading style sheets (CSS)
box model, 123–149

borders, 129–130
floating elements, 136–141
margins, 131–134
overview, 123–125
padding, 128–129
page flow, 134–136
positioning elements, 142–149
styling sizes, 126–127

colors, 100–102
background, 102
specifying, 100–101
text, 101

converting inline elements into blocks, 127
CSS box model, 123–149

borders, 129–130
floating elements, 136–141
margins, 131–134
overview, 123–125
padding, 128–129
page flow, 134–136
positioning elements, 142–149
styling sizes, 126–127

debugging code, 521–535
adding class to element, 534
adding element declaration to inspector stylesheet,
532–534
adding inline declaration to element, 531–532
disabling declarations, 530–531
editing property values, 529–530
inspecting elements, 523–529
overview, 521–522
pseudo-classes, 535
web development tools, 522–523

defined, 17
dynamic web page process, 21
external style sheets, 92–94
Grid, 170–180

aligning grid items, 176–177
assigning grid items, 173–176
fluid layouts, 694–697
grid container, 171
cascading style sheets (CSS) (continued)
grid gaps, 172–173
grid template, 171–172
laying out content columns with, 177–180
overview, 170

inline styles, 89–90

internal style sheets, 90–92
mobile-first development and, 722
modifying with JavaScript

adding classes to elements, 333–335
changing element's styles, 332–333
removing class to elements, 335
toggling classes, 335–336

overview, 17–18, 85–87
page layout, 151–180

CSS Grid, 170–180
Flexbox, 152–170
macro level, 152
micro level, 152
overview, 151–152

properties, 17
rules and declarations, 115–122

cascade algorithm, 121–122
declaration types, 115–116
origin types, 116
overview, 87–89
source code order, 120–121
specificity, 117–120
weight, 116

selectors, 104–114
child combinator, 106–107
class selector, 104–105
descendant combinator, 106
id selector, 105–106
next-sibling combinator, 108
pseudo-classes, 108–114
pseudo-elements, 110, 114
subsequent-sibling combinator, 107

text, 94–100
aligning horizontally, 99
CSS measurement units, 95–96
font family, 96–97
font weight, 97–98
indenting, 100
italics, 98
styling links, 98–99
type size, 94–95

viewport measurement units, 698–699

web development tools, 522–523
Chrome for Mac, 523
Chrome for Windows, 522
Firefox for Mac, 523
Firefox for Windows, 523
Microsoft Edge, 523
Safari, 523

web page family, 102–103

case-sensitive language, JavaScript, 554
cbrt() method, 412

ceil() method, 412

centering elements, Flexbox, 158–160
chaining asynchronous operations, 575–576
change() event handler, 620–621

character entities, HTML, 73–74
character references, HTML, 74
character type checking, 757–760
charAt() method, 383, 387–389

charCodeAt() method, 383

ChatGPT, 3
check boxes, web forms, 607–610

check box state, 608–610
referencing, 607–608

child combinator (>), CSS, 106–107
child elements, 103
childElementCount property, 317

children property, 317

Chrome for Mac
CSS, 523
JavaScript, 540

Chrome for Windows
CSS, 522
JavaScript, 540

clamp() function, 701–702

class keyword, 467

class selector (.), CSS, 104–105
clearing floats, 137–139
cloning GitHub repositories, 665–667
Cloudflare Pages, 675
CNET Web Hosting Solutions, 45

coding and development, 9–22. See also back end coding;
front end coding

back end, 18–20
accessing data on servers, 19
bringing together with front end, 19–20
defined, 14
storing data on servers, 19

defined, 22
difference between, 22
dynamic web pages, 20–21
front end, 14–18

defined, 14
structure via HTML, 16–17, 53–84
style, 17–18
text, 15–16

local web development environment, 23–37
components of, 24
text editors, 36–37
when needed, 25
XAMPP for OS X, 31–35
XAMPP for Windows, 25–31

web apps, 21–22

web page request process, 10–14
decoding, 12
mall metaphor, 14
requests, 11–12
resources, 12–13
URLs, 10–11

cognitive disabilities, assistive technologies for, 731
collapsing margins, CSS box model, 132–134
colors

color contrast on web page, 744–745
CSS, 100–102

background, 102
specifying, 100–101
text, 101

comments
in HTML, 83–84
JavaScript

adding to, 198–199
debugging code, 553–554

comparison expressions, JavaScript
checking, 556
data conversion and, 233–234
equality operator, 230
greater than operator, 231
greater than or equal operator, 232
inequality operator, 231
less than operator, 231–232
less than or equal operator, 232–233
overview, 229
strict equality operator, 234
strict inequality operator, 235
ternary operator, 236–237
using strings in, 235–236

comparison operators, MySQL, 489
compound criteria, MySQL, 491
concat() method, arrays, 368

concatenation (+) operator, 243

Console window, JavaScript, 194–195, 541–544
displaying in various browsers, 542
executing code in, 543–544
logging data to, 543

const keyword, JavaScript variables, 206–207

constants, 406
__construct() function, 468

container collapse, CSS box model, 139–141
container queries

container query units, 712–713
overview, 706–708
querying container, 710–712
setting up, 708–710

continue statement, JavaScript, 270–271

controlling flow of PHP code, 459–464
converting data, 752–754
cos() method, 412

Coyier, Chris, 123
cPanel, 49
createElement() method, 328
cross-site scripting (XSS), 750–751

CSS (cascading style sheets)
box model, 123–149

borders, 129–130
floating elements, 136–141
margins, 131–134
overview, 123–125
padding, 128–129
page flow, 134–136
CSS (cascading style sheets) (continued)
positioning elements, 142–149
styling sizes, 126–127

colors, 100–102
background, 102
specifying, 100–101
text, 101

converting inline elements into blocks, 127

CSS box model, 123–149
borders, 129–130
floating elements, 136–141
margins, 131–134
overview, 123–125
padding, 128–129
page flow, 134–136
positioning elements, 142–149
styling sizes, 126–127

debugging code, 521–535
adding class to element, 534
adding element declaration to inspector stylesheet,
532–534
adding inline declaration to element, 531–532
disabling declarations, 530–531
editing property values, 529–530
inspecting elements, 523–529
overview, 521–522
pseudo-classes, 535
web development tools, 522–523

defined, 17
dynamic web page process, 21
external style sheets, 92–94

Grid, 170–180
aligning grid items, 176–177
assigning grid items, 173–176
fluid layouts, 694–697
grid container, 171
grid gaps, 172–173
grid template, 171–172
laying out content columns with, 177–180
overview, 170

inline styles, 89–90
internal style sheets, 90–92
mobile-first development and, 722
modifying with JavaScript

adding classes to elements, 333–335
changing element's styles, 332–333
removing class to elements, 335
toggling classes, 335–336

overview, 17–18, 85–87
page layout, 151–180

CSS Grid, 170–180
Flexbox, 152–170
macro level, 152
micro level, 152
overview, 151–152

properties, 17
rules and declarations, 115–122

cascade algorithm, 121–122
declaration types, 115–116
origin types, 116
overview, 87–89
source code order, 120–121
specificity, 117–120
weight, 116

selectors, 104–114
child combinator, 106–107
class selector, 104–105
descendant combinator, 106
id selector, 105–106
next-sibling combinator, 108
pseudo-classes, 108–114
pseudo-elements, 110, 114
subsequent-sibling combinator, 107

text, 94–100
aligning horizontally, 99
CSS measurement units, 95–96
font family, 96–97
font weight, 97–98
indenting, 100
italics, 98
styling links, 98–99
type size, 94–95

viewport measurement units, 698–699
web development tools, 522–523

Chrome for Mac, 523
Chrome for Windows, 522
Firefox for Mac, 523
Firefox for Windows, 523
Microsoft Edge, 523
Safari, 523

web page family, 102–103

CSS box model, 123–149
borders, 129–130
floating elements, 136–141

clearing floats, 137–139
container collapse, 139–141
overview, 136–137

margins, 131–134
overview, 123–125
padding, 128–129
page flow, 134–136
positioning elements, 142–149

absolute positioning, 144–146
fixed positioning, 146–148
overview, 142–143
relative positioning, 143–144
sticky positioning, 148–149

styling sizes, 126–127

CSS Flexible Box (Flexbox), 152–170
aligning flex items along primary axis, 156
aligning flex items along secondary axis, 157–158
centering elements, 158–160
configuring flex items to grow, 161–163
configuring flex items to shrink, 164–166
flex container, 153–156
fluid layouts, 691–694
laying out content columns with, 166–170
navigation bar, 160–161
overview, 152–153

CSS Grid, 170–180
aligning grid items, 176–177
assigning grid items, 173–176
fluid layouts, 694–697
grid container, 171
grid gaps, 172–173
grid template, 171–172
laying out content columns with, 177–180
overview, 170

custom class, PHP objects, 467
CuteFTP, 49
Cyberduck, 49

D
\D regular expression symbol, 635

\d regular expression symbol, 635

data
adding to web storage, 419–421
backing up, 479
getting from web storage, 421
outputting PHP data, 447–453

adding line breaks, 448–449
long strings, 451–453
overview, 447–448
quotation marks, 450
variables in strings, 450–451

populating arrays with, 351–355
removing from web storage, 422
requirements for web apps, 682–683

app data, 682
user data, 682
user-generated data, 682

sanitizing incoming data, 751–767
character type checking, 757–760
converting data, 752–754
filtering data, 754–757
overview, 751
prepared statements, 761–767
whitelisting, 761

validating form data in browser, 634–636
validating form data on server, 639–648

data conversion, 233–234

database management systems (DBMSs), 474
DATE data type, 485
Date object, JavaScript

arguments used with, 396–397
extracting information about, 398–402

day name from date, 401–402
month name from date, 400–401
overview, 398–400

performing date calculations, 405–409
days between two dates, 408
determining age of person, 405–407

setting date, 402–405
specifying dates and times, 397–398

dates and times, JavaScript, 396–408
dblclick event, 347–348

DBMSs (database management systems), 474
Deaver, Jeffery, 747

debugging code
CSS, 521–535

adding class to element, 534
adding element declaration to inspector stylesheet,
532–534
adding inline declaration to element, 531–532
disabling declarations, 530–531
editing property values, 529–530
inspecting elements, 523–529
overview, 521–522
pseudo-classes, 535
web development tools, 522–523

JavaScript, 537–558
breaking down complex tasks, 553
breaking up long statements, 553
commenting out problem statements, 553
common errors, 554–556
Console window, 542–544
debugging strategies, 553–554
Debugging tool, 541–542
error messages, 556–558
error types, 538–540
indenting code, 553
monitoring script values, 550–552
overview, 537–538
pausing code, 544–547
stepping through code, 547–549
using comments to document scripts, 554
web development tools, 540–542

PHP, 559–566
accessing error log, 561–562
configuring php.ini file for, 560–561

echo statements, 563–564
outputting variable values, 562–566
overview, 559
print_r() statements, 564–565

var_dump() statements, 565–566

decision-making, JavaScript
if…else statements, 250–251

if statements, 248–249

multiple-decision problems, 251–256

declarations, CSS
adding element declaration to inspector stylesheet, 532–
534
adding inline declaration to element, 531–532
disabling, 530–531
rules and declarations, 115–116

declaring
arrays

JavaScript, 350–351, 353–354
PHP, 453–454

variables
JavaScript, 204–205
JSON, 416

decrement (--) operator, 219, 223–224, 243

dedicated servers, 43
default actions, event, 344–346
default exports

exporting, 438–439
importing, 440

DELETE queries, MySQL, 487, 499, 516–517
descendant combinator, CSS, 106
descendant elements, 103

design, responsive, 687–723
adaptive layouts, 702–715

container queries, 706–713
media queries, 703–706
overview, 702–703
user preference queries, 713–715

browser window size, 689
device and network performance, 690
device type and, 689
fixed width layout, 688
fluid layouts, 689–702

clamp() function, 701–702

CSS Grid, 694–697
Flexbox, 691–694
overview, 689
typography, 700–701
viewport units, 697–699

images, 715–718
overview, 715
sizing, 716–718

mobile-first development, 719–723
content first, 720–721
CSS and, 722
deciding when to show hidden content, 722–723
overview, 719–720
scaling content horizontally, 721–722
testing, 721

no width layout, 689
overview, 687–688
screen orientation, 689
user default font size, 690
user preferences, 690
user zoom level, 689–690

Deutsch, L. Peter, 273

development tools
CSS, 522–523

Chrome for Mac, 523
Chrome for Windows, 522
Firefox for Mac, 523
Firefox for Windows, 523
Microsoft Edge, 523
Safari, 523

JavaScript, 540–542
Chrome for Mac, 540
Chrome for Windows, 540
Console window, 541
Debugging tool, 541–542
Firefox for Mac, 540
Firefox for Windows, 540
HTML viewer, 541
Microsoft Edge, 541
Network tab, 542
Safari, 541
Web storage tab, 542

device type
network performance and, 690
responsive web design and, 689

directory structure, web app, 772–775
including code from another PHP file, 774–775
overview, 772
PHP constants, 773

<div> tag, 82

division (/) operator, 219, 224–225, 243

DNS (domain name system), 11
doctype declaration, 57
document events, 341

document object model (DOM)
editing HTML attributes with JavaScript, 336–338

overview, 336–337
reading attribute value, 337
removing attribute, 338
setting attribute value, 337–338

hierarchies, 315–316
manipulating elements, 328–332

adding element to page, 328–330
inserting text or HTML into element, 330–331
removing element, 331

modifying CSS with JavaScript, 332–336
adding classes to elements, 333–335
changing element's styles, 332–333
removing class to elements, 335
toggling classes, 335–336

objects, 306–315
customizing, 311–314
defined, 306–307
object methods, 310–311
properties, 307–310
web APIs, 314–315

overview, 305–306
properties, 317

specifying elements, 317–321
by class name, 318–319
collections, 320–321
by ID, 317–318
by selector, 319
by tag name, 318

traversing the DOM, 322–327
getting children of parent element, 322–326
getting parent of child element, 326
getting siblings of element, 326

domain name system (DNS), 11
domain names, 42–43

defined, 42
registration services, 42
regular domain names, 42–43
subdomain names, 42–43

DOMContentLoaded event, 346–347

Dougherty, Dale, 9
do…while() loops

infinite loops, 271
JavaScript, 265–267
PHP, 464

Dunlap, Isaac, 501

dynamic viewport, fluid layouts, 698

dynamic web pages
asynchronous operations, 570–577

async functions, 572–573
await operator, 573–575

chaining, 575–576
handling rejection responses, 576–577
overview, 570–572

defined, 20, 658
Fetch API, 578–593

fetch() method, 578

GET request, 584
JSON data, 589–593
PHP and, 585–589
POST request, 584–586
running script on server, 578–580
sending and retrieving data, 586–589
updating element with fetched data, 580–584

overview, 20–21
static web pages vs., 657–659
validating form data, 629–655

in browser, 630–639
overview, 629
with regular expressions, 648–655
on server, 639–648

web forms, 595–628
check boxes, 607–610
defined, 597
form events, 618–621
HTML5 web form, 598–600
HTMLFormElement object, 600
HTMLInputElement object, 601
keyboard shortcuts for form controls, 621–623
overview, 595–598
radio buttons, 610–613
selection lists, 613–618
submitting, 623–628
text fields, 601–607

E
E property, 411

echo statements, PHP, 563–564
Eckles, Stephanie, 521
ECMAScript 2015 version, 197–198
ecommerce, 44

elements
CSS

adding class to, 534
adding element declaration to inspector stylesheet, 532–534
adding inline declaration to element, 531–532
ancestor elements, 103
child elements, 103
descendant elements, 103
inspecting, 523–529
parent elements, 103
pseudo-elements, 110, 114
sibling elements, 103

CSS box model
absolute positioning, 144–146
fixed positioning, 146–148
floating, 136–141
overview, 142–143
positioning, 142–149
relative positioning, 143–144
sticky positioning, 148–149
width and height, 126–127

document object model
adding to page, 328–330
collections, 320–321
inserting text or HTML into, 330–331
removing, 331
specifying by class name, 318–319
specifying by ID, 317–318
specifying by selector, 319
specifying by tag name, 318

HTML, 83
inline elements, 83
navigation elements, 78
semantic elements, 77–82

JavaScript
iterating arrays to locate, 364–365
iterating arrays to test, 359–361

Ellis, Danielle, 567
em unit, 95–96

 tag, 55, 63

email forwarding, 42–43
endsWith() method, 383–385

entity names, HTML, 74
equality (==) operator, 229, 230, 243

error log, PHP, 561–562

errors, JavaScript, 538–540, 554–558
case-sensitive language, 554
checking comparison expressions, 556
conflicts between variables, 556
Expected (error, 557

Expected { before function body error, 557
improper use of braces, 555–556
keywords as variable names, 554
Lengthy JavaScript still running. Continue?

error, 558
logic errors, 539
mismatched parentheses, 555
mismatched quotation marks, 554–555
missed parentheses, 555
Missing (error, 557

Missing ; after for-loop initializer|condition

error, 557
Missing ; before statement error, 557–558

Missing ; error, 557

Missing { before function body: message, 557

Missing } in compound statement error, 557

misspelled variables, 554
misuse of page element, 556
runtime errors, 538–539

A script on this page is causing [browser name]

to run slowly. Do you want to abort the script?

error, 558
Syntax error, 556–557

syntax errors, 538
Unexpected end of input error, 557

Unexpected identifier error, 557–558

Unterminated string constant error, 558

Unterminated string literal error, 558

X has no properties error, 558

X is not an object error, 558

X is not defined error, 558

escape sequences, 213–214
escaping outgoing data, 767–768
event listeners, 340

events
dblclick event, 347–348

defined, 340
DOMContentLoaded event, 346–347

getting data about, 343–344
listening for, 341–342
overview, 339–340
preventing default event actions, 344–346
types of

browser window events, 341
document events, 341
form events, 341
keyboard events, 341
mouse events, 341

every() method, iterating arrays, 359

execution stage, MySQL prepared statements, 762
exp() method, 412

Expected (error, JavaScript, 557

Expected { before function body error, JavaScript, 557

exponential notation, 211–212
exporting code, 436–439

default exports, 438–439
named exports, 438
overview, 436–437

expressions, JavaScript
comparison, 229–237

data conversion and, 233–234
equality operator, 230
greater than operator, 231
greater than or equal operator, 232
inequality operator, 231
less than operator, 231–232
less than or equal operator, 232–233
overview, 229
strict equality operator, 234
strict inequality operator, 235
ternary operator, 236–237
using strings in, 235–236
expressions, JavaScript (continued)

logical, 237–242
NOT operator, 239–240
AND operator, 238, 240–242
OR operator, 239–242
overview, 237

numeric, 219–226
addition operator, 220
arithmetic assignment operators, 220, 226
arithmetic operators, 219–226
decrement operator, 223–224
division operator, 224–225
increment operator, 220–222
modulus operator, 225–226
multiplication operator, 224
subtraction operator, 222

operands, 218
operators

arithmetic assignment operators, 220, 226
arithmetic operators, 219–226
concatenation operator, 227
defined, 218
operator precedence, 242–245

overview, 217
string, 227–229
structure, 218–219

expressions, PHP, 446–447
external style sheets, CSS, 92–94, 116

F

\f escape sequence, 213

Fetch API, 578–593
fetch() method, 578

GET request, 584
JSON data, 589–593
PHP and, 585–589
POST request, 584–586
running script on server, 578–580
sending and retrieving data, 586–589
updating element with fetched data, 580–584

HTML file, 580–582
loading output from PHP script, 582–584

File Transfer Protocol (FTP) service
CuteFTP, 49
Cyberduck, 49
FileZilla, 49
FTP client, 49
securing file uploads, 768
Transmit, 49
uploading site files to web host, 49
uploading static site files, 660
web hosting providers, 44

file uploads
insecure, 750–751
securing, 768

FileZilla, 49
filtering data, 754–757
find() method, iterating arrays, 364–365

Firefox for Mac
CSS, 523
JavaScript, 540

Firefox for Windows
CSS, 523
JavaScript, 540

:first-child pseudo-class, 111

::first-letter pseudo-element, 113

::first-line pseudo-element, 113

:first-of-type pseudo-class, 112

fixed positioning, CSS box model, 142, 146–148
fixed width layout, web design, 688
flex items

aligning along primary axis, 156
aligning along secondary axis, 157–158
configuring to grow, 161–163
configuring to shrink, 164–166

Flexbox (CSS Flexible Box), 152–170
aligning flex items along primary axis, 156
aligning flex items along secondary axis, 157–158
centering elements, 158–160
configuring flex items to grow, 161–163
configuring flex items to shrink, 164–166
flex container, 153–156
fluid layouts, 691–694
laying out content columns with, 166–170
navigation bar, 160–161
overview, 152–153

flex-direction property, 153–154

flex-grow property, 161–163

flex-shrink property, 164–166

floating elements, CSS box model
clearing floats, 137–139
container collapse, 139–141
overview, 136–137

floating-point numbers, 211, 408–409
floor() method, 412

fluid layouts, web design, 689–702
clamp() function, 701–702

CSS Grid, 694–697
Flexbox, 691–694
overview, 689
typography, 700–701
viewport units, 697–699

dynamic viewport, 698
large viewport, 698
measurement units, 698–699
small viewport, 697–698

focus, web forms, 618–619
:focus pseudo-class, 112

font family, CSS text, 96–97
font weight, CSS text, 97–98
font-family CSS text property, 17, 94, 96–97

fonts
generic, 96–97
Google Fonts, 97
system fonts, 97

font-size CSS text property, 17, 94–95

font-style CSS text property, 94, 98

font-weight CSS text property, 94, 97–98

<footer> tag, 81–82

for() loops

infinite loops, 271
JavaScript, 259–265
PHP, 463–464

foreach() loops, 458

forEach() method, iterating arrays, 356–358

form data, validating. See also web forms
in browser

email fields, 633–634
invalid fields, 636–639
mandatory fields, 630–631
pattern matching, 634–636
restricting length of text field, 631–632
setting value limits on numeric field, 632–633

on server
based on data type, 645–647
mandatory fields, 640–643
overview, 639
pattern matching, 647–648
textdata, 644–645

form events, 341
blur event, 620

change() event handler, 620–621

monitoring, 619
setting focus, 618–619

form POST requests, 585

forms
check boxes, 607–610

check box state, 608–610
referencing, 607–608

defined, 597
form events, 618–621

blur event, 620

change() event handler, 620–621

monitoring, 619
setting focus, 618–619

HTML5 web form, 598–600
adding form button, 599–600
setting up, 598–599

HTMLFormElement object, 600

HTMLInputElement object, 601

keyboard shortcuts for form controls, 621–623
overview, 595–598
radio buttons, 610–613

radio button state, 611–613
referencing, 610–611

selection lists, 613–618
changing, 617–618
getting options from, 616–617
HTMLOptionElement object, 615
HTMLSelectElement object, 614
overview, 613–614
referencing options in, 615–616

submitting, 623–628
forms (continued)

default form submission, 624
HTML code, 625–628
overview, 623–624
preparing data for, 624–625
triggering submit event, 624

text fields, 601–607
<input> tag, 601–604

getting current value of, 605–606
referencing by field type, 605
setting value for, 606–607
text-based types, 602–604

validating form data, 648–655
in browser, 630–639
overview, 629
with regular expressions, 648–655
on server, 639–648

forms property, 317

for…of loop, Javascript, 358

Franklin, Benjamin, 339

front end coding, 14–18
bringing together with back end, 19–20
CSS

colors, 100–102
CSS box model, 123–149
external style sheets, 92–94
inline styles, 89–90
internal style sheets, 90–92
overview, 85–87
page layout, 151–180
rules and declarations, 87–89, 115–122
selectors, 104–114
text, 94–100
web page family, 102–103

defined, 14

JavaScript, 183–201
adding comments to code, 198–199
arrays, 349–378
basic requirements for, 189
browsers with JavaScript turned off, 195–197
code looping, 256–257
console, 194–195
controlling loop execution, 267–271
controlling the machine, 184–185
Date object, 395–408

displaying message to user, 191–192
do…while loops, 265–267

document object model, 305–338
ECMAScript 2015 version, 197–198
events, 339–348
exporting code, 436–439
expressions, 217–245
functions, 273–303
if…else statements, 250–251

if statements, 248–249

importing code, 439–440
infinite loops, 271
for loops, 259–265

Math object, 411–412

multiple-decision problems, 251–256
numbers, 408–412
overview, 183–184
programming language, 185–186
rest parameter, 434–436
<script> tag, 190–193

spread operator, 424–434
strings, 379–395
using external JavaScript file, 199–201
variables, 203–216
web storage, 413–422
what you can do with JavaScript, 187–188
what you can't do with JavaScript, 188–189
while loops, 257–259

writing text to page, 192–193
structure via HTML, 16–17, 53–84
style, 17–18
text, 15–16

FTP (File Transfer Protocol) service
CuteFTP, 49
Cyberduck, 49
FileZilla, 49
FTP client, 49
securing file uploads, 768
Transmit, 49
uploading site files to web host, 49
uploading static site files, 660
web hosting providers, 44

functions
JavaScript, 273–303

anonymous functions, 286–290
arrow functions, 290–292
calling, 275–280
defined, 274
function scope, 297–298
interval, 294–295
overview, 273–274
passing values to, 280–285
placing, 275–276
recursive functions, 299–303
returning values from, 285–286
structure of, 274–275
timeout, 292–294
variable scope, 295–299

PHP, 465–466
overview, 465
passing values to, 466
returning value from, 466

G
Gasston, Peter, 595
Gates, Bill, 349
Geertz, Clifford, 423

generic fonts, 96–97
GET requests, 504–505, 584
getAttribute() method, 337

getDate() method, 398

getDay() method, 398

getFullYear() method, 398, 404

getHours() method, 398

getItem() method, 421

getMilliseconds() method, 398
getMinutes() method, 398

getMonth() method, 398–399

getSeconds() method, 398

getTime() method, 398, 408

GIF (Graphics Interchange Format) images, 74
GIT software, installing, 663

GitHub
committing to changes, 668
personal access token, 661–663
pushing changes, 668
pushing files to, 674–676
repository for book, 5
staging changes, 668
storing static web pages in, 660–668

cloning repository, 665–667
committing to changes, 668
installing GIT software, 663
personal access token, 661–663
pushing changes, 668
setting up account, 660–661
setting up repository, 663–665
staging changes, 668

global scope, JavaScript variables, 298–299
Gmail, 680
GoDaddy, 42
Goethe, Johann Wolfgang von, 23, 679
Google, 680
Google Fonts, 97
Google Maps, 680
Graphics Interchange Format (GIF) images, 74
greater than (>) operator, 229, 231, 243

greater than or equal (>=) operator, 229, 232, 243

grid containers, 171
grid gaps, 172–173
grid items

aligning, 176–177
assigning, 173–176

grid template, 171–172

H
<h1> to <h6> tags, 65–66

Harkaway, Nick, 629
:has pseudo-class, 113

Haverbeke, Marijn, 203
head property, 317

<head> tag, 58

<header> tag, 77–78

here document (heredoc) syntax, 452
hexadecimal integer values, 212
hierarchies, DOM, 315–316
Homebrew, 663

hosting, 39–50
changing web files, 49–50
features of, 42–44

ad requirements, 43
administration interface, 43
bandwidth, 42
databases, 43
dedicated server, 43
domain name, 42–43
ecommerce, 44
email addresses, 43
FTP support, 44
operating system, 43
scalability, 44
shared server, 43
storage space, 42
tech support, 44
uptime, 44
website statistics, 44

mirroring, 47–48

providers, 40–45
CNET Web Hosting Solutions, 45
commercial hosting providers, 41
defined, 40
existing internet provider, 41
finding, 44–45
free hosting providers, 41
PC Magazine Web Site Hosting Services Revi, 45
Review Hell, 45
Review Signal Web Hosting Reviews, 45

root directory, 45–47
uploading site files, 49
web address, 46–47

:hover pseudo-class, 112

HTML (Hypertext Markup Language), 53–84
alternative text, 58
anchor tags, 69
attributes

editing with JavaScript, 336–338
overview, 336–337
reading attribute value, 337
removing attribute, 338
setting attribute value, 337–338

character entities, 73–74
character references, 74
commenting, 83–84
defined, 16
dynamic web page process, 21
entity names, 74
images, 74–76
inline elements, 83
keywords, 215–216
links, 66–70

internal links, 68–70
local pages in different directory, 67
local pages in same directory, 67
remote web pages, 67

lists, 70–73
bulleted, 70–71
numbered, 72–73

meaning behind name, 54
ordered lists, 72–73
overview, 16–17
special characters, 73–74
static web pages

building HTML template file for, 668–670
defined, 658
deploying, 674–676
static site generator, 659
storing in GitHub, 660–668
using PHP to generate, 670–674

structure, 57–61, 76–83
article sections, 79–80
asides, 80–81
defined, 54
division element, 82
inline elements, 83
main section, 79
navigation elements, 78
page footers, 81–82
page headers, 77–78
semantic elements, 82
span containers, 83
style versus, 61–62
text, 60–61
titles, 59–60

submitting web forms, 625–628

tags
attributes, 56
defined, 16, 54
division element, 82
emphasizing text, 62–63
format of, 16, 54
headings, 65–66
important text, 63–64
inline elements, 83
nesting, 64
quotations, 66
semantic elements, 77–82
start and end tags, 55–56

HTML Living Standard, 635
HTML viewer, 541
HTML5 web form, 598–600

adding form button, 599–600
setting up, 598–599

HTMLFormElement object, web forms, 600

HTMLInputElement object, web forms, 601

HTMLOptionElement object, web forms, 615

HTMLSelectElement object, web forms, 614

Hypertext Markup Language. See HTML

hypertext reference, 67

I
<i> tag, 63

id selector (#), CSS, 105–106
IDEs (integrated development environments), 25
if…else statements, JavaScript, 250–251

if() statements

JavaScript, 248–249
PHP, 460–461

if()…else statements, PHP, 460–461

images
alt text for, 734

inserting in HTML, 74–76
making responsive, 715–716
responsive web design, 715–718
sizing, 716–718

images property, 317

importing code, 439–440
default exports, 440
named exports, 439–440

importing data, phpMyAdmin, 477–479
IN operator, MySQL, 490

includes() method, JavaScript, 383–385

incoming data, sanitizing, 751–767
character type checking, 757–760
converting data, 752–754
filtering data, 754–757
overview, 751
prepared statements, 761–767
whitelisting, 761

increment (++) operator, 219, 220–222, 243

indenting CSS text, 100
indexOf() method, 383, 385–386

inequality (!=) operator, 229, 231, 243

infinite loops, JavaScript, 271
inline elements

converting into blocks, 127
HTML, 83
page flow, 134

inline styles, CSS, 89–90, 116
inner joins, MySQL, 492–497
<input> tag, web forms, 601–604

INSERT queries, MySQL, 487, 497–498, 516–517
insertAdjacentHTML() method, 331

insertAdjacentText() method, 331

inspector stylesheet, CSS, 532–534
INT data type, 485
integers, 210–211, 408–409
integrated development environments (IDEs), 25
internal links, HTML, 68–70
internal quotation marks, 380–381
internal style sheets, CSS, 90–92, 116
Internet Protocol (IP) addresses, 11

internet resources
accessibility

WAVE, 745
WebAIM Contrast Checker, 745

Alphabet, 680
Gmail, 680
Google, 680
Google Maps, 680
YouTube, 680

Apache Friends, 26, 31
internet resources (continued)
Can I Use

container queries support levels, 708
range syntax support levels, 706
viewport unit support levels, 699

Cloudflare Pages, 675
CSS selector specificity calculator, 100
domain name services, 42

GoDaddy, 42
Register.com, 42

example used in book, 4–5
Flexbox, 165

FTP services, 49
CuteFTP, 49
Cyberduck, 49
FileZilla, 49
Transmit, 49

Git, 663
GitHub

accounts, 663
creating repositories, 660
repository for book, 5

Google Fonts, 97
Homebrew, 663
HTML Living Standard, 635
JSONLint, 416
Mozilla

ARIA roles, 737
Developer Network, 708

Netlify, 675
text editors, 37

Brackets, 37
Notepad++, 37
Nova, 37, 49
Sublime Text, 37
Visual Studio Code, 37

Web Dev Workshop, 100
web hosting providers, 45

CNET Web Hosting Solutions, 45
PC Magazine Web Site Hosting Services Revi, 45
Review Hell, 45
Review Signal Web Hosting Reviews, 45

WebDev Workshop, 5
XAMPP

Dashboard, 477
for OS X, 31
for Windows, 26

Xdebug, 563

internet service providers (ISPs), 41
intervals, JavaScript, 292, 294–295
invalid fields, web forms, 636–639
IS NULL operator, MySQL, 491

:is pseudo-class, 113

isset() function, 505

italics, CSS text, 98

iterating arrays, 355–365
to create new array, 361–362
down to a value, 362–364
every() method, 359

find() method, 364–365

forEach() method, 356–358

for…of loop, 358

to locate elements, 364–365
map() method, 361–362

overview, 355–356
reduce() method, 362–364

to test elements, 359–361

J
Jackson, Brian, 657

JavaScript, 183–201
<script> tag, 190–193

adding comments to code, 198–199
arrays, 349–378

concat() method, 368

declaring, 350–351
iterating, 355–365
join() method, 369–370

length property, 367–368

manipulating, 367–378
multidimensional array, 366–367
overview, 349–350
pop() method, 370

populating with data, 351–355
push() method, 371

reverse() method, 372

shift() method, 372

slice() method, 373–374

sort() method, 374–376

splice() method, 376–378

unshift() method, 378

asynchronous operations, 570–577
basic requirements for, 189
break statement, 267–270

browsers with JavaScript turned off, 195–197

common errors, 554–556
case-sensitive language, 554
comparison expressions, 556
improper use of braces, 555–556
keywords as variable names, 554
mismatched parentheses, 555
mismatched quotation marks, 554–555
missed parentheses, 555
misspelled variables, 554
misuse of page element, 556

Console window, 194–195, 542–544
displaying in various browsers, 542
executing code in, 543–544
logging data to, 543

continue statement, 270–271

controlling loop execution
with break statement, 267–270

with continue statement, 270–271

controlling the machine, 184–185
Date object

arguments used with, 396
extracting information about, 398–402
performing date calculations, 405–409
setting, 402–405
working with, 396–398

dates and times, 396–408

debugging strategies, 553–554
breaking down complex tasks, 553
breaking up long statements, 553
commenting out problem statements, 553
indenting code, 553
using comments to document scripts, 554

defined, 19
displaying message to user, 191–192
document object model, 305–338

editing HTML attributes, 336–338
hierarchies, 315–316
manipulating elements, 328–332
modifying CSS, 332–336
objects, 306–315
overview, 305–306
properties, 317
specifying elements, 317–321
traversing the DOM, 322–327

dynamic web page process, 20–21
ECMAScript 2015 version, 197–198

errors, 556–558
Expected (error, 557

Expected { before function body error, 557

Lengthy JavaScript still running. Continue? error, 558

logic errors, 539
Missing (error, 557

Missing ; after for-loop initializer|condition error,
557
Missing ; before statement error, 557–558

Missing ; error, 557

Missing { before function body: message, 557

Missing } in compound statement error, 557

runtime errors, 538–539
A script on this page is causing [browser name] to

run slowly. Do you want to abort the script? error, 558

Syntax error, 556–557

syntax errors, 538
Unexpected end of input error, 557

Unexpected identifier error, 557–558

Unterminated string constant error, 558

Unterminated string literal error, 558

X has no properties error, 558

X is not an object error, 558

X is not defined error, 558

events, 339–348
dblclick event, 347–348

defined, 340
DOMContentLoaded event, 346–347
getting data about, 343–344
listening for, 341–342
JavaScript, 183–201(continued)
overview, 339–340
preventing default event actions, 344–346
types of, 341

exporting code, 436–439
default exports, 438–439
named exports, 438
overview, 436–437

expressions, 217–245
comparison, 229–237
logical, 237–242
numeric, 219–226
operands, 218
operator precedence, 242–245
operators, 218
overview, 217
string, 227–229
structure, 218–219

functions, 273–303
anonymous functions, 286–290
arrow functions, 290–292
calling, 275–280
defined, 274
interval, 294–295
overview, 273–274
passing values to, 280–285
placing, 275–276
recursive functions, 299–303
returning values from, 285–286
structure of, 274–275
timeout, 292–294
variable scope, 295–299

if…else statements, 250–251

if statements, 248–249

importing code, 439–440
default exports, 440
named exports, 439–440

looping, 256–271
controlling loop execution, 267–271
do…while loops, 265–267

infinite loops, 271
for loops, 259–265

overview, 256–257
while loops, 257–259

monitoring script values, 550–552
adding watch expression, 552
viewing all variable values, 551
viewing single variable value, 550

multi-block statement, 252–253
numbers, 408–412

converting between strings and numbers, 409–411
Math object, 411–412

overview, 408–409
AND operator, 252
OR operator, 252
overview, 19–20, 183–184, 251, 537–538
pausing code, 544–547

entering break mode, 544–547
exiting break mode, 547

programming language, 185–186
rest parameter, 434–436
spread operator, 424–434

overview, 424
using with arrays, 424–429
using with objects, 429–432
using with strings, 433–434

stepping through code, 547–549
stepping into some code, 548–549
stepping one statement at a time, 547–548
stepping out of some code, 549
stepping over some code, 549

strings, 379–395
determining length of, 382–383
internal quotation marks, 380–381
multiline strings, 381–382
overview, 379–380
string templates, 380–382
substrings, 383–395
variable values, 381–382

switch statement, 253–256

using external JavaScript file, 199–201
variables, 203–216

const keyword and, 206–207

declaring with let keyword, 204–205

HTML keywords, 215–216
ideas for good names, 209–210
literal data types, 210–214
overview, 203–204
reserved words, 214–215
rules for naming, 208–209
storing value in, 205–206
using in statements, 207–208

web development tools, 540–542
Chrome for Mac, 540
Chrome for Windows, 540
Console window, 541
Debugging tool, 541–542
Firefox for Mac, 540
Firefox for Windows, 540
HTML viewer, 541
Microsoft Edge, 541
Network tab, 542
Safari, 541
Web storage tab, 542

web storage, 413–422
adding data to, 419–421
getting data from, 421
JSON, 414–419
overview, 413–414
removing data from, 422

what you can do with JavaScript, 187–188
what you can't do with JavaScript, 188–189
writing text to page, 192–193

JavaScript Object Notation, JSON
join() method, arrays, 369–370

Joint Photographic Experts Group (JPEG) images, 74–75

JSON (JavaScript Object Notation)
converting JavaScript object to, 417–418
converting JSON string to JavaScript object, 418–419
declaring and using variables, 416
defined, 21
Fetch API and, 589–593

converting server data, 589–591
processing data returned by server, 591–593

overview, 414–415
syntax, 415–416

JSONLint, 416
justify-content property, 156–157, 177

justify-items property, 177

K
Kernighan, Brian, 559
keyboard events, 341
keyboard shortcuts

displaying Console window in various browsers, 542
exiting break mode, 547
stepping through code, 548–549
web forms, 621–623

keyboard-friendly apps
adding element to tab order, 743
overview, 742–743
removing element from tab order, 743–744

L
landmark ARIA roles, 737–738
large viewport, fluid layouts, 698
:last-child pseudo-class, 111

lastIndexOf() method, 383, 385–386

lastModified property, 317

:last-of-type pseudo-class, 112

layouts
web design

adaptive layouts, 702–715
fixed width layout, 688
fluid layouts, 689–702
no width layout, 689

length property, arrays, 367–368

Lerdorf, Rasmus, 443
less than (<) operator, 229, 231–232, 243

less than or equal (<=) operator, 229, 232–233, 243

 tag, 70–71

Lie, Håkon Wium, 85

LIKE operator, MySQL, 490

Linder, Doug, 247
line breaks, PHP, 448–449
links

CSS text, 98–99
HTML, 66–70

internal links, 68–70
local pages in different directory, 67
local pages in same directory, 67
remote web pages, 67

links property, 317

Linux, 43, 48
lists, HTML, 70–73

bulleted, 70–71
numbered, 72–73

literal data types, 210–214
Boolean literals, 214
numeric literals, 210–212
string literals, 212–214

LN10 property, 411

LN2 property, 411

local web development environment, 23–37
components of, 24
defined, 25
text editors, 36–37
when needed, 25
XAMPP for OS X, 31–35

accessing local web server, 34–35
features of, 31
installing, 32–33
running via Application Manager, 33–34

XAMPP for Windows, 25–31
accessing local web server, 30–31
features of, 26
installing, 26–28
running via Control Panel, 29–30

localStorage property, 414

location property, 317

log() method, 412

LOG10E property, 411

LOG2E property, 411

logic errors, JavaScript, 539

logical expressions, JavaScript
NOT operator, 239–240
AND operator, 238, 240–242
OR operator, 239–242
overview, 237

logical operators, MySQL, 491–492
login credentials, MySQL, 517–518
looping

JavaScript
controlling loop execution, 267–271
do…while loops, 265–267

infinite loops, 271
for loops, 259–265

overview, 256–257
while loops, 257–259

PHP
arrays, 458
do…while() loops, 464

for() loops, 463–464

while() loop, 463

PHP arrays, 458

M

Mac
Chrome for Mac

CSS, 523
JavaScript, 540

Firefox for Mac
CSS, 523
JavaScript, 540

inserting special characters into text, 73

macro level, CSS page layout, 152
<main> tag, 79

makeDate() function, 404

mall metaphor, web page requests, 14, 19
mandatory fields

validating form data in browser, 630–631
validating form data on server, 640–643

map() method, iterating arrays, 361–362

margins, CSS box model, 131–134
collapsing, 132–134
overview, 131–132
resetting, 132

MariaDB, 26, 31
Math object, 411–412

max() method, 412

measurement units
CSS text, 95–96
viewport units, 698–699

media
accessibility, 733–735

alt text for images, 734

audio content, 734
overview, 733
video content, 734–735

media queries
overview, 703–706
range syntax, 706

methods
document object model, 310–311
JavaScript arrays

concat() method, 368

every() method, 359

find() method, 364–365

forEach() method, 356–358

join() method, 369–370

map() method, 361–362

pop() method, 370

push() method, 371

reduce() method, 362–364

reverse() method, 372

shift() method, 372

slice() method, 373–374

sort() method, 374–376

splice() method, 376–378

unshift() method, 378

JavaScript substrings
charAt() method, 387–389

endsWith() method, 383–385

includes() method, 383–385

indexOf() method, 385–386

lastIndexOf() method, 385–386

slice() method, 389–390

splice() method, 395

split() method, 390–392

startsWith() method, 383–385

substr() method, 392–393, 395

substring() method, 394–395

PHP objects
adding to class, 469
running, 471

micro level, CSS page layout, 152
Microsoft Edge

CSS, 523
JavaScript, 541

min() method, 412

mirroring directories on web host, 47–48

mobile-first development
content first, 720–721
CSS and, 722
deciding when to show hidden content, 722–723
overview, 719–720
responsive web design, 719–723
scaling content horizontally, 721–722
testing, 721

modifying CSS with JavaScript
adding classes to elements, 333–335
changing element's styles, 332–333
removing class to elements, 335
toggling classes, 335–336

modules, defined, 437
modulus (%) operator, 219, 225–226, 243

motor disabilities, assistive technologies for, 731
mouse events, 341
Mozilla

ARIA roles, 737
Developer Network, 708

multi-block statement, JavaScript, 252–253
multidimensional arrays, JavaScript, 366–367
multiline strings, 381–382

multiline strings, JavaScript, 381–382
multiple-decision problem, 251–256

multi-block statement, 252–253
AND operator, 252
OR operator, 252
overview, 251
switch statement, 253–256

multiplication (*) operator, 219, 224, 243

MySQL
creating databases, 479–480
defined, 19, 487
DELETE query, 499
dynamic web page process, 21
inner joins, 492–497
INSERT query, 497–498
outer joins, 493–497
overview, 473–474
phpMyAdmin, 476–479

backing up data, 479
importing data, 477–479
overview, 476–477

prepared statements, 761–767
primary key, 486–487
MySQL (continued)
queries, 475–476

query criteria, 489–492
BETWEEN…AND operator, 490

comparison operators, 489
compound criteria, 491
IS NULL operator, 491

LIKE operator, 490

logical operators, 491–492
IN operator, 490

querying the data, 487–499
SELECT query, 487–488
storing data on servers, 19
tables

adding data to, 485–486
creating, 484–485
designing, 480–484
overview, 474–475

UPDATE query, 498

using PHP to access, 501–518
DELETE query, 516–517
incorporating query string values in queries, 511–
512
INSERT query, 516–517
login credentials, 517–518
looping through query results, 510
MySQLi connection, 505–506
overview, 501–503
parsing the query string, 504–505
rendering data to browser, 512–516
SELECT query, 506–508
storing query results in array, 508–509
UPDATE query, 516–517

MySQLi object, 506–507

mysqli_close() method, 507

mysqli_connect() method, 506–507

mysqli_fetch_all() method, 508–509, 512

mysqli_num_rows() method, 508–509

mysqli_query() method, 507–508, 512

N
\n (newline) character, 448–449

\n escape sequence, 213

named exports
exporting, 438
importing, 439–440

<nav> tag, 78

negation (-) operator, 219, 243

Netlify, 675
Network tab, JavaScript, 542
next-sibling combinator (+), CSS, 108
Nixon, Robin, 473
no width layout, web design, 689
NOT (!) logical operator, 238–240, 243

NOT logical operator, 491

:not pseudo-class, 113

Notepad, 36
Notepad++ editor, 37
Nova, 37, 49
:nth-child pseudo-class, 111

:nth-of-type pseudo-class, 112

numbered lists, HTML, 72–73

numbers, JavaScript
+ operator, 410–411

arithmetic operators
addition operator, 220
decrement operator, 223–224
division operator, 224–225
increment operator, 220–222
modulus operator, 225–226
multiplication operator, 224
subtraction operator, 222

converting between strings and numbers, 409–411
expressions

arithmetic assignment operators, 220, 226
arithmetic operators, 219–226

floating-point numbers, 211, 409
integers, 409
Math object, 411–412

numeric literals, 210–212
exponential notation, 211–212
floating-point numbers, 211
hexadecimal integer values, 212
integers, 210–211

overview, 408–409
parseFloat() function, 410

parseInt() function, 409–410

O
object (->) operator, 470

object methods, 310–311
object POST requests, 585–586
objects

converting JSON string to JavaScript object, 418–419
document object model, 306–315

customizing, 311–314
defined, 306–307
object methods, 310–311
properties, 307–310
web APIs, 314–315

JavaScript, 429–432
PHP, 467–471

adding methods to class, 469
adding properties to class, 468–469
creating, 470
custom class, 467
methods, 471
properties, 470–471

online resources
accessibility

WAVE, 745
WebAIM Contrast Checker, 745

Alphabet, 680
Gmail, 680
Google, 680
Google Maps, 680
YouTube, 680

Apache Friends, 26, 31
Can I Use

container queries support levels, 708
range syntax support levels, 706
viewport unit support levels, 699

Cloudflare Pages, 675
CSS selector specificity calculator, 100
domain name services, 42

GoDaddy, 42
Register.com, 42

example used in book, 4–5
Flexbox, 165

FTP services, 49
CuteFTP, 49
Cyberduck, 49
FileZilla, 49
Transmit, 49

Git, 663
GitHub

accounts, 663
creating repositories, 660
repository for book, 5

Google Fonts, 97
Homebrew, 663
HTML Living Standard, 635
JSONLint, 416
Mozilla

ARIA roles, 737
Developer Network, 708

Netlify, 675
text editors, 37

Brackets, 37
Notepad++, 37
Nova, 37, 49
Sublime Text, 37
Visual Studio Code, 37

Web Dev Workshop, 100
web hosting providers, 45

CNET Web Hosting Solutions, 45
PC Magazine Web Site Hosting Services Revi, 45
Review Hell, 45
Review Signal Web Hosting Reviews, 45

WebDev Workshop, 5
XAMPP

Dashboard, 477
for OS X, 31
for Windows, 26

Xdebug, 563

operands, JavaScript, 218
operating systems

Unix systems
case-sensitive, 48
defined, 43

Windows systems
defined, 43
XAMPP for, 25–31

operators
-- (decrement) operator, 219, 223–224, 243

- (negation) operator, 219, 243

- (subtraction) operator, 219, 222, 243

! (NOT) logical operator, 238–240, 243

!= (inequality) operator, 229, 231, 243

!== (strict inequality) operator, 229, 235, 243

% (modulus) operator, 219, 225–226, 243

%= assignment operator, 220

&& (AND) logical operator, 238, 240–243, 252

* (multiplication) operator, 219, 224, 243

*= assignment operator, 220

. (property access) operator, 308

/ (division) operator, 104–105, 219, 224–225, 243

/= assignment operator, 220

?: (ternary) operator, 236–237, 243

^= assignment operator, 220

|| (OR) logical operator, 238, 239–243, 252

+ (addition) operator, 219, 220, 243

+ (concatenation) operator, 243

+ operator, 410–411

++ (increment) operator, 219, 220–222, 243

+= assignment operator, 220, 226

< (less than) operator, 229, 231–232, 243

< comparison operator, 489

<= (less than or equal) operator, 229, 232–233, 243

<= comparison operator, 489

<> comparison operator, 489

-= assignment operator, 220, 226

= comparison operator, 489

== (equality) operator, 229, 230, 243

=== (strict equality) operator, 229, 234, 243

> (greater than) operator, 229, 231, 243

> comparison operator, 489

>= (greater than or equal) operator, 229, 232, 243

>= comparison operator, 489

addition (+) operator, 219, 220, 243

BETWEEN…AND operator, 490

IS NULL operator, 491

LIKE operator, 490

NOT logical operator, 491

IN operator, 490

OR logical operator, 491

XOR logical operator, 491

OR (||) logical operator, 238–243, 252

OR logical operator, 491

ordered lists, 72–73
outer joins, MySQL, 493–497
outputting PHP data, 447–453

adding line breaks, 448–449
long strings, 451–453
overview, 447–448
quotation marks, 450
variables in strings, 450–451

P
<p> tag, 16–17, 61

p1|p2 regular expression symbol, 635

padding, CSS box model, 128–129
page elements

JavaScript, 556
updating with fetched data, 580–584

page layout, CSS
CSS box model, 134–136
CSS Grid, 170–180

aligning grid items, 176–177
assigning grid items, 173–176
grid container, 171
grid gaps, 172–173
grid template, 171–172
laying out content columns with, 177–180
overview, 170

Flexbox, 152–170
aligning flex items along primary axis, 156
aligning flex items along secondary axis, 157–158
centering elements, 158–160
configuring flex items to grow, 161–163
configuring flex items to shrink, 164–166
flex container, 153–156
laying out content columns with, 166–170
navigation bar, 160–161
overview, 152–153

macro level, 152
micro level, 152
overview, 151–152

parameterized statements/queries, MySQL, 761–767

parent elements, 103
parentheses, JavaScript

mismatched, 555
missed parentheses, 555

parse() method, 418–419

parseFloat() function, JavaScript, 410

parseInt() function, JavaScript, 409–410

passwords, securing, 768–771
pattern matching

validating form data in browser, 634–636
validating form data on server, 647–648

pausing code
JavaScript, 544–547

entering break mode, 544–547
exiting break mode, 547

PC Magazine Web Site Hosting Services Revi, 45
percent sign (%) wildcard character, 490

Perlis, Alan, 183

PHP, 443–471
accessing data on servers, 19
accessing MySQL with, 501–518

DELETE query, 516–517
incorporating query string values in queries, 511–
512
INSERT query, 516–517
login credentials, 517–518
looping through query results, 510
MySQLi connection, 505–506
overview, 501–503
parsing the query string, 504–505
rendering data to browser, 512–516
SELECT query, 506–508
storing query results in array, 508–509
UPDATE query, 516–517

arrays, 453–459
array values, 455–456
associative arrays, 454–455
declaring, 453–454
looping, 458
sorting, 456–457

controlling flow of code, 459–464
do…while() loop, 464

for() loop, 463–464

if() statement, 460–461

overview, 459
switch() statement, 462

while() loop, 463

converting data to JSON, 21
debugging code, 559–566

accessing error log, 561–562
configuring php.ini file for, 560–561

echo statements, 563–564
outputting variable values, 562–566
overview, 559
print_r() statements, 564–565

var_dump() statements, 565–566

defined, 19
dynamic web page process, 20–21
expressions, 446–447
Fetch API and, 585–589

form POST requests, 585
object POST requests, 585–586
sending and retrieving data, 586–589

functions, 465–466
overview, 465
passing values to, 466
returning value from, 466

generating static web pages with, 670–674
generating static files, 673–674
output buffering, 671–673
pushing files to GitHub, 674–676
unique page data, 670–671

including code from another PHP file, 774–775
objects, 467–471

adding methods to class, 469
adding properties to class, 468–469
creating, 470
custom class, 467
methods, 471
properties, 470–471

outputting data, 447–453
adding line breaks, 448–449
long strings, 451–453
overview, 447–448
quotation marks, 450
variables in strings, 450–451

overview, 443–444

PHP constants, 773
PHP sessions, 775–777
PHP (continued)

securing, 776–777
starting, 775–776

syntax, 445–446
variables, 446

php.ini file, 560–561

phpMyAdmin, 476–479
backing up data, 479
defined, 26, 31
importing data, 477–479
MySQL, 476–479
opening, 31, 35
overview, 476–477

PI property, 411

pixels (px), 95

points (pt), 95

pop() method, arrays, 370

populating arrays
declaring and, 353–354
overview, 351–353
using loops for, 354–355

Portable Network Graphics (PNG) images, 75
positioning elements, CSS box model

absolute positioning, 144–146
fixed positioning, 146–148
overview, 142–143
relative positioning, 143–144
sticky positioning, 148–149

POST requests, 504, 584–586
form POST requests in PHP, 585
object POST requests in PHP, 585–586
overview, 584

pow() method, 412

preparation stage, MySQL prepared statements, 761
prepared statements (parameterized statements;
parameterized queries), MySQL, 761–767
prepend() method, 329

primary key, MySQL, 486–487
print command, 447–448

print_r() statements, PHP, 455–456, 564–565

properties
document object model, 317
PHP objects

adding to class, 468–469
changing value of, 470–471

properties, CSS, 17
properties,object, 307–310
property access (.) operator, 308

property values, CSS, 529–530
providers, web hosting

commercial hosting providers, 41
defined, 40
existing internet provider, 41
finding, 44–45
free hosting providers, 41
online resources

CNET Web Hosting Solutions, 45
PC Magazine Web Site Hosting Services Revi, 45
Review Hell, 45
Review Signal Web Hosting Reviews, 45

pseudo-classes, CSS, 108–114, 535
pseudo-elements, CSS, 110, 114
pt (points), 95

push() method, arrays, 371

px (pixels), 95

Q

queries, MySQL, 475–476
DELETE query, 499, 516–517
incorporating query string values in queries, 511–512
INSERT query, 497–498, 516–517
looping through query results, 510
parsing the query string, 504–505
query criteria, 489–492
SELECT query, 487–488, 506–508
storing query results in array, 508–509
UPDATE query, 498, 516–517

quotation marks (" ")

internal, 380–381
mismatched, 554–555
PHP, 450
within strings, 212–213

R
\r escape sequence, 213

radio buttons, web forms
radio button state, 611–613
referencing, 610–611

random() method, 412

recursive functions, JavaScript, 299–303
reduce() method, iterating arrays, 362–364

Register.com, 42
regular expressions, validating form data with, 648–655
relative measurement units, 95
relative positioning, CSS box model, 142–144
rem (root em), 95–96

remove() method, 332, 335

removeAttribute() method, 338

removeItem() method, 422

repository, GitHub
cloning, 665–667
setting up, 663–665

request process, web pages, 10–14
decoding, 12
mall metaphor, 14, 19
requests, 11–12
resources, 12–13
URLs, 10–11

reserved words, JavaScript, 214–215
resetting margins, CSS box model, 132

responsive web design, 687–723
adaptive layouts, 702–715

container queries, 706–713
media queries, 703–706
overview, 702–703
user preference queries, 713–715

browser window size, 689
device and network performance, 690
device type and, 689
fixed width layout, 688
fluid layouts, 689–702

clamp() function, 701–702

CSS Grid, 694–697
Flexbox, 691–694
overview, 689
typography, 700–701
viewport units, 697–699

images, 715–718
overview, 715
sizing, 716–718

mobile-first development, 719–723
content first, 720–721
CSS and, 722
deciding when to show hidden content, 722–723
overview, 719–720
scaling content horizontally, 721–722
testing, 721

no width layout, 689
overview, 687–688
screen orientation, 689
user default font size, 690
user preferences, 690
user zoom level, 689–690

rest parameter, 434–436
reverse() method, arrays, 372

Review Hell, 45
Review Signal Web Hosting Reviews, 45
RGB codes, 101
rgb() function, 100

roles, ARIA, 737
landmark, 737–738
section structure, 738–739
widget, 738, 740

root directory, 45–47
defined, 45–46
relationship to web address, 46–47

root em (rem), 95–96

round() method, 412

rsort() function, 456

rules and declarations, CSS, 115–122
cascade algorithm, 121–122
declaration types, 115–116
origin types, 116
overview, 87–89
source code order, 120–121
specificity, 117–120
weight, 116

runtime errors, JavaScript, 538–539

S
\S regular expression symbol, 635

\s regular expression symbol, 635

Safari
CSS, 523
JavaScript, 541

sanitizing incoming data, 751–767
character type checking, 757–760
converting data, 752–754
filtering data, 754–757
overview, 751
prepared statements, 761–767
whitelisting, 761

Scalable Vector Graphics (SVG) images, 75
scaling content

horizontally for device, 721–722
web hosting providers, 44

scope, JavaScript variables, 295–299
block scope, 296–297
function scope, 297–298
global scope, 298–299
overview, 295–296

screen orientation, web design, 689
script values, JavaScript

adding watch expression, 552
viewing all variable values, 551
viewing single variable value, 550

<script> tag, JavaScript, 190–193

section structure ARIA roles, 738–739

<section> tag, 80

security, 747–779
back-end initialization file, 778–779
cross-site scripting, 750–751
directory structure, 772–775

including code from another PHP file, 774–775
overview, 772
PHP constants, 773

escaping outgoing data, 767–768
file uploads, 768
insecure file uploads, 750–751
overview, 747–748
passwords, 768–771
PHP sessions, 775–777

securing, 776–777
starting, 775–776

sanitizing incoming data, 751–767
character type checking, 757–760
converting data, 752–754
filtering data, 754–757
overview, 751
prepared statements, 761–767
whitelisting, 761

SQL injection, 748–750
unauthorized access, 751

SELECT query, MySQL, 487–488, 506–508
selection lists, web forms, 613–618

changing, 617–618
getting options from, 616–617
HTMLOptionElement object, 615

HTMLSelectElement object, 614

overview, 613–614
referencing options in, 615–616

selectors, CSS, 104–114
child combinator (>), 106–107
class selector (.), 104–105
descendant combinator, 106
id selector (#), 105–106
next-sibling combinator (+), 108
pseudo-classes, 108–114
pseudo-elements, 110, 114
subsequent-sibling combinator (~), 107

semantics
accessibility, 735–742

Accessible Rich Internet Applications, 736–742
form field labels, 736
overview, 735–736

HTML structure, 82
HTML tags, 77–82

servers
accessing data on, 19
accessing local web server

XAMPP for OS X, 34–35
XAMPP for Windows, 30–31

dedicated servers, 43
defined, 40
shared servers, 43
storing data on, 19
validating form data on

based on data type, 645–647
mandatory fields, 640–643
overview, 639
pattern matching, 647–648
textdata, 644–645

sessionStorage property, 414

setAttribute() method, 337–338

setDate() method, 402

setFullYear() method, 402

setHours() method, 402

setItem() method, 419–420

setMilliseconds() method, 402
setMinutes() method, 402

setMonth() method, 402

setSeconds() method, 402

setTime() method, 402

shared servers, 43
shift() method, arrays, 372

sibling elements, 103
sin() method, 412

slice() method

arrays, 373–374
extracting substrings, 383, 389–390

small viewport, fluid layouts, 697–698
sort() function, 374–376, 456

source code order, 120–121
 tag, 83

special characters, inserting in HTML, 73–74
specificity, CSS, 117–120

splice() method

arrays, 376–378
overview, 395

split() method, 383, 390–392

spread operator, 424–434
overview, 424
using with arrays, 424–429
using with objects, 429–432
using with strings, 433–434

SQL (Structured Query Language), 19
SQL injection, 748–750
sqrt() method, 412

SQRT1_2 property, 411

SQRT2 property, 411

SSG (static site generator)
building, 659
output buffering, 671–673

startsWith() method, 383–385

statements
JavaScript

breaking up long statements, 553
commenting out problem statements, 553
if…else statements, 250–251

if statements, 248–249

multi-block statement, 252–253
switch() statement, 253–256

PHP
echo statements, 563–564
print_r() statements, 564–565

switch() statement, 462

var_dump() statements, 565–566

using in JavaScript variables, 207–208

static positioning, CSS box model, 142
static site generator (SSG)

building, 659
output buffering, 671–673

static web pages
building HTML template file for, 668–670
defined, 658
deploying, 674–676
dynamic web pages vs., 657–659
static site generator, 659
storing in GitHub, 660–668

cloning repository, 665–667
committing to changes, 668
installing GIT software, 663
personal access token, 661–663
pushing changes, 668
setting up account, 660–661
setting up repository, 663–665
staging changes, 668

using PHP to generate, 670–674
generating static files, 673–674
output buffering, 671–673
pushing files to GitHub, 674–676
unique page data, 670–671

stepping through code, JavaScript, 547–549
stepping into some code, 548–549
stepping one statement at a time, 547–548
stepping out of some code, 549
Stepping over some code, 549

sticky positioning, CSS box model, 142, 148–149
storage

adding data to, 419–421
defined, 42
getting data from, 421
JSON, 414–419

converting JavaScript object to, 417–418
converting JSON string to JavaScript object, 418–
419
declaring and using variables, 416
overview, 414–415
syntax, 415–416

overview, 413–414
removing data from, 422

strict equality (===) operator, 229, 234, 243

strict inequality (!==) operator, 229, 235, 243

string literals, 212–214
escape sequences, 213–214
quotation marks within strings, 212–213

string templates, 380–382
stringify() method, 417, 420

strings
converting JSON string to JavaScript object, 418–419
JavaScript, 379–395

converting between numbers and, 409–411
determining length of, 382–383
internal quotation marks, 380–381
multiline strings, 381–382
overview, 379–380
string templates, 380–382
substrings, 383–395
using spread operator with, 433–434
variable values, 381–382

PHP, 450–453
using in JavaScript comparison expressions, 235–236

 tag, 63–64

Structured Query Language (SQL), 19
styling sizes, CSS box model, 126–127
Sublime Text, 37

submitting web forms, 623–628
default form submission, 624
HTML code, 625–628
overview, 623–624
preparing data for, 624–625
triggering submit event, 624

subsequent-sibling combinator (~), CSS, 107
substr() method, 383

substring() method, 383

substrings
JavaScript, 383–395

charAt() method, 387–389

endsWith() method, 383–385

extracting, 387–395
includes() method, 383–385

indexOf() method, 385–386

lastIndexOf() method, 385–386

searching for, 383–386
slice() method, 389–390

splice() method, 395

split() method, 390–392

startsWith() method, 383–385

substr() method, 392–393, 395

substring() method, 394–395

subtraction (-) operator, 219, 222, 243

SVG (Scalable Vector Graphics) images, 75
switch() statement

JavaScript, 253–256
PHP, 462

syntax
JavaScript syntax errors, 538, 556–557
JSON, 415–416
PHP, 445–446
syntax highlighting, 36

system fonts, 97

T
\t escape sequence, 213

tables, MySQL
adding data to, 485–486
creating, 484–485
designing, 480–484
overview, 474–475

tags, HTML, 76–83
article sections, 79–80
<article> tag, 79–80

<aside> tag, 80–81

asides, 80–81
attributes, 56
<blockquote> tag, 66

 tag, 61

defined, 16
<div> tag, 82

division element, 82
doctype declaration, 57
 tag, 55, 63

emphasizing text, 62–63
end tag, 55
<footer> tag, 81–82

<h1> to <h6> tags, 65–66

<head> tag, 58

<header> tag, 77–78

headings, 65–66
<i> tag, 63

important text, 63–64
inline elements, 83
 tag, 70–71

main section, 79
<main> tag, 79

<nav> tag, 78

navigation elements, 78
nesting, 64
<p> tag, 16–17, 61

page footers, 81–82
page headers, 77–78
placeholder, 55
quotations, 66
<section> tag, 80

semantic elements, 77–82
span containers, 83
 tag, 83

 tag, 63–64

tan() method, 412

template literals, 380–382
templates

building HTML template file for static web pages, 668–
670
CSS Grid, 171–172
string templates, 380–382

ternary (?:) operator, 236–237, 243

testing
JavaScript elements, 359–361
mobile-first development, 721

text
accessibility, 732–733

descriptive, 733
hidden text, 733
readability, 733
text size, 732–733

CSS, 94–100
aligning horizontally, 99
colors, 101
CSS measurement units, 95–96
font family, 96–97
font weight, 97–98
indenting, 100
italics, 98
styling links, 98–99
type size, 94–95

web form text fields, 601–607
<input> tag, 601–604

getting current value of, 605–606
referencing by field type, 605
setting value for, 606–607
text-based types, 602–604

text editors, 36–37
Brackets, 37
code completion, 36
code previews, 36
defined, 36
line numbers, 36–37
Notepad++, 37
Nova, 37
spell checking, 36
Sublime Text, 37
syntax highlighting, 36
text processing, 37
uploading site files to web host, 49
Visual Studio Code, 37

text-align CSS text property, 94, 99

text-decoration CSS text property, 94, 99

TextEdit, 36
text-indent CSS text property, 94, 100

Thomas, David, 217
timeouts, JavaScript, 292–294
title property, 317

toggle() method, 336

toLocaleDateString() method, 400

toLocaleTimeString() method, 401–402

tools for web development
CSS, 522–523

Chrome for Mac, 523
Chrome for Windows, 522
Firefox for Mac, 523
Firefox for Windows, 523
Microsoft Edge, 523
Safari, 523

JavaScript, 540–542
Chrome for Mac, 540
Chrome for Windows, 540
Console window, 541
Debugging tool, 541–542
Firefox for Mac, 540
Firefox for Windows, 540
HTML viewer, 541
Microsoft Edge, 541
Network tab, 542
Safari, 541
Web storage tab, 542

text editors, 36–37

Torvalds, Linus, 2
Transmit, 49

traversing the DOM
document object model, 322–327
getting children of parent element, 322–326
getting parent of child element, 326
getting siblings of element, 326

trunc() method, 412

typography, fluid layouts, 700–701

U
unauthorized access, 751
underscore (_) wildcard character, 490

uniform resource locators (URLs)
web addresses, 46–47
web page request process, 10–11

unordered HTML lists, 70–71
unshift() method, arrays, 378

UPDATE queries, MySQL, 487, 498, 516–517
uploading

defined, 47
mirroring directories on web host, 47–48
site files to web host, 49

uptime, 44
URL property, 317

URLs (uniform resource locators)
web addresses, 46–47
web page request process, 10–11

user agent style sheets, 116
user data, web apps, 682
user default font size, web design, 690
user functions, web apps, 681–682
user preferences

responsive web design, 690
user preference queries

overview, 713
prefers-color-scheme, 712–713
prefers-contrast, 712–713
prefers-reduced-motion, 712–713

user style sheets, 116
user zoom level, web design, 689–690
user-generated data, web apps, 682

V

validating form data, 629–655
in browser, 630–639

email fields, 633–634
invalid fields, 636–639
mandatory fields, 630–631
pattern matching, 634–636
restricting length of text field, 631–632
setting value limits on numeric field, 632–633

overview, 629
with regular expressions, 648–655
on server, 639–648

based on data type, 645–647
mandatory fields, 640–643
overview, 639
pattern matching, 647–648
textdata, 644–645

values
passing to JavaScript functions, 280–285
passing to PHP functions, 466
PHP arrays, 455–456
returning from JavaScript, 285–286
returning from PHP functions, 466
storing in JavaScript variables, 205–206
web forms text fields

getting current value of, 605–606
setting, 606–607

var_dump() statements, PHP, 565–566

VARCHAR data type, 485

variables
declaring and using JSON variables, 416
JavaScript

assigning anonymous functions to, 287–288
block scope, 296–297
conflicts between variables, 556
const keyword and, 206–207

declaring with let keyword, 204–205

function scope, 297–298
global scope, 298–299
HTML keywords, 215–216
ideas for good names, 209–210
keywords as variable names, 554
literal data types, 210–214
misspelled, 554
overview, 203–204
reserved words, 214–215
rules for naming, 208–209
scope, 295–299
storing value in, 205–206
using in statements, 207–208
using value of variable inside strings, 381–382

PHP, 446
outputting variable values, 562–566

video content, accessing, 734–735
viewport height (vh), 95

viewport units
dynamic viewport, 698
fluid layouts, 697–699
large viewport, 698
measurement units, 698–699
small viewport, 697–698

viewport width (vw), 95

virtual servers, 43
visual disabilities, assistive technologies for, 730
Visual Studio Code, 37

W
Web Accessibility Evaluation Tool (WAVE), 745–746
Web Accessibility Initiative (WAI), 736
web addresses, 46–47

defined, 46
relationship to root directory, 46–47

web APIs, 314–315

web app accessibility, 725–746
accommodating different user needs, 728–729
app structure, 731–732

headings, 731–732
semantic sectioning elements, 732

assistive technologies, 729–731
for auditory disabilities, 731
for cognitive disabilities, 731
for motor disabilities, 731
overview, 729–730
for visual disabilities, 730

benefits, 727
color contrast, 744–745
as human right, 726
keyboard-friendly, 742–744
keyboard-friendly apps

adding element to tab order, 743
overview, 742–743
removing element from tab order, 743–744

media, 733–735
alt text for images, 734

audio content, 734
overview, 733
video content, 734–735

overview, 725–726
semantics, 735–742

Accessible Rich Internet Applications, 736–742
form field labels, 736
overview, 735–736

text, 732–733
descriptive, 733
web app accessibility (continued)
hidden text, 733
readability, 733
text size, 732–733

validating, 745–746

web app security, 747–779
back-end initialization file, 778–779
cross-site scripting, 750–751
directory structure, 772–775

including code from another PHP file, 774–775
overview, 772
PHP constants, 773

escaping outgoing data, 767–768
file uploads, 768
insecure file uploads, 750–751
overview, 747–748
passwords, 768–771
PHP sessions, 775–777

securing, 776–777
starting, 775–776

sanitizing incoming data, 751–767
character type checking, 757–760
converting data, 752–754
filtering data, 754–757
overview, 751
prepared statements, 761–767
whitelisting, 761

SQL injection, 748–750
unauthorized access, 751

web apps
defined, 21–22, 680
overview, 679–680
planning, 681–685

app functions, 681–682
data requirements, 682–683
functionality, 681–682
page design, 684–685
pages needed, 684
user functions, 681–682
workflow, 683

responsive web design, 687–723
adaptive layouts, 702–715
fluid layouts, 689–702
images, 715–718
mobile-first development, 719–723
overview, 687–688

web browsers
browser window events, 341
displaying Console window in, 542
rendering data to, 512–516
validating form data in

email fields, 633–634
invalid fields, 636–639
mandatory fields, 630–631
pattern matching, 634–636
restricting length of text field, 631–632
setting value limits on numeric field, 632–633

web page request process, 10–14
decoding, 12
mall metaphor, 14, 19
requests, 11–12
resources, 12–13
URLs, 10–11

window size, 689

web coding and development, 9–22. See also back end
coding; front end coding

back end, 18–20
accessing data on servers, 19
bringing together with front end, 19–20
defined, 14
storing data on servers, 19

defined, 22
difference between, 22
dynamic web pages, 20–21
front end, 14–18

defined, 14
structure via HTML, 16–17, 53–84
style, 17–18
text, 15–16

local web development environment, 23–37
components of, 24
text editors, 36–37
when needed, 25
XAMPP for OS X, 31–35
XAMPP for Windows, 25–31

web apps, 21–22

web page request process, 10–14
decoding, 12
mall metaphor, 14
requests, 11–12
resources, 12–13
URLs, 10–11

web design, 687–723
adaptive layouts, 702–715

container queries, 706–713
media queries, 703–706
overview, 702–703
user preference queries, 713–715

browser window size, 689
device and network performance, 690
device type and, 689
fixed width layout, 688
fluid layouts, 689–702

clamp() function, 701–702

CSS Grid, 694–697
Flexbox, 691–694
overview, 689
typography, 700–701
viewport units, 697–699

images, 715–718
overview, 715
sizing, 716–718

mobile-first development, 719–723
content first, 720–721
CSS and, 722
deciding when to show hidden content, 722–723
overview, 719–720
scaling content horizontally, 721–722
testing, 721

no width layout, 689
overview, 687–688
screen orientation, 689
user default font size, 690
user preferences, 690
user zoom level, 689–690

Web Dev Workshop, 100

web development tools
CSS, 522–523

Chrome for Mac, 523
Chrome for Windows, 522
Firefox for Mac, 523
Firefox for Windows, 523
Microsoft Edge, 523
Safari, 523

JavaScript, 540–542
Chrome for Mac, 540
Chrome for Windows, 540
Console window, 541
Debugging tool, 541–542
Firefox for Mac, 540
Firefox for Windows, 540
HTML viewer, 541
Microsoft Edge, 541
Network tab, 542
Safari, 541
Web storage tab, 542

text editors, 36–37
Brackets, 37
code completion, 36
code previews, 36
defined, 36
line numbers, 36–37
Notepad++, 37
Nova, 37
spell checking, 36
Sublime Text, 37
syntax highlighting, 36
text processing, 37
uploading site files to web host, 49
Visual Studio Code, 37

web forms
check boxes, 607–610

check box state, 608–610
referencing, 607–608

defined, 597
form events, 618–621

blur event, 620

change() event handler, 620–621

monitoring, 619
setting focus, 618–619

HTML5 web form, 598–600
adding form button, 599–600
setting up, 598–599

HTMLFormElement object, 600

HTMLInputElement object, 601

keyboard shortcuts for form controls, 621–623
web forms (continued)
overview, 595–598
radio buttons, 610–613

radio button state, 611–613
referencing, 610–611

selection lists, 613–618
changing, 617–618
getting options from, 616–617
HTMLOptionElement object, 615
HTMLSelectElement object, 614
overview, 613–614
referencing options in, 615–616

submitting, 623–628
default form submission, 624
HTML code, 625–628
overview, 623–624
preparing data for, 624–625
triggering submit event, 624

text fields, 601–607
<input> tag, 601–604

getting current value of, 605–606
referencing by field type, 605
setting value for, 606–607
text-based types, 602–604

validating form data, 648–655
in browser, 630–639
overview, 629
with regular expressions, 648–655
on server, 639–648

web hosting, 39–50
changing web files, 49–50
features of, 42–44

ad requirements, 43
administration interface, 43
bandwidth, 42
databases, 43
dedicated server, 43
domain name, 42–43
ecommerce, 44
email addresses, 43
FTP support, 44
operating system, 43
scalability, 44
shared server, 43
storage space, 42
tech support, 44
uptime, 44
website statistics, 44

mirroring, 47–48

providers, 40–45
CNET Web Hosting Solutions, 45
commercial hosting providers, 41
defined, 40
existing internet provider, 41
finding, 44–45
free hosting providers, 41
PC Magazine Web Site Hosting Services Revi, 45
Review Hell, 45
Review Signal Web Hosting Reviews, 45

root directory, 45–47
uploading site files, 49
web address, 46–47

web page family, CSS, 102–103

web pages. See also back end coding; front end coding
back end, 18–20

accessing data on servers, 19
bringing together with back end, 19–20
bringing together with front end, 19–20
defined, 14
storing data on servers, 19

front end, 14–18
bringing together with back end, 19–20
defined, 14
structure via HTML, 16–17, 53–84
style, 17–18
text, 15–16

request process, 10–14
decoding, 12
mall metaphor, 14, 19
requests, 11–12
resources, 12–13
URLs, 10–11

web pages, dynamic
asynchronous operations, 570–577

async functions, 572–573
await operator, 573–575

chaining, 575–576
handling rejection responses, 576–577
overview, 570–572

defined, 20, 658
Fetch API, 578–593

fetch() method, 578

GET request, 584
JSON data, 589–593
PHP and, 585–589
POST request, 584–586
running script on server, 578–580
sending and retrieving data, 586–589
updating element with fetched data, 580–584

overview, 20–21
static web pages vs., 657–659
validating form data, 629–655

in browser, 630–639
overview, 629
with regular expressions, 648–655
on server, 639–648

web forms
check boxes, 607–610
defined, 597
form events, 618–621
HTML5 web form, 598–600
HTMLFormElement object, 600
HTMLInputElement object, 601
keyboard shortcuts for form controls, 621–623
overview, 595–598
radio buttons, 610–613
selection lists, 613–618
submitting, 623–628
text fields, 601–607

web pages, static
building HTML template file for, 668–670
defined, 658
deploying, 674–676
dynamic web pages vs., 657–659
static site generator, 659
storing in GitHub, 660–668

cloning repository, 665–667
committing to changes, 668
installing GIT software, 663
personal access token, 661–663
pushing changes, 668
setting up account, 660–661
setting up repository, 663–665
staging changes, 668

using PHP to generate, 670–674
generating static files, 673–674
output buffering, 671–673
pushing files to GitHub, 674–676
unique page data, 670–671

web servers
accessing data on, 19
accessing local web server

XAMPP for OS X, 34–35
XAMPP for Windows, 30–31

dedicated servers, 43
defined, 40
shared servers, 43
storing data on, 19
validating form data on

based on data type, 645–647
mandatory fields, 640–643
overview, 639
pattern matching, 647–648
textdata, 644–645

web storage, 413–422
adding data to, 419–421
getting data from, 421
JSON, 414–419

converting JavaScript object to, 417–418
converting JSON string to JavaScript object, 418–
419
declaring and using variables, 416
overview, 414–415
syntax, 415–416

overview, 413–414
removing data from, 422

Web storage tab, JavaScript, 542
Web Video Text Tracks (WebVTT) file, 734–735
WebAIM Contrast Checker, 745
WebDev Workshop, 5
website statistics, 44
Wehrli, Ursus, 53
weight, CSS

font weight, 97–98
rules and declarations, 116

:where pseudo-class, 113

while() loops

infinite loops, 271
JavaScript, 257–259
PHP, 463

whitelisting incoming data, 761
whitespace, 61, 128
widget ARIA roles, 738, 740
width property, 17

wildcard characters, 490
Windows

Chrome for Windows
CSS, 522
JavaScript, 540

Firefox for Windows
CSS, 523
JavaScript, 540

inserting special characters into text, 73
setting up XAMPP for, 25–31

workflow, web apps, 683
XAMPP Dashboard, 477

XAMPP for OS X, 31–35
accessing local web server, 34–35
features of, 31
installing, 32–33
running via Application Manager, 33–34

XAMPP for Windows, 25–31
accessing local web server, 30–31
features of, 26
installing, 26–28
running via Control Panel, 29–30
starting apps via Control Panel, 30

Xdebug, 563
XOR logical operator, 491

XSS (cross-site scripting), 750–751

Y
YouTube, 680

About the Author
Paul McFedries is the president of Logophilia Limited, a technical
writing company, and has worked with computers large and small since
1975. While now primarily a writer, Paul has worked as a programmer,
consultant, database developer, and website developer. He has written
more than 100 books that have sold over four million copies worldwide.
Paul invites everyone to drop by his personal website at
https://paulmcfedries.com, or to follow him on X (@paulmcf) or
Facebook (www.facebook.com/PaulMcFedries/).

https://paulmcfedries.com/
http://www.facebook.com/PaulMcFedries/

Dedication
I dedicated the first edition of this book to my recently deceased mother.
If I was to then dedicate this second edition of the book to my recently
passed father, I know what you’d say: “For crying out loud, man, stop
working on this book!” I hear you, but I’m going to dedicate this edition
to my dad anyway, who lived to the ripe old age of 95 and was relatively
healthy and sharp even at that advanced age. Dad, you were an excellent
role model right to the end! This one’s for you.

Author’s Acknowledgments
If we’re ever at the same cocktail party and you overhear me saying
something like “I wrote a book,” I hereby give you permission to wag
your finger at me and say “Tsk, tsk.” Why the scolding? Because
although I did write this book’s text and take its screenshots, those
represent only a part of what constitutes a “book.” The rest of it is
brought to you by the dedication and professionalism of Wiley’s editing,
graphics, and production teams, who toiled long and hard to turn my text
and images into an actual book.

I offer my heartfelt thanks to everyone at Wiley who made this book
possible, but I’d like to extend some special thank-you's to the folks I
worked with directly: executive editor Steve Hayes, project manager and
copy editor Susan Pink, proofreader Debbye Butler, and technical editor
Guy-Hart Davis. I’d also like to give a big shout-out to my agent, Carole
Jelen, for helping to make this project possible.

Publisher’s Acknowledgments
Managing Editor: Sofia Malik

Copy Editor: Susan Pink

Project Editor: Susan Pink

Technical Editor: Guy Hart-Davis

Proofreader: Debbye Butler

Production Editor: Saikarthick Kumarasamy

Cover Image: © Weiquan Lin/Getty Images

Take Dummies with you
everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

http://www.dummies.com/
http://www.dummies.com/
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/

Subscribe to our newsletter

Create your own Dummies book cover

http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Book 1: Getting Ready to Code for the Web
	Chapter 1: How Web Coding and Development Work
	The Nuts and Bolts of Web Coding and Development
	Understanding the Front End: HTML and CSS
	Understanding the Back End: PHP and MySQL
	How It All Fits Together: JavaScript
	How Dynamic Web Pages Work
	What Is a Web App?
	Understanding the Difference between Web Coding and Web Development

	Chapter 2: Setting Up Your Web Development Home
	What Is a Local Web Development Environment?
	Do You Need a Local Web Development Environment?
	Setting Up the XAMPP for Windows Development Environment
	Setting Up the XAMPP for OS X Development Environment
	Choosing Your Text Editor

	Chapter 3: Finding and Setting Up a Web Host
	Understanding Web Hosting Providers
	A Buyer’s Guide to Web Hosting
	Finding a Web Host
	Finding Your Way around Your New Web Home

	Book 2: Coding the Front End, Part 1: HTML and CSS
	Chapter 1: Structuring the Page with HTML
	Getting the Hang of HTML
	Understanding Tag Attributes
	Learning the Fundamental Structure of a Web Page
	Some Notes on Structure versus Style
	Applying the Basic Text Tags
	Creating Links
	Building Bulleted and Numbered Lists
	Inserting Special Characters
	Inserting Images
	Carving Up the Page
	Commenting Your HTML Code

	Chapter 2: Styling the Page with CSS
	Figuring Out Cascading Style Sheets
	Getting the Hang of CSS Rules and Declarations
	Adding Styles to a Page
	Styling Page Text
	Working with Colors
	Getting to Know the Web Page Family
	Using CSS Selectors
	Revisiting the Cascade

	Chapter 3: Sizing and Positioning Page Elements
	Learning about the CSS Box Model
	Styling Sizes
	Adding Padding
	Building Borders
	Making Margins
	Getting a Grip on Page Flow
	Floating Elements
	Positioning Elements

	Chapter 4: Creating the Page Layout
	What Is Page Layout?
	Making Flexible Layouts with Flexbox
	Shaping the Overall Page Layout with CSS Grid

	Book 3: Coding the Front End, Part 2: JavaScript
	Chapter 1: An Overview of JavaScript
	JavaScript: Controlling the Machine
	What Is a Programming Language?
	Is JavaScript Hard to Learn?
	What You Can Do with JavaScript
	What You Can’t Do with JavaScript
	What You Need to Get Started
	Basic Script Construction
	A Quick Introduction to the Console
	Dealing with a Couple of Exceptional Cases
	Adding Comments to Your Code
	Creating External JavaScript Files

	Chapter 2: Understanding Variables
	Understanding Variables
	Naming Variables: Rules and Best Practices
	Understanding Literal Data Types
	JavaScript Reserved Words
	JavaScript Keywords

	Chapter 3: Building Expressions
	Understanding Expression Structure
	Building Numeric Expressions
	Building String Expressions
	Building Comparison Expressions
	Building Logical Expressions
	Understanding Operator Precedence

	Chapter 4: Controlling the Flow of JavaScript
	Making True/False Decisions with if Statements
	Branching with if…else Statements
	Making Multiple Decisions
	Understanding Code Looping
	Using while Loops
	Using for Loops
	Using do…while Loops
	Controlling Loop Execution
	Avoiding Infinite Loops

	Chapter 5: Harnessing the Power of Functions
	What Is a Function?
	The Structure of a Function
	Where Do You Put a Function?
	Calling a Function
	Passing Values to Functions
	Returning a Value from a Function
	Getting Your Head around Anonymous Functions
	Moving to Arrow Functions
	Running Functions in the Future
	Understanding Variable Scope
	Using Recursive Functions

	Chapter 6: Playing with the Document Object Model
	Working with Objects
	Getting to Know the Document Object Model
	Specifying Elements
	Traversing the DOM
	Manipulating Elements
	Modifying CSS with JavaScript
	Tweaking HTML Attributes with JavaScript

	Chapter 7: Building Reactive Pages with Events
	What’s an Event?
	Understanding the Event Types
	Listening for an Event
	Getting Data about the Event
	Preventing the Default Event Action
	Example: The DOMContentLoaded Event
	Example: The dblclick Event

	Chapter 8: Working with Arrays
	What Is an Array?
	Declaring an Array
	Populating an Array with Data
	How Do I Iterate Thee? Let Me Count the Ways
	Creating Multidimensional Arrays
	Manipulating Arrays

	Chapter 9: Manipulating Strings, Dates, and Numbers
	Manipulating Text with the String Object
	Dealing with Dates and Times
	Working with Numbers: The Math Object

	Chapter 10: Storing User Data in the Browser
	Understanding Web Storage
	Introducing JSON
	Adding Data to Web Storage
	Getting Data from Web Storage
	Removing Data from Web Storage

	Chapter 11: More JavaScript Goodies
	Expanding Arrays and Objects with the Spread Operator
	Condensing Arrays with the Rest Parameter
	Exporting and Importing Code

	Book 4: Coding the Back End: PHP and MySQL
	Chapter 1: Learning PHP Coding Basics
	Understanding How PHP Scripts Work
	Outputting Text and Tags
	Working with PHP Arrays
	Controlling the Flow of Your PHP Code
	Working with PHP Functions
	Working with PHP Objects

	Chapter 2: Building and Querying MySQL Databases
	What Is MySQL?
	Introducing phpMyAdmin
	Creating a MySQL Database and Its Tables
	Querying MySQL Data

	Chapter 3: Using PHP to Access MySQL Data
	Understanding the Role of PHP and MySQL in Your Web App
	Using PHP to Access MySQL Data
	Creating and Running Insert, Update, and Delete Queries
	Separating Your MySQL Login Credentials

	Book 5: Debugging Your Code
	Chapter 1: Debugging CSS Code
	Displaying the Web Development Tools
	Inspecting an Element
	Editing a Property Value
	Disabling a Declaration
	Adding an Inline Declaration to an Element
	Adding an Element Declaration to the Inspector Stylesheet
	Adding a Class to an Element
	Simulating a Pseudo-Class State

	Chapter 2: Debugging JavaScript Code
	Understanding JavaScript’s Error Types
	Getting to Know Your Debugging Tools
	Debugging with the Console Window
	Pausing Your Code
	Stepping Through Your Code
	Monitoring Script Values
	More Debugging Strategies
	The 10 Most Common JavaScript Errors
	The 10 Most Common JavaScript Error Messages

	Chapter 3: Debugging PHP Code
	Configuring php.ini for Debugging
	Accessing the PHP Error Log
	Outputting Variable Values

	Book 6: Coding Dynamic and Static Web Pages
	Chapter 1: Fetching Data with PHP, JavaScript, and JSON
	Getting Your Head Around Asynchronous Operations
	Getting Remote Data Asynchronously with the Fetch API
	Returning Fetch API Data as JSON Text

	Chapter 2: Building and Processing Web Forms
	What Is a Web Form?
	Understanding How Web Forms Work
	Building an HTML Web Form
	Looking at the HTMLFormElement Object
	Taking a Peek at the HTMLInputElement Object
	Programming Text Fields
	Coding Check Boxes
	Dealing with Radio Buttons
	Programming Selection Lists
	Handling and Triggering Form Events
	Creating Keyboard Shortcuts for Form Controls
	Submitting the Form

	Chapter 3: Validating Form Data
	Validating Form Data in the Browser
	Validating Form Data on the Server
	Regular Expressions Reference

	Chapter 4: Coding Static Web Pages
	Static? Dynamic? What Am I Even Talking About?
	Building Your Own Static Site Generator
	Using GitHub to Store Your Static Site Files
	Forging Your HTML Template File
	Using PHP to Generate the Static Pages
	Deploying Your Static Website

	Book 7: Building Web Apps
	Chapter 1 Planning a Web App
	What Is a Web App?
	Planning Your Web App: The Basics

	Chapter 2: Making a Web App Responsive
	Defining a Responsive Layout
	Going with the Flow: Fluid Layouts
	Querying Your Way to Responsiveness: Adaptive Layouts
	Working with Images Responsively
	Exploring the Principles of Mobile-First Development

	Chapter 3: Making a Web App Accessible
	Why You Need to Make Your Apps Accessible
	Understanding Web Accessibility
	Making Your App Structure Accessible
	Making Text Accessible
	Making Media Accessible
	Buffing Up Your App Accessibility Semantics
	Making Your Apps Keyboard-Friendly
	Ensuring Sufficient Color Contrast
	Validating the Accessibility of an App

	Chapter 4: Securing a Web App
	Web App Security: Nutshell Version
	Understanding the Dangers
	Sanitizing Incoming Data
	Escaping Outgoing Data
	Securing File Uploads
	Securing Passwords
	Setting Up a Secure Directory Structure
	Understanding PHP Sessions
	Creating a Back-End Initialization File

	Index
	About the Author
	Advertisement Page
	Connect with Dummies
	End User License Agreement

