LEARNING MADE EASY

D)0D
"~/ 2nd Edition

Web Coding &
Development

ALL-IN-ONE

dummies

A Wiley Brand

Paul McFedries

Author of HTML, CSS, & JavaScript
All-in-One For Dumimies

Web Coding &
Development

ALL-IN-ONE

dummies

Paul McFedries

Author of HTME, CSS, & favaScript
All-in-One For Durmimies

Web Coding & Development All-
in-One For Dummies®

To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Web Coding
and Development All-in-One For Dummies Cheat
Sheet” in the Search box.

Table of Contents

Cover
Title Page
Copyright

Introduction
About This Book

Foolish Assumptions

Icons Used in This Book

Beyond the Book
Book 1: Getting Ready to Code for the Web

Chapter 1: How Web Coding and Development Work
The Nuts and Bolts of Web Coding_and Development
Understanding_the Front End: HTML and CSS
Understanding_the Back End: PHP and MySQL
How It All Fits Together: JavaScript

How Dynamic Web Pages Work
What Is a Web App?

http://www.dummies.com/

Understanding_the Difference between Web Coding_and Web
Development

Chapter 2: Setting Up Your Web Development Home

What Is a Local Web Development Environment?

Do You Need a Local Web Development Environment?

Setting Up the XAMPP for Windows Development Environment
Setting Up the XAMPP for OS X Development Environment
Choosing_Your Text Editor

Chapter 3: Finding_and Setting Up_ a Web Host

Understanding Web Hosting_Providers
A Buyer’s Guide to Web Hosting
Finding_a Web Host

Finding_Your Way around Your New Web Home

Book 2: Coding_the Front End, Part 1: HTML and CSS

Chapter 1: Structuring the Page with HTML
Getting_ the Hang_of HTML
Understanding_Tag_Attributes

Learning_ the Fundamental Structure of a Web Page

Some Notes on Structure versus Style

Applying_the Basic Text Tags

Creating Links

Building Bulleted and Numbered Lists

Inserting_Special Characters

Inserting_Images
Carving_Up the Page
Commenting_Your HTML Code
Chapter 2: Styling_ the Page with CSS

Figuring Out Cascading_Style Sheets

Getting_ the Hang_of CSS Rules and Declarations

Adding_Styles to a Page

Styling Page Text
Working_with Colors

Getting_ to Know the Web Page Family
Using CSS Selectors

Reuvisiting the Cascade

Chapter 3: Sizing_and Positioning Page Elements
Learning_about the CSS Box Model
Styling_Sizes
Adding_Padding
Building_Borders

Making_Margins
Getting_a Grip on Page Flow

Floating Elements

Positioning Elements

Chapter 4: Creating the Page Layout
What Is Page Layout?

Making_Flexible Layouts with Flexbox
Shaping_the Overall Page Layout with CSS Grid

Book 3: Coding_ the Front End, Part 2: JavaScript
Chapter 1: An Overview of JavaScript

JavaScript: Controlling_ the Machine

What Is a Programming_Language?

Is JavaScript Hard to Learn?

What You Can Do with JavaScript
What You Can’t Do with JavaScript
What You Need to Get Started

Basic Script Construction

A Quick Introduction to the Console

Dealing with a Couple of Exceptional Cases

Adding_Comments to Your Code

Creating External JavaScript Files

Chapter 2: Understanding Variables

Understanding_Variables

Naming_Variables: Rules and Best Practices

Understanding_Literal Data Types

JavaScript Reserved Words

JavaScript Keywords

Chapter 3: Building_ Expressions

Understanding_Expression Structure

Building_ Numeric Expressions

Building_String_Expressions

Building_ Comparison Expressions

Building_Logical Expressions

Understanding_Operator Precedence

Chapter 4: Controlling the Flow of JavaScript

Making_True/False Decisions with if Statements

Branching with if...else Statements

Making_Multiple Decisions

Understanding_Code Looping

Using_while Loops

Using_for Loops

Using_do...while Loops

Controlling_ Loop Execution

Avoiding_Infinite Loops

Chapter 5: Harnessing the Power of Functions

What Is a Function?

The Structure of a Function
Where Do You Put a Function?

Calling_a Function

Passing_Values to Functions

Returning_a Value from a Function

Getting_Your Head around Anonymous Functions

Moving_to Arrow Functions

Running_Functions in the Future

Understanding_Variable Scope

Using_Recursive Functions

Chapter 6: Playing with the Document Object Model
Working_with Objects
Getting_to Know the Document Object Model

Specifying_Elements

Traversing the DOM
Manipulating_Elements

Modifying_ CSS with JavaScript

Tweaking HTML Attributes with JavaScript

Chapter 7: Building Reactive Pages with Events
What's an Event?

Understanding_the Event Types

Listening_for an Event

Getting_ Data about the Event

Preventing the Default Event Action
Example: The DOMContentLoaded Event
Example: The dbiclick Event

Chapter 8: Working with Arrays
What Is an Array?

Declaring_an Array

Populating_an Array with Data

How Do | Iterate Thee? Let Me Count the Ways

Creating_ Multidimensional Arrays

Manipulating_Arrays

Chapter 9: Manipulating_Strings, Dates, and
Numbers

Manipulating_Text with the String_ Object

Dealing with Dates and Times
Working_with Numbers: The Math Object
Chapter 10: Storing User Data in the Browser
Understanding_ Web Storage
Introducing JSON
Adding_Data to Web Storage

Getting_ Data from Web Storage

Removing Data from Web Storage

Chapter 11: More JavaScript Goodies

Expanding Arrays and Objects with the Spread Operator

Condensing_Arrays with the Rest Parameter

Exporting_and Importing_Code
Book 4: Coding the Back End: PHP and MySQL

Chapter 1: Learning PHP Coding Basics
Understanding_ How PHP Scripts Work
Outputting_Text and Tags
Working with PHP Arrays
Controlling the Flow of Your PHP Code
Working_with PHP Functions
Working_with PHP Objects

Chapter 2: Building and Querying MySQL Databases
What Is MySQL?
Introducing_ phpMyAdmin
Creating_.a MySQL Database and Its Tables
Querying MySQL Data

Chapter 3: Using PHP to Access MySQL Data
Understanding_the Role of PHP and MySQL in Your Web App
Using PHP to Access MySQL Data

Creating_and Running_Insert, Update, and Delete Queries

Separating_Your MySQL Login Credentials
Book 5: Debugging Your Code
Chapter 1: Debugging CSS Code

Displaying_the Web Development Tools

Inspecting_an Element

Editing_a Property Value

Disabling_a Declaration

Adding_an Inline Declaration to an Element

Adding_an Element Declaration to the Inspector Stylesheet

Adding_a Class to an Element

Simulating_a Pseudo-Class State

Chapter 2: Debugging JavaScript Code

Understanding_JavaScript's Error Types

Getting_ to Know Your Debugging_Tools

Debugging_with the Console Window

Pausing_Your Code

Stepping_Through Your Code

Monitoring_Script Values

More Debugging_Strategies

The 10 Most Common JavaScript Errors

The 10 Most Common JavaScript Error Messages

Chapter 3: Debugging PHP Code
Configuring_php.ini for Debugging

Accessing the PHP Error Log

Outputting_Variable Values
Book 6: Coding Dynamic and Static Web Pages

Chapter 1: Fetching Data with PHP, JavaScript, and
JSON

Getting_Your Head Around Asynchronous Operations

Getting_ Remote Data Asynchronously with the Fetch API
Returning_Fetch API Data as JSON Text

Chapter 2: Building and Processing Web Forms
What Is a Web Form?
Understanding How Web Forms Work
Building_an HTML Web Form
Looking_at the HTMLFormElement Object
Taking_a Peek at the HTMLInputElement Object

Programming_Text Fields

Coding_Check Boxes

Dealing with Radio Buttons

Programming_Selection Lists

Handling_ and Triggering_ Form Events

Creating Keyboard Shortcuts for Form Controls

Submitting_the Form

Chapter 3: Validating_ Form Data

Validating_Form Data in the Browser

Validating_Form Data on the Server

Regular Expressions Reference

Chapter 4: Coding_Static Web Pages
Static? Dynamic? What Am | Even Talking About?
Building_Your Own Static Site Generator
Using_GitHub to Store Your Static Site Files
Forging_Your HTML Template File

Using PHP to Generate the Static Pages

Deploying_Your Static Website
Book 7: Building Web Apps
Chapter 1 Planning a Web App

What Is a Web App?
Planning_Your Web App: The Basics

Chapter 2: Making a Web App Responsive

Defining_a Responsive Layout

Going_with the Flow: Fluid Layouts

Querying_Your Way to Responsiveness: Adaptive Layouts

Working with Images Responsively

Exploring_the Principles of Mobile-First Development
Chapter 3: Making a Web App_Accessible

Why You Need to Make Your Apps Accessible

Understanding Web Accessibility
Making_Your App Structure Accessible

Making_Text Accessible

Making_ Media Accessible

Buffing_ Up Your App Accessibility Semantics

Making_Your Apps Keyboard-Friendly

Ensuring Sufficient Color Contrast

Validating_the Accessibility of an App

Chapter 4: Securing a Web App
Web App Security: Nutshell Version

Understanding_the Dangers

Sanitizing_Incoming_Data

Escaping_Outgoing Data

Securing_File Uploads

Securing_ Passwords

Setting Up a Secure Directory Structure

Understanding PHP Sessions

Creating_a Back-End Initialization File

Index
About the Author
Advertisement Page

Connect with Dummies

End User License Agreement

List of Tables

Book 2 Chapter 2
TABLE 2-1 Some Common CSS Text Properties
TABLE 2-2 Some CSS Measurement Units
TABLE 2-3 Some Common Pseudo-Classes
TABLE 2-4 Some Common Pseudo-Elements
TABLE 2-5 Declaration Type/Origin Type Weight Hierarchy

Book 2 Chapter 3
TABLE 3-1 The padding Shorthand Property
TABLE 3-2 The margin Shorthand Property

Book 3 Chapter 2
TABLE 2-1 Common JavaScript Escape Sequences
TABLE 2-2 JavaScript’s Reserved Words
TABLE 2-3 JavaScript and HTML Keywords

Book 3 Chapter 3
TABLE 3-1 JavaScript Arithmetic Operators
TABLE 3-2 JavaScript Arithmetic Assignment Operators

TABLE 3-3 JavaScript Comparison Operators

TABLE 3-4 JavaScript Logical Operators

TABLE 3-5 Truth Table for the AND (&&)_Operator
TABLE 3-6 Truth Table for the OR (]|)_Operator

TABLE 3-7 Truth Table for the NOT (!)_Operator

TABLE 3-8 JavaScript Order of Precedence for Operators

Book 3 Chapter 6
TABLE 6-1 Useful Properties of the document Object

Book 3 Chapter 9
TABLE 9-1 String_ Object Methods for Searching_for Substrings
TABLE 9-2 String_Object Methods for Extracting_Substrings
TABLE 9-3 Arguments Associated with the Date Object
TABLE 9-4 Date Object Methods That Extract Date Values
TABLE 9-5 Date Object Methods That Set Date Values
TABLE 9-6 The Properties of the Math Object
TABLE 9-7 Some Methods of the Math Object

Book 4 Chapter 2

TABLE 2-1 Comparison Operators for Criteria Expressions

TABLE 2-2 The LIKE Operator for Criteria Expressions

TABLE 2-3 Logical Operators for Criteria Expressions
Book 6 Chapter 3

TABLE 3-1 The Most Useful Regular Expression Symbols

Book 7 Chapter 2
TABLE 2-1 CSS Viewport Measurement Units

TABLE 2-2 New CSS Viewport Measurement Units
TABLE 2-3 CSS Container Query Measurement Units

Book 7 Chapter 3
TABLE 3-1 Landmark ARIA Roles
TABLE 3-2 Section Structure Roles without HTML Equivalents
TABLE 3-3 Section Structure Roles with HTML Equivalents
TABLE 3-4 Widget Roles without HTML Equivalents
TABLE 3-5 Widget Roles with HTML Equivalents

List of Illustrations

Book 1 Chapter 1

FIGURE 1-1: One way to get to a web page is to type the URL in the
browser’s ad...

FIGURE 1-2: The browser extracts the prefix, domain, and the server
address fro...

FIGURE 1-3: The browser asks the web server for the web page.

FIGURE 1-4: The server uses the page request to get the account,
directory, and...

FIGURE 1-5: The web server sends the requested web page file to the
browser.

FIGURE 1-6: The web browser scours the page file to see if it needs
anything el...

FIGURE 1-7: The web browser goes back to the server to ask for the other
datan...

FIGURE 1-8: The web server sends the browser the rest of the requested
files.

FIGURE 1-9: At long_last, the web browser displays the web page.

FIGURE 1-10: Text-only web pages are dishwater-dull.

FIGURE 1-11: Adding_paragraph tags to the text separates the text into
three pa...

FIGURE 1-12: With the judicious use of a few CSS properties, you can
greatly im...

Book 1 Chapter 2

FIGURE 2-1: Use this Setup Wizard dialog_box to deselect the check box
beside a...

FIGURE 2-2: To install XAMPP, use a subfolder in the main C:\ folder (such
asC...

FIGURE 2-3: If the Windows Security dialog_box shows up, be sure to
allow Apach...

FIGURE 2-4: You use the XAMPP Control Panel to control and configure
apps such ...

FIGURE 2-5: The nttp://localhost/dashboard/ address gives you access
to a few X...

FIGURE 2-6: In the Setup wizard dialog, deselect the check box beside
XAMPP Dev...

FIGURE 2-7: You use the XAMPP control panel to control and configure
services s...

FIGURE 2-8: The nttp://localhost/dashboard/ address gives you access
toafew X...

FIGURE 2-9: Line numbers, such as the ones shown here down the left
side of the...

Book 2 Chapter 1

FIGURE 1-1: The sample sentence as it appears in a web browser.

FIGURE 1-2: The sentence revised to italicize the word awesome.
FIGURE 1-3: For the <a> tag, the nrer attribute specifies the link dest...

FIGURE 1-4: The text you insert into the <titie> tag_shows up in the br...

FIGURE 1-5: Text you add to the page body appears in the browser's
content wind...

FIGURE 1-6: The web browser renders emphasized text using italics.

FIGURE 1-7: The browser renders important text using_bold.

FIGURE 1-8: The browser usually combines nested tags, such as the bold,
italic ...

FIGURE 1-9: The six HTML heading_tags.

FIGURE 1-10: The web browser renders <blockquote> text indented
slighte...

FIGURE 1-11: How the link appears in the web browser.
FIGURE 1-12: A typical bulleted list.

FIGURE 1-13: When the web browser renders the ordered list, it’'s kind
enough to...

FIGURE 1-14: A web page with an image thrown in.

FIGURE 1-15: An abstract view of HTMLS’s semantic page structure tags.

FIGURE 1-16: A page header with a logo,_title, and horizontal rule.

FIGURE 1-17: The <nav> section usually appears just after the
<header>...

FIGURE 1-18: The browser renders each <div> element on a new line.

FIGURE 1-19: Using makes the container flow with the
surrounding...

Book 2 Chapter 2

FIGURE 2-1: An <h1> heading_that appears with the web browser’s
default...

FIGURE 2-2: The same text from Figure 2-1, now with added styles.
FIGURE 2-3: Only the top <n1> tag_has the inline style, so only its tex...

FIGURE 2-4: An internal style sheet that applies different border styles to
the...

FIGURE 2-5: Generic fonts are implemented by all web browsers and
come in five ...

FIGURE 2-6: These sentences demonstrate font-weight values from 100

(top)_to 90...

FIGURE 2-7: The 1eft, center, right, and justify alignment options in
action (f...

FIGURE 2-8: Go to the Web Dev Workshop to access a full list of the CSS
colork...

FIGURE 2-9: The structure of a semantic HTML web page.

Book 2 Chapter 3
FIGURE 3-1: The components of the CSS box model.
FIGURE 3-2: The CSS box model applied to a page element.

crowded by ...
FIGURE 3-4: The nav element (with the border)_has a . srem top border.

FIGURE 3-5: The neader element with a bottom margin added (with the
border) has...

FIGURE 3-6: The web browser renders the block-level elements as a stack
of boxe...

FIGURE 3-7: As usual, the browser displays the block-level elements as a
stack ...

FIGURE 3-8: When the logo gets floated left, the rest of the content flows
arou...

FIGURE 3-9: When the image is floated left, the footer wraps around it and
ends...

FIGURE 3-10: Adding c1ear: 1eft to the footer element causes the footer
to clea...

FIGURE 3-11: An <article> tag_containing a <section> tag.and an...

FIGURE 3-12: With its content floated, the <articie> element collapses ...

FIGURE 3-13: With the se1f-ciear class added to the <articie> tag, the

FIGURE 3-14: The middle image uses relative positioning_to shift from the
mim

FIGURE 3-15: The img_element uses absolute positioning_to send it to the
top ri...

FIGURE 3-16: A page with the nheader element fixed to the top of the
screen. Whe...

FIGURE 3-17: A page with an h2 element stuck (temporarily)_to the top of
the sc...

Book 2 Chapter 4

FIGURE 4-1: If you let the browser lay out the elements, you get the default

FIGURE 4-2: With their parent as a flex container, the child elements
become fl...

FIGURE 4-3: How the justify-content values align flex items when the
primary ax...

FIGURE 4-4: How the a1ign-items values align flex items when the
secondary axis...

FIGURE 4-5: To center an item, set the container’s justify-content and
align-it...

FIGURE 4-6: Using_Flexbox, you can modify flex container properties for
nicely ...

FIGURE 4-7: By default, all flex items have a fi1ex-grow value of o, which
often...

FIGURE 4-8: With fiex-grow: 1, an item grows until the container has no
more em...

FIGURE 4-9: When items 1, 2, and 3 are styled with fiex-grow: 1, the
items grow...

FIGURE 4-10: Items 1 and 3 get 25 percent of the container's empty,
space, where...

FIGURE 4-11: By default, the browser shrinks the items equally along the
primar...

FIGURE 4-12: Styling_item 1 with fiex-shrink: .5 shrinks it less than the
other...

FIGURE 4-13: Styling_item 1 with fiex-shrink: 2 shrinks the item more
than the ...

FIGURE 4-14: Styling_item 1 with f1ex-shrink: 0 doesn't shrink the item.

FIGURE 4-15: A classic page layout, Flexbox-style.

FIGURE 4-16: A basic grid created by setting. just three properties: dispiay,

gr...
FIGURE 4-17: Some grid items assigned to different columns and rows in
the grid...
FIGURE 4-18: The classic page layout, Grid-style.

Book 3 Chapter 1
FIGURE 1-1: This alert message appears when you open the HTML file
containing t...
FIGURE 1-2: When you open the file, the text displays the date and time
the fil...

FIGURE 1-3: A message displayed in the Chrome web browser’s console.
FIGURE 1-4: JavaScript turned off in Google Chrome.
FIGURE 1-5: JavaScript turned off in Firefox.

FIGURE 1-6: This page uses an external JavaScript file to display a footer
mess...

Book 3 Chapter 2

FIGURE 2-1: When you use a variable in a statement, the browser
substitutes the...

FIGURE 2-2: Using_the \n escape sequence enables you to format text so
that it ...

Book 3 Chapter 3

FIGURE 3-1: Concatenating_instead of adding_the pretiprotal and
tipAmount value...

FIGURE 3-2: Calculating preTiprotal and tipamount Separately fixes the
problem.

FIGURE 3-3: The expression booksRead == weeksPassed returns true.

FIGURE 3-4: The expression kumguatsInStock < kumgquatsSold returns

false.

FIGURE 3-5: The result of our first stab at calculating_the pre-tax cost of an

FIGURE 3-6: The revised script calculates the pre-tax cost correctly.

Book 3 Chapter 4

FIGURE 4-1: Set up your while expression so that the prompting_stops
when the u...

FIGURE 4-2: This script uses the current value of the counter variable to
custo...

FIGURE 4-3: The decrementing_value of the rank variable is used to create
arev...

FIGURE 4-4: If you guess wrong,_the script lets you know if your guess
was too ...

Book 3 Chapter 5

FIGURE 5-1: An example of calling_a function when the <script> tag_is p...

FIGURE 5-2: An example of calling_a function after the page has loaded.

FIGURE 5-3: An example of calling_a function in response to an event.

FIGURE 5-4: The output includes the return value of the custom function
calcula...

FIGURE 5-5: Attempting_to display the mymessage variable outside of the if
bloc...

FIGURE 5-6: Trying_to use the mymessage variable in function & generates
an err...

FIGURE 5-7: When you declare a global variable, you can access its value
both i...

FIGURE 5-8: Using_recursion to calculate a profit sharing value.

Book 3 Chapter 6

FIGURE 6-1: This SCI’ipt displ_avs the document.location property ina
console me...

FIGURE 6-2: The web page code as a hierarchy.

FIGURE 6-3: The output of the script that iterates over the 4iv elements.

FIGURE 6-4: The value of the podychildren variable displayed in the
console.

FIGURE 6-5: The value of the podychildrlements variable displayed in the
consol...

FIGURE 6-6: This code uses the add () method to add the class nhamed my-
class fo ...

Book 3 Chapter 7

FIGURE 7-1: The c1ick event callback function adds some HTML and text
tothe di...

FIGURE 7-2: Type a key in the input box, and the xeydown event callback
functio...

FIGURE 7-3: You can use e.preventbDefault () to stop the browser from
navigating_...

FIGURE 7-4: The output of the poMcontentLoaded event handler.

Book 3 Chapter 8

FIGURE 8-1: The console messages displayed with each iteration using
forEach ()

FIGURE 8-2: The final result (ra1se, in this case) of the every () method.
FIGURE 8-3: The final result (true, in this case) of the some ()_method.

operation to ea...

FIGURE 8-5: The reduce () method iterates an array's values down to a
single val...

FIGURE 8-6: Concatenating_arrayl and array2 produces array3 with the
values sho...

FIGURE 8-7: Joining_the arrays with a space,_null string_(»"),_.and default
comm...

FIGURE 8-8: Use the reverse ()_method to reverse the order of elements in
an arr...

FIGURE 8-9: The s1ice () method creates a new array from a subset of
another arr...

FIGURE 8-10: Using_sort ()_and a function to sort items numerically from
highest...

FIGURE 8-11: The sp1ice ()_method can delete, replace, and insert array
elements...

Book 3 Chapter 9

FIGURE 9-1: The index0f ()_and 1astIndex0f () methods search for
substrings withi...

FIGURE 9-2: Some examples of the s1ice () method in action.

FIGURE 9-3: Some examples of the sp1it () method.

FIGURE 9-4: Some examples of the substr ()_method.

FIGURE 9-5: Some examples of the substring () method.
FIGURE 9-6: The results of the script.

FIGURE 9-7: The script displays the day of the week for a given year,
month, an...

Book 3 Chapter 10
FIGURE 10-1: The JavaScript object converted to a JSON string.
FIGURE 10-2: The JSON string_converted to a JavaScript object.

FIGURE 10-3: Viewing_local storage data in the web browser’s
development tools.

Book 3 Chapter 11

FIGURE 11-1: The copied array remains the same after the original array
was cha...

FIGURE 11-2: The concatenated array.
FIGURE 11-3: The resulting_array displayed in the console.

FIGURE 11-4: The original object remains the same after changing_the
copied obj...

FIGURE 11-5: The merged object.
FIGURE 11-6: Yep: “step on no pets” is a palindrome.

FIGURE 11-7: Creating.a DOM element with any number of class names.
Book 4 Chapter 1

FIGURE 1-1: The output of PHP's echo command.

FIGURE 1-2: You can also embed PHP output within an HTML file.

FIGURE 1-3: In PHP, you use the dot (.) operator to concatenate two
strings.

FIGURE 1-4: When you output tags and text using PHP, the strings run
together i...

FIGURE 1-5: With newlines added to the output strings, the web page
source code...

FIGURE 1-6: The really long_string_output to the web browser. Note that the
val...

Book 4 Chapter 2
FIGURE 2-1: In MySQL databases, tables store the raw data.

FIGURE 2-2: You use MySQL queries to extract a subset of the data from
one orm...

FIGURE 2-3: From the XAMPP Dashboard,_click phpMyAdmin to open the
phpMyAdmin w...

FIGURE 2-4: Importing_.a CSV file creates the CSV_DB database.

FIGURE 2-5: The orders table includes a column named order_id.

FIGURE 2-6: The order_details table also includes a column named

order id.

FIGURE 2-7: The order details and orders tables joined on the common
column nam...

Book 4 Chapter 3

FIGURE 3-1: An example of an error number and message generated by
the mysori o...

FIGURE 3-2: The output of the PHP script.

FIGURE 3-3: The output of the script, which lays out the query data in an
HTML ...

Book 5 Chapter 1
FIGURE 1-1: The web page that I'll debug.

FIGURE 1-2: Choose where the development tools pane appears in the
browser wind...

FIGURE 1-3: Inspecting_ the img_element.

FIGURE 1-4: A line through a declaration tells you it has been overridden
by an...

FIGURE 1-5: The browser displays a warning_icon and a crossed-out
declaration f...

FIGURE 1-6: The browser displays an element’s box model as a series of
concentr...

FIGURE 1-7: The ing_element's box model tells us that it has no margin or
paddi...

FIGURE 1-8: The Computed tab shows the selected element’s computed
styles.

FIGURE 1-9: Hovering_ the mouse pointer over a rule adds check boxes
beside each...

FIGURE 1-10: You can add new declarations to an element.

FIGURE 1-11: You can add new rules to the inspector stylesheet.
FIGURE 1-12: You can add a class to the element.

FIGURE 1-13: You can simulate pseudo-class states such as :active and

:hover.

Book 5 Chapter 2
FIGURE 2-1: The Firefox Console window displaying data about a typical
syntax e...
FIGURE 2-2: The Chrome Console window displaying_data about a typical
runtime e...
FIGURE 2-3: The HTML viewer, such as Chrome’s Elements tab, enables
you to insp...
FIGURE 2-4: In break mode, the web browser displays its debugging_tool
and high...
FIGURE 2-5: In the browser’s debugging_tool, click a line humber to set a
break...

FIGURE 2-6: In break mode, hover the mouse pointer over a variable
name to disp...

FIGURE 2-7: In break mode, Chrome’s Scope section shows the current
values of t...

FIGURE 2-8: You can define a watch expression for your code.

Book 5 Chapter 3

FIGURE 3-1: Examine the Loaded Configuration File setting_to determine
the loca...

FIGURE 3-2: A typical PHP error message, showing_the error, file path and
name,...

FIGURE 3-3: The php. ini file will tell you the location of your PHP error
log.

FIGURE 3-4: The error shown earlier in Figure 3-2 was also recorded in
the PHP ...

FIGURE 3-5: Adding_an echo statement outputs the expression to the
browser wind...

FIGURE 3-6: Using_print_r()_to output the keys and values of an array.

FIGURE 3-7: Using_var_dump()_to output information about some
variables.

Book 6 Chapter 1

FIGURE 1-1: The result of the asynchronous operation.

FIGURE 1-2: The result of the chained asynchronous operations.

FIGURE 1-3: The result of three chained asynchronous operations, two
successes ...

FIGURE 1-4: The PHP script response displayed in the Console window.

FIGURE 1-5: Using_JavaScript’s fetch ()_method to load the contents of an
HTML f...

FIGURE 1-6: Using_the fetch ()_method to load the output of a PHP script
into a ...

FIGURE 1-7: A warning_message displayed by the getinventoryTotal ()
function.

FIGURE 1-8: The asynchronous function loops through the JSON array,
appending e...

Book 6 Chapter 2
FIGURE 2-1: A typical web form.

FIGURE 2-2: The various text input types you can use in your forms.

FIGURE 2-3: The script converts the input element's default text to all-
lowerca...

FIGURE 2-4: An example form submission.

Book 6 Chapter 3

FIGURE 3-1: Add the required attribute to a form field to ensure that the
field...

FIGURE 3-2: Use the minlength Or maxlength attribute (or both) to restrict a

FIGURE 3-3: Use the min or max attribute (or both) to accept values within a
FIGURE 3-4: Modern browsers automatically validate email fields.

FIGURE 3-5: The CSS rules add a green check mark to valid fields, and
the red t...

FIGURE 3-6: Some example validation error messages returned from the
server scr...

Book 6 Chapter 4

FIGURE 4-1: Select only the Repo check box to make your life easier.

FIGURE 4-2: GitHub displays your new personal access token just once.

FIGURE 4-3: GitHub checks to make sure you haven’t already used the
name for an...

FIGURE 4-4: The repo home page includes the all-important address of the
reposi...

FIGURE 4-5: In the Connect to GitHub dialog_box, use the Token tab to
paste you...

FIGURE 4-6: The output of the static site generator.
FIGURE 4-7: Select your repo’s main branch for the deployment.

FIGURE 4-8: Refresh the page to see the address of your repo's Pages
deployment...

Book 7 Chapter 1
FIGURE 1-1: The workflow for the FootPower! app.
FIGURE 1-2: A sketch of the home page for the FootPower! app.

Book 7 Chapter 2

FIGURE 2-1: When a web app has a fixed width, users with small screens
must scr...

FIGURE 2-2: When a web app has no maximum width, the lines of text can
become t...

FIGURE 2-3: The web app as it appears in a desktop browser viewport.

FIGURE 2-4: In a smaller viewport, the main element becomes a single
column (le...

FIGURE 2-5: The grid layout as it appears in a desktop browser viewport.

FIGURE 2-6: The grid layout as it appears in a tablet viewport.

FIGURE 2-7: The grid layout as it appears in a smartphone viewport.

FIGURE 2-8: The header logo appears in a tablet-sized viewport.

FIGURE 2-9: On a smartphone-sized viewport, the media query expression
is true,...

FIGURE 2-10: A product card in its default layout.

FIGURE 2-11: The product card layout when the parent element is less
than 25renm

FIGURE 2-12: The product card layout when the parent element is
between 25rem a...

FIGURE 2-13: Choosing either a light or a dark color scheme in macQOS.
FIGURE 2-14: With the tag’s sizes and srcset attributes on the jo...

Book 7 Chapter 3

FIGURE 3-1: Light text on a light background (left) and dark text on a dark

bac...

FIGURE 3-2: Use the WebAIM Contrast Checker to find out the contrast
ratio betw...

FIGURE 3-3: The Web Accessibility Evaluation Tool will let you know if
your app...

Book 7 Chapter 4

FIGURE 4-1: When this form is submitted, the JavaScript code in the text
areag...

FIGURE 4-2: When this form is submitted, the Output area shows the
filtered for...

FIGURE 4-3: If the user submits a non-numeric value, the PHP script
returns a m...

FIGURE 4-4: A database query rendered safe by using_prepared
statements.

FIGURE 4-5: An example of a hashed password.

o

\

Web Coding &
Development

ALL-IN-ONE

2nd Edition

by Paul McFedries

dummies

Web Coding & Development All-in-One For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
O7030-5774,www.wilev.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2024 by John Wiley &
Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo,

pummies . com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and may
not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE
THE PUBLISHER AND AUTHORS HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS WORK, THEY MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://dummies.com/

SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR
THIS WORK. THE FACT THAT AN ORGANIZATION, WEBSITE,
OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE
ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT
WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. NEITHER THE PUBLISHER NOR AUTHORS SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER
DAMAGES.

For general information on our other products and services, please
contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical
support, please visit

https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-
on-demand. Some material included with standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley

products, visit www.wiley.com.

Library of Congress Control Number: 2023951076

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com/
http://www.wiley.com/

ISBN 978-1-394-19702-6 (pbk); ISBN 978-1-394-19704-0 (ebk); ISBN
978-1-394-19703-3 (ebk)

Introduction

When the web first came to the attention of the world’s non-geeks back
in the mid-1990s, the vastness and variety of its treasures were a wonder
to behold. However, it didn’t take long before a few courageous and
intrepid souls dug a little deeper into this phenomenon and discovered
something truly phenomenal: They could make web pages, too!

Why was that so amazing? Well, think back to (or, if you’re not old
enough, imagine) those old days and consider, in particular, what it
meant to create what we now call content. Consider television shows,
radio programs, magazines, newspapers, books, and the other media of
the time. The one thing they all had in common was that their creation
was a decidedly uncommon thing. It required a team of professionals, a
massive distribution system, and a lot of money. In short, it wasn’t
something that your average Okie from Muskogee would have any hope
of duplicating.

The web appeared to change all that because learning HTML was within
the grasp of all of us who could feed ourselves, it had a built-in massive
distribution system (the internet, natch), and it required little or no
money. For the first time in history, content was democratized and was
no longer defined as the sole province of governments and mega-
corporations.

Then reality set in.

People soon realized that merely building a website wasn’t enough to
attract “eyeballs,” as the marketers say. A site had to have interesting,
useful, or fun content, or people would stay away in droves. Not only
that, but this good content had to be combined with a solid site design,
which meant that web designers needed a thorough knowledge of HTML
and CSS.

But, alas, eventually even all that was not enough. To make their
websites dynamic and interesting, to make their sites easy to navigate,
and to give their sites those extra bells and whistles that surfers had

come to expect, people needed something more than content, HTML,
and CSS.

That missing link was code.

What we’ve all learned the hard way over the past few years is that you
simply can’t put together a world-class website unless you have some
coding prowess in your site design toolkit. You need to know how to
program your way out of the basic problems that afflict most sites; how
to use scripting to go beyond the inherent limitations of HTML and CSS;
and how to use code to send and receive data from a web server. And it
isn’t enough just to copy the generic scripts available on the web and
paste them into your pages. Most of those scripts are poorly written, and
they invariably need some customization to work properly on your site.

About This Book

In this book, I give you a complete education on web coding and
development. You learn how to set up the tools you need, how to use
HTML and CSS to design and build your site, how to use JavaScript to
program your pages, and how to use PHP and MySQL to program your
web server. | show you that these technologies aren’t hard to learn, and
that even the greenest rookie programmers can learn how to put together
web pages that will amaze their family and friends (and themselves).

If you’re looking for lots of programming history, computer science
theory, and long-winded explanations of concepts, you won’t find them
here. My philosophy throughout this book comes from Linus Torvalds,
the creator of the Linux operating system: “Talk is cheap. Show me the
code.” I explain what needs to be explained and then I move on without
further ado (or, most of the time, without any ado at all) to examples and
scripts that do more to illuminate a concept that any verbose
explanations I could muster (and believe me, I can muster verbosity with
the best of them).

How you approach this book depends on your current level of web
coding expertise (or lack thereof):

» If you’re just starting out, begin at the beginning with Book 1 and
work at your own pace sequentially through to Books 2 and 3. This
approach will give you all the knowledge you need to pick and
choose what you want to learn throughout the rest of the book.

» If you know HTML and CSS, you can probably get away with taking
a fast look at Book 2 and then settling in with Book 3 and beyond.

» If you’ve done some JavaScript coding, I suggest working quickly
through the material in Book 3, and then digging into the first two
chapters of Book 5 to bring your debugging skills up to snuff. You’ll
then be ready to branch out and explore the rest of the book as you
see fit.

» If you’re a relatively experienced JavaScript programmer, use Books
3 and 5 as a refresher, and then tackle Book 4 to learn how to code
the back end. I have a few tricks in there that you might find
interesting. After that, feel free to consider the rest of the book as a
kind of coding smorgasbord that you can sample as your web
development taste buds dictate.

As I began updating this edition of the book, the world was awash in
posts and talk and endless speculation about artificial intelligence, to the
point where it seemed we’d soon be welcoming our new Al overlords.
That’s not likely to happen anytime soon, but Al is here to stay and has
already established itself as a significant part of many people’s workaday
routines.

I’ve been as enamored of ChatGPT and its ilk as the biggest Al boosters.
I use Al for entertainment and curiosity, but I don’t use it for work. That
is to say, not one word of the text, code, or examples used in this book
has been generated by Al. Everything you read here 1s, for good or ill,
the product of my warped-from-birth brain.

Foolish Assumptions

This book is not a primer on the internet or using the World Wide Web.
It's a coding and development book, pure and simple, where I assume the

following:

» You know how to operate a basic text editor and how to get around
the operating system and file system on your computer.

» You have an internet connection.

» You know how to use your web browser.

Yep, that’s it.

If you’ve never done a stitch of computer programming before, even if
you’re not quite sure what programming really is, don’t worry about it
for a second because I had you in mind when I wrote this book. For too
many years, programming has been the property of hackers and other
technowizards. That made some sense because the programming
languages they were using — with bizarre names such as C++ and Perl
— were exceedingly difficult to learn and even harder to master.

This book’s main coding technologies — HTML, CSS, JavaScript, PHP,
and MySQL — are different. They’re nowhere near as hard to learn as
those for-nerds-only languages. I honestly believe that anyone can
become a savvy and successful web coder, and this book is, I hope, the
proof of that assertion. If you just follow along, examine my code
carefully (particularly in the first few chapters), and practice what you
learn, you will master web coding and development.

What if you’ve done some programming in the past? For example, you
might have dipped a toe or two in the JavaScript waters already, or you
might have dabbled with HTML and CSS. Will this book be too basic
for you? No, not at all. In this book, I provide you with a ton of truly
useful examples that you can customize and incorporate into your own
site. The book’s first few chapters start slowly to avoid scaring off those
new to this programming business. But once you get past the basics, I
introduce you to lots of great techniques and tricks that will take your
web coding skills to a higher level.

Icons Used in This Book

@

rememser 1 D1S icon points out juicy tidbits that are likely to be repeatedly
useful to you — so please don’t forget them.

©

ne Think of these icons as the fodder of advice columns. They offer
(I hope) wise advice or a bit more information about a topic under
discussion.

®

warnine Look out! In this book, you see this icon when I’m trying to help
you avoid mistakes that can cost you time, money, or
embarrassment.

il
TECHNICAL . R . .y
sture - When you see this icon, you’ve come across material that isn’t

critical to understand but will satisfy the curious. Think “inquiring
minds want to know” when you see this icon.

Beyond the Book

Some extra content for this book 1s available on the web. Go online to
find the following:

» The examples used in the book: You can find these on my website:

https://paulmcfedries.com/books/web-coding-dev-aio-fd-2e

Alternatively, the examples are also available via the book’s GitHub
repository:

https://github.com/paulmcfe/web-coding-and-dev-fd-2e

https://paulmcfedries.com/books/web-coding-dev-aio-fd-2e/
https://github.com/paulmcfe/web-coding-and-dev-fd-2e

The examples are organized by book and then by chapter within each
book. For each example, you can view the code, copy it to your
computer’s clipboard, and run the code in the browser.

» The WebDev Workshop: To view a few web coding tools and
tutorials, as well as try your own code and see instant results, fire up
the following site:

https://webdevworkshop.io

You won’t break anything, so feel free to use the site to run some
experiments and play around with HTML, CSS, and JavaScript.

https://webdevworkshop.io/

Book 1

Getting Ready to Code for the
Web

Contents at a Glance

Chapter 1: How Web Coding and Development Work
The Nuts and Bolts of Web Coding_and Development
Understanding_the Front End: HTML and CSS
Understanding_the Back End: PHP and MySQL
How It All Fits Together: JavaScript

How Dynamic Web Pages Work

What Is a Web App?

Understanding_the Difference between Web Coding and Web Development
Chapter 2: Setting Up Your Web Development Home

What Is a Local Web Development Environment?

Do You Need a Local Web Development Environment?

Setting_Up the XAMPP for Windows Development Environment
Setting Up the XAMPP for OS X Development Environment
Choosing_Your Text Editor

Chapter 3: Finding and Setting Up a Web Host
Understanding_ Web Hosting Providers
A Buyer’s Guide to Web Hosting
Finding_.a Web Host

Finding_Your Way around Your New Web Home

Chapter 1

How Web Coding and
Development Work

0000000000000 00

IN THIS CHAPTER
» Learning how the web works
» Understanding the front-end technologies of HTML and CSS
» Understanding the back-end technologies of MySQL and PHP

» Figuring out how JavaScript fits into all of this

» Learning about dynamic web pages, web apps, and mobile web
apps

More than mere consumers of technology, we are makers, adapting
technology to our needs and integrating it into our lives.

— DALE DOUGHERTY

The 1950s were a hobbyist’s paradise with magazines such as Mechanix
lllustrated and Popular Science showing the do-it-yourselfer how to
build a go-kart for the kids and how to soup up a lawnmower with an
actual motor! Seventy years later, we’re now firmly entrenched in the
age of do-it-yourself tech, where folks indulge their inner geek to engage
in various forms of digital tinkering and hacking. The personification of
this high-tech hobbyist renaissance is the maker, a modern artisan who
lives to create things rather than merely consume them. Today’s makers
exhibit a wide range of talents, but the skill most sought-after not only
by would-be makers themselves but by the people who hire them is web
coding and development.

Have you ever visited a website and thought, “Hey, I can do better than
that!”? Have you found yourself growing tired of merely reading text
and viewing images that someone else has put on the web? Is there

something creative in you — stories, images, expertise, opinions — that
you want to share with the world? If you answered a resounding “Yes!”
to any of these questions, congratulations: You have everything you need
to get started with web coding and development. You have, in short, the
makings of a maker.

The Nuts and Bolts of Web Coding
and Development

If, as the King said very gravely in Lewis Carroll’s Alice in Wonderland,
it’s best to “begin at the beginning,” you’ve come to the right place. My
goal here is to get you off on the right foot by showing you what web
coding and web development are.

How the web works

Before you can understand web coding and development, you need to
take a step back and understand a bit about how the web itself works. In
particular, you need to know what happens behind the scenes when you
click a link or type a web page address into your browser. Fortunately,
you don’t need to be a network engineer to understand this stuff, because
I can explain the basics without much in the way of jargon. Here’s a
high-level (and not at all serious) blow-by-blow account of what
happens:

1. You tell the web browser the web page you want to visit.

You do that either by clicking a link to the page or by typing the
location — known as the uniform resource locator or URL (usually
pronounced “you-are-ell,” but also sometimes “earl”) — into the
browser’s address bar (see Figure 1-1).

o i & New Tab * +

C (Er https:ﬂwebdekurkshup.iu;‘cade;‘index."1tm||

FIGURE 1-1: One way to get to a web page is to type the URL in the browser’s
address bar.

. The browser decodes the URL.

Decoding the URL means two things. First, the browser sees what
type of resource you’re requesting by checking the prefix of the
URL; this is usually http:// or https://, both of which indicate
that the resource is a web page. Second, it gets the URL's domain
name — the something.com Or whatever.org part — and asks the
domain name system (DNS) to translate this into a unique location
— called the IP (Internet Protocol) address — for the web server that
hosts the page (see Figure 1-2).

Decoding https://webdevworkshop.io/code/index.html...
Results:

Prefix: https://
Domain name: webdevworkshop.io
Web server IP address: 172.64.80.1

FIGURE 1-2: The browser extracts the prefix, domain, and the server address from
the URL.

. The browser contacts the web server and requests the web page.

With the web server's unique IP address in hand, the web browser
sets up a communications channel with the server and then uses that
channel to send along a request for the web page (see Figure 1-3).

Dear 172.64.80.1:

me €he mﬂ&uwonw.io web Poge
located of code/index.fbml.

S l'.meuﬂy,
U Browsen

FIGURE 1-3: The browser asks the web server for the web page.

. The web server decodes the page request.

Decoding the page request involves a number of steps. First, if the
web server is shared between multiple user accounts, the server
begins by locating the user account that owns the requested page.
The server then uses the page address to find the directory that holds
the page and the file in which the page code is stored (see Figure 1-
4).

Decoding https://webdevworkshop.io/code/index.html...
Results:

User account: paulmcfedries
Directory: code
Filename: index.html

FIGURE 1-4: The server uses the page request to get the account, directory, and
filename.

. The web server sends the web page file to the web browser (see
Figure 1-5).

Dear W. Browser:

Thank you for contacting us. Here is
the file you requested. Let us know
if you need anything else.

Best,
webdevworkshop.io Web Server

FIGURE 1-5: The web server sends the requested web page file to the browser.

. The web browser decodes the web page file.

Decoding the page file means looking for text to display, instructions
on how to display that text, and other resources required by the page,
such as images and fonts (see Figure 1-6).

Decoding https://webdevworkshop.io/code/index html...
Results:

Text: Received

Formatting: Request styles.css
Images: Request logo.png
Audio: None

Video: None

Data: Request metadata for code tutorials

FIGURE 1-6: The web browser scours the page file to see if it needs anything else
from the server.

. If the web page requires more resources, the web browser asks
the server to pass along those resources (see Figure 1-7).

. For each of the requested resources, the web server locates the
associated file and sends it to the browser (see Figure 1-8).

. The web browser gathers all the text, images, and other
resources and displays the page in all its digital splendor in the
browser’s content window (see Figure 1-9).

Dear 172.64.80.1:

Thank you fon the pag file. TQ.i&'s nof foo
much €roule, eould you pllease also send

along the following Eoms:

bylos.css

logo.png
Code tuforials mefadafa from Che dafabase

UL Browses

FIGURE 1-7: The web browser goes back to the server to ask for the other data needed to
display the web page.

Dear W. Browser:

You're very welcome. We're here to serve!
We're gathering your order and will send
along the extra data you requested shortly.

Best,
webdevworkshop.io Web Server

FIGURE 1-8: The web server sends the browser the rest of the requested files.

= O @ bpsiwebsewarioiop. i

WEBDEV WORKSHOP

TOOL:E, CODE, AND BOOEKS TO TAEKE YOUR WEE
DEVELOPMENT SEILLS TO THE NEXT LEVEL

CODE

Creating a Toggle Button JavaScript: Inserting Elements JavaScript: Match Any Selector

» 03 :

Using pure 55 to build an Using vanilla JavaScript code to Using JavaScript to check whether
animated togghe button insert elemaents in the DOM an element matches a selector

Tags: C58, interaction, intarace Targs: DOM, JavaSerip! Tegs: JavaSeript, Selactors

Creating Circles with C55 Selector School: Next Sibling (+) Creating Keyboard Shortcuts

Perfect circle shapes with nothing Using the next sibling selector [+) to Make your web apps more efficient
but pure C55 select elements in £55 and jQuery with keyboard shortcuts

Tougs: fawaScripl, mlerachion,
Tags: C55, interfoce Tings: 55, fQuery, selectors keyboard

Making a Hamburger loon Rounding Decimals in JavaScript Selector Reference

FIGURE 1-9: At long last, the web browser displays the web page.

How the web works, take two

Another way to look at this process is to think of the web as a giant mall
or shopping center, where each website is a storefront in that mall. When
you request a web page from a particular site, the browser takes you into
that site’s store and asks the clerk for the web page. The clerk goes into
the back of the store, locates the page, and hands it to the browser. The
browser checks the page and asks for any other needed files, which the
clerk retrieves from the back. This process is repeated until the browser
has everything it needs, and it then puts all the page pieces together for
you, right there in the front of the store.

This metaphor might seem a bit silly, but it serves to introduce yet
another metaphor, which itself illustrates one of the most important
concepts in web development. In the same way that our website store
has a front and a back, so, too, is web development separated into a front
end and a back end:

» Front end: That part of the web page that the web browser displays
in the browser window. That is, the front end 1s the page stuff you

see and interact with.

» Back end: That part of the web page that resides on the web server.
That is, the back end is the page stuff that the server gathers based on
the requests it receives from the browser.

As a consumer of web pages, you only ever deal with the front end, and
even then you only passively engage with the page by reading its
content, looking at its images, or clicking its links or buttons.

However, as a maker of web pages — that is, as a web developer —
your job entails dealing with both the front end and the back end.
Moreover, that job includes coding what others see on the front end,
coding how the server gathers its data on the back end, and coding the
intermediate tasks that tie the two together.

Understanding the Front End.:
HTML and CSS

As I mention in the preceding section, the front end of the web
development process involves what users see and interact with in the
web browser window. It’s the job of the web developer to take a page
design — which you might come up with yourself but is more often
something cooked up by a creative type who specializes in web design
— and make it web-ready. Getting a design ready for the web means
translating the design into the code required for the browser to display
the page somewhat faithfully. (I added the hedge word somewhat there
because it’s not always easy to take a design that looks great in
Photoshop or Illustrator and make it look just as good on the web.
However, with the techniques you learn in this book, you’ll almost
always be able to come pretty close.)

You need code to create the front end of a web page because without it
your page will be quite dull. For example, consider the following text
(found in bk01ch01/example01.html in this book’s example files):

There once was a boy named Flibbertigibbet. No, his parents most certainly
did not give him that name when he was born. That would have been cruel, and
they were really quite nice people. They actually named him Filbert. Yes,
they named him after a nut. They were nice people, but they were also silly

people who often didn't think things through.

One day, when Filbert was about a year old, his mother was bouncing him on
her knee when, mid-dandle, he smiled and said "Momma!" Oh, his mother was
overjoyed that not only had Filbert said his first word but that word had
been "Momma." She called her husband over and Filbert looked right at him and
said "Dadda!" Amazing! They began pointing at him and repeating "Filbert!,
Filbert!" to get him to say his own name. After a while, Filbert creased his
brow as though concentrating ever so seriously, and then said
"Flibbertigibbet!"

Their jaws dropped. How could a boy so young know such a word? Ah, therein
lies a tale. Unbeknownst to his parents, Filbert's maternal grandmother had
been secretly whispering "You're my little Flibbertigibbet" in her grandson's
ear over and over since the day he was born. By the time he was a year old,
the boy didn't know many things, but there was one thing he knew with

unshakeable conviction: His name was Flibbertigibbet!

If you plop that text onto the web, you get the result shown in Figure 1-
10. As you can see, the text is very plain, and the browser didn’t even
bother to include the paragraph breaks.

=

@ hibmigneire, github oy hit itk Y Jing 1= chiti= el = B TEH b [EF e . = i % 0O 5 1

Theere once was & boy nansed Flibbertigibbet. Mo, his parents neeet certsinly did not give him that nsme when be was borm. That would have bees cruel, and they were really
quile mice people. They setually named him Filben, Yes, they named him afier o nut, They were miee peophe, but they were sl silly people who oftes Sidet think things throsgh
O day. when Filber was about a year ald, his mother was bowncimg bim on her knoe when, mid-dandle, be smaled and said “Momma!™ Oh, iz mother was overgoved thal not
omly had Filkert said his first word but that word had been “Momma.® She called her husband over and Filbert locioed right at him and said “Dadda!® Amaring! They began
pointing ut hisn snd repenting "Filken®, Filben® o get him oo sy bis own s Afer o while, Filbert creased his brow as thoisgh concenimating ever so serously, and then sald
"Flibbertagibbet!™ Their jaws dropped. How could a boy so young know such & woed 7 Ah, therein lses a tale, Unbeknownst 1o kis pasees, Filbert's matemal prasdsncahes had
been secretly whispering *You'ro my litgle Flibbertigibbet® in her grandson’s car over and over sinoe the day he was bom. By the time he was a year old. the boy didn't know
masy things, but there was one thing he knew with unsbakeable conviction: His same was Flibberigibbet!

FIGURE 1-10: Text-only web pages are dishwater-dull.

So, if you can’t just throw naked text onto the web, what’s a would-be
web developer to do? Ah, that’s where you start earning your web scout

merit badges by adding code that tells the browser how you want the text

displayed. That code comes in two flavors: structure and formatting.

Adding structure: HTML

The first thing you usually do to code a web page is give it some
structure. This means breaking up the text into paragraphs, adding
special sections such as a header and footer, organizing text into bulleted

or numbered lists, dividing the page into columns, and much more. The
web coding technology that governs these and other web page structures
is called (deep breath) Hypertext Markup Language, or HTML, for short.

HTML is a collection of special symbols called tags that you sprinkle
strategically throughout the page. For example, if you want to tell the
web browser that a particular chunk of text is a separate paragraph, you
place the <p> tag (the p here is short for paragraph) before the text and
the </p> tag after the text.

In the code that follows (check out bkO1chO1/example02.html), I've
added these paragraph tags to the plain text that I show earlier. As shown
in Figure 1-11, the web browser displays the text as three separate
paragraphs, no questions asked.

<p>

There once was a boy named Flibbertigibbet. No, his parents most certainly
did not give him that name when he was born. That would have been cruel, and
they were really quite nice people. They actually named him Filbert. Yes,
they named him after a nut. They were nice people, but they were also silly
people who often didn't think things through.

</p>

<p>

One day, when Filbert was about a year old, his mother was bouncing him on
her knee when, mid-dandle, he smiled and said "Momma!" Oh, his mother was
overjoyed that not only had Filbert said his first word but that word had
been "Momma." She called her husband over and Filbert looked right at him and
said "Dadda!" Amazing! They began pointing at him and repeating "Filbert!,
Filbert!" to get him to say his own name. After a while, Filbert creased his
brow as though concentrating ever so seriously, and then said
"Flibbertigibbet!"

</p>

<p>

Their jaws dropped. How could a boy so young know such a word? Ah, therein
lies a tale. Unbeknownst to his parents, Filbert's maternal grandmother had
been secretly whispering "You're my little Flibbertigibbet" in her grandson's
ear over and over since the day he was born. By the time he was a year old,
the boy didn't know many things, but there was one thing he knew with
unshakeable conviction: His name was Flibbertigibbet!

</p>

@ htmiprevies, github. o hit w i N 0 _; i
There once was a boy named Flibbertigibet. Mo, his parents most cortainky &id not give him that same wien ha was born. That would have been onuel, and they wene really
quite nice people. They actually named him Filbert. Yes, they named him after a mat. They were nice people, bt they were also slly people wiho often didn't think things through

Ome day, wisen Falbert was sboist & year old, Bas mother was bouncing him os ber ki when, sd-dandle, he smiled sl saad " Momma®" Oh, his mother wis overjoyad that o
only bad Falbert said b first word bul that word had been “Mommea.® She called Ber hushand cver and Filbert looked mght at him and sasd "Dadda’™ Amaring” They began
pointing af him and repeaiing “Filbert!. Filberi!® fo get him i say his own name. After s while, Filberi coreased his brow s though concenirating ever so serioushy, and ihen sasd
"Fhibsbemi gt !”

Their jaws dropped. How could a bay so young know such a word? Ak, therein lics a tale. Unbeknowsat 1o his parents, Filbert's magernal grandmother had boon secretly
whispering “You're my lisile Flibbertigibbet® in her grandson’s car over and over since the day he was bom. By the time be was a year old, the boy dide’t know many things, bt
e Wik one Bang he keew with unshakeable comvectaom: His name was Flibheragibher!

FIGURE 1-11: Adding paragraph tags to the text separates the text into three paragraphs.

B

rememeer HTML 1s one of the fundamental topics of web development,
and you learn all about it in Book 2, Chapter 1.

Adding style: CSS

HTML takes care of the structure of the page, but if you want to change
the formatting of the page, you need to turn to a second front-end
technology: cascading style sheets, known almost universally as just
CSS. With CSS in hand, you can play around with the page colors and
fonts, you can add margins and borders around things, and you can mess
with the position and size of page elements.

CSS consists of a large number of properties that enable you to
customize many aspects of the page to make it look the way you want.
For example, the width property lets you specify how wide a page
element should be; the font-family property enables you to specify a
typeface for an element; and the font-size property lets you dictate the
type size of an element’s text. Here's some CSS code that applies all
three of these properties to every p element (that is, every <p> tag) that
appears in a page (note that px is short for pixels):

p {
width: 700px;
font-family: sans-serif;
font-size: 24px;

}

When used with the sample text from the previous two sections, you get
the much nicer-looking text shown in Figure 1-12. (Also check out

bk01chO1/example03.html.)

“ O @ hemipresdewogithil s ritn s fgthub. comipaulme it coding - and -4 Teflobimainbi0 1eh0l fossnpleD 3 ht how S R 0@

There once was a boy named Flibbertigibbet. Mo, his parents most certainly did not
give him that name when he was bom. That would have been cruel, and they were
really quite nice people. Thay actually named him Filbert. Yes, they named him after
a nut, Thiey were nice people, but they were also silly people who often didn think
things through.

One day, when Filbert was about a year old, his mother was bouncing him on her
kniee when, mid-dandle, he smiled and said "Mommal" Oh, his mother was
ovarjoyed that notl only had Filbert said his first word but that word had been
"Momma.” She called her husband over and Filbert looked right at him and said
"Daddal” Amazing! They began pointing at him and repeating "Filbert!, Filber!” to get
him to say his own name. After a while, Filbert creased his brow as though
concentrating ever so seriously, and then said "Flibberligibbet™

Thaeir jaws dropped. How could a boy 20 young know such a word? Ah, therein ies a
tale. Unbeknownst to his parents, Filbert's maternal grandmather had been secrathy
whispering "You're my litthe Flibbertigibbet” in her grandson's ear over and over since
the day he was bom. By the time he was a year old, the boy didn't know many
things, but there was one thing he knew with unshakeabla conviction: His namea was
Flibbertigibbet|

FIGURE 1-12: With the judicious use of a few CSS properties, you can greatly improve the

look of a page.

B

rememeer CSS 1s a cornerstone of web development. You learn much more

about it in Book 2, Chapters 2, 3, and 4.

‘@

rememeer YOU learn quite a bit of CSS in this book, but if you really want
to dive deep into this crucial web development technology, see my
book HTML, CSS & JavaScript All-in-One For Dummies (2023).

Understanding the Back End: PHP
and MySQOL

Many web pages are all about the front end. That is, they consist of
nothing but text that has been structured by HTML tags and styled by
CSS properties, plus a few extra files such as images and fonts. Sure, all
these files are transferred from the web server to the browser, but that’s
the extent of the back end’s involvement.

These simple pages are ideal when you have content that doesn’t change
very often, if ever. With these so-called static pages, you plop in your
text, add some HTML and CSS, perhaps point to an image or two, and
you’re done. Static pages are awesome, by the way, which 1s why I talk
about them in some detail in Book 6.

But another class of page has content that changes frequently. The
content could be posts added once or twice a day, or sports or weather
updates added once or twice an hour. With these so-called dynamic
pages, you might have some text, HTML, CSS, and other content that’s
static, but you almost certainly don’t want to be updating the changing
content by hand.

Rather than making constant manual changes to such pages, you can
convince the back end to do it for you. You do that by taking advantage
of two popular back-end technologies: MySQL and PHP.

Storing data on the server: MySQL

MySQL is a relational database management system that runs on the
server. You use it to store the data you want to use as the source for some
(or perhaps even all) of the data you want to display on your web page.
Using a tool called Structured Query Language (SQL, pronounced “ess-
kew-ell,” or sometimes “sequel’), you can specify which subset of your
data you want to use.

rememeer [f phrases such as “relational database management system™ and
“Structured Query Language” have you furrowing your brow, don’t
sweat it: I explain all in Book 4, Chapter 2.

Accessing data on the server: PHP

PHP is a programming language used on the server. It’s a very powerful
and full-featured language, but for the purposes of this book, you use
PHP mostly to interact with MySQL databases. You can use PHP to
extract from MySQL the subset of data you want to display, manipulate

that data into a form that’s readable by the front end, and then send the
data to the browser.

rememeer YOU learn about the PHP language in Book 4, Chapter 1, and
you learn how to use PHP to access MySQL data in Book 4,
Chapter 3.

How It All Fits Together: JavaScript

Okay, so now you have a front end consisting of HTML structure and
CSS styling, and a back end consisting of MySQL data and PHP code.
How do these two seemingly disparate worlds meet to create a full web
page experience?

In the website-as-store metaphor that I introduce earlier in this chapter, I
use the image of a store clerk taking an order from the web browser and

then going into the back of the store to fulfill that order. That clerk is the
obvious link between the front end and the back end, so what technology
does that clerk represent? That would be JavaScript.

JavaScript is the secret sauce that brings the front end and the back end
together to create the vast majority of the web pages you see today.
JavaScript is a programming language and is the default language used
for coding websites today. JavaScript is, first and foremost, a front-end
web development language. That is, JavaScript runs inside the web
browser and has access to everything on the page: the text, the images,
the HTML tags, the CSS properties, and more. Having access to all the
page stuff means that you can use code to manipulate, modify, and even
add and delete web page elements.

But although JavaScript runs in the browser, it’s also capable of reaching
out to the server to access back-end stuff. For example, with JavaScript
you can send data to the server to store that data in a MySQL database.
Similarly, with JavaScript you can request data from the server and then
use code to display that data on the web page.

rememeer JavaScript is very powerful, very useful, and very cool, so Book
3 takes 11 full chapters to help you learn it well. Also, you learn
how JavaScript acts as a bridge between the front end and the back
end in Book 6, Chapter 1.

How Dynamic Web Pages Work

It’s one thing to know about HTML and CSS and PHP and all the rest,
but it’s quite another to actually do something useful with these
technologies. That, really, is the goal of this book, and to that end the
book spends several chapters covering how to create wonderful things
called dynamic web pages. A dynamic web page 1s one that includes
content that, rather than being hard-wired into the page, is generated on-
the-fly from the web server. This means the page content can change
based on a request by the user, by data being added to or modified on the

server, or in response to some event, such as the clicking of a button or
link.

It likely sounds a bit like voodoo to you now, so perhaps a bit more
detail is in order. For example, suppose you want to use a web page to
display some data that resides on the server. Here’s a general look at the
steps involved in that process:

1. JavaScript determines the data that it needs from the server.

JavaScript has various ways it can do this, such as extracting the
information from the URL, reading an item the user has selected
from a list, or responding to a click from the user.

2. JavaScript sends a request for that data to the server.

In most cases, and certainly in every case you see in this book,
JavaScript sends this request by calling a PHP script on the server.

3. The PHP script receives the request and passes it along to
MySQL.

The PHP script uses the information obtained from JavaScript to
create an SQL command that MySQL can understand.

4. MySQL uses the SQL command to extract the required
information from the database and then return that data to the
PHP script.

5. The PHP script manipulates the returned MySQL data into a
form that JavaScript can use.

JavaScript can’t read raw MySQL data, so one of PHP’s most
important tasks is to convert that data into a format called JavaScript
Object Notation (JSON, for short, and pronounced like the name
“Jason”), which JavaScript is on friendly terms with (see Book 6,
Chapter 1 for more about this process).

6. PHP sends the JSON data back to JavaScript.

7. JavaScript displays the data on the web page.

One of the joys of JavaScript is that you get tremendous control over
how you display the data to the user. Through existing HTML and
CSS, and by manipulating these and other web page elements using
JavaScript, you can show your data in the best possible light.

rememeer 10 expand on these steps and learn how to create your own
dynamic web pages, check out the first three chapters in Book 6.

What Is a Web App?

You no doubt have a bunch of apps residing on your smartphone. If you
use Windows on your PC, you have the pre-installed apps such as Mail
and Calendar and possibly one or more apps downloaded from the
Windows Store. If the Mac is more your style, you’re probably quite
familiar with apps such as Music and Messages, and you might have
installed a few others from the App Store. We live in a world full of apps

that, in the context of your phone or computer, are software programs
dedicated to a single topic or task.

So what then is a web app? It’s very similar to an app on a device or PC.
That is, it’s a website, built using web technologies such as HTML, CSS,
and JavaScript, that has two main characteristics:

» The web app is focused on a single topic or task.

» The web app offers some sort of interface that enables the user to
operate the app in one or more ways.

In short, a web app is a website that looks and acts like an app on a
device or a computer. (Gmail is an example of a web app.) This is
opposed to a regular website, which usually tackles several topics or
tasks and has an interface that for the most part only enables users to
navigate the site.

rememeer 10 get the scoop on building your very own web apps, head over
to the four chapters in Book 7.

Understanding the Difference

between Web Coding and Web

Development

After all this talk of HTML, CSS, MySQL, and JavaScript, after the
bird’s-eye view of static sites, dynamic sites, and web apps, you might
be wondering when the heck I’m going to answer the most pressing
question: What in the name of Sir Tim Berners-Lee (inventor of the
web) is the difference between web coding and web development?

I’m glad you asked! Some people would probably answer that question
by saying there’s no real difference because web coding and web

development are two ways of referring to the same thing: creating web
pages using programming tools.

Hey, it’s a free country, but to my mind I think there’s a useful
distinction to be made between web coding and web development:

» Web coding is the pure programming part of creating a web page,
particularly using JavaScript on the front end and PHP on the back
end.

» Web development is the complete web page creation package, from
building a page with HTML tags, to formatting the page with CSS,
to storing data on the back end with MySQL, to accessing that data
with PHP, to bridging the front and back ends using JavaScript.

However you look at the two terms, this book teaches you everything
you need to know to become both a web coder and a web developer.

Chapter 2

Setting Up Your Web
Development Home

0000000000000 00

IN THIS CHAPTER

» Understanding the need for a web development environment

» Gathering the tools you need for a local development setup

» Installing a local web development environment on a Windows
PC

» Installing a local web development environment on a Mac

» Learning what to look for in a good text editor

He is happiest, be he king or peasant, who finds peace in his home.

— JOHANN WOLFGANG VON GOETHE

One of the truly amazing things about web development is that, with just
a few exceptions — such as images, media files, and server databases —
all you ever work with are basic text files. But surely all the structure
you add with HTML tags requires some obscure and complex file type?
No way, José: It’s text all the way down. What about all that formatting
stuff associated with CSS? Nope: nothing but text. PHP and JavaScript?
Text and, again, text.

What this text-only landscape means is that you don’t need any
highfalutin, high-priced software to develop for the web. A humble text
editor is all you require to dip a toe or two in the web coding waters.

But what if you want to get more than your feet wet in web coding?
What if you want to dive in, swim around, perhaps do a little snorkeling?
Ah, then you need to take things up a notch or three and set up a proper
web development environment on your computer. Doing so will give

you everything you need to build, test, and refine your web development
projects. In this chapter, you get your web coding adventure off to a
rousing start by exploring how to set up a complete web development
environment on your Windows PC or Mac.

What Is a Local Web Development
Environment?

In programming circles, an integrated development environment (IDE) is
a collection of software programs that make it easy and efficient to write
code. Most development environments are tailored to a particular
programming language and come with tools for editing, testing, and
compiling code (that is, converting the code to its final form as an
application).

In the web coding game, we don’t have IDEs, per se, but we do have a
similar beast called a local web development environment, which is also
a collection of software. It usually includes the following:

» A web server

» A relational database management system (RDBMS) to run on the
web server

» A server-side programming language

» An interface for controlling (starting, stopping, and so on) the web
server

» An interface for accessing and manipulating the RDBMS

The key point to grok here is that this 1s a “local” web development
environment, which means it gets installed on your PC or Mac. This
enables you to build and test your web development projects right on
your computer. You don’t need a web hosting service or even an internet
connection. Everything runs conveniently on your computer, so you can
concentrate on coding and leave the deployment of the site until you’re
ready.

Do You Need a Local Web
Development Environment?

Okay, if it’s possible to use a simple text editor to develop web pages,
why not do just that? After all, every Windows PC and Mac in existence
comes with a pre-installed text editor, and lots of free third-party text
editors are ripe for downloading, so why bother installing the software
for a local web development environment?

To be perfectly honest, I’'m not going to stand here and tell you that a
local web development setup is a must. Certainly, if all you’re doing for
now is getting started with a few static web pages built using HTML,
CSS, and JavaScript, you don’t yet need access to the back end.
Similarly, if you are building websites and web apps for your own use
and already have a web host that gives you access to MySQL and PHP,
you can definitely get away with using just your trusty text editor.

However, two major exceptions pretty much require you to build your
web stuff locally:

» You’re building a website or app for someone else and you don’t
have access to their web server.

» You’re building a new version of an existing website or app, which
means you don’t want to mess with the production code while
tinkering (and therefore making mistakes) with the new code.

That said, there’s also something undeniably cool about having a big-
time web server purring away in your computer's background. So, even
if you don’t think you’ll need a full-blown web development
environment in the short term, think about installing one anyway, if only
S0 you can say you’re “running Apache 2.4 locally” at your next cocktail

party.

Setting Up the XAMPP for Windows
Development Environment

If you’re running Windows, I highly recommend the web development
environment XAMPP for Windows, which in its most recent version (at
least as [write this in late-2023) requires Windows Vista or later.
XAMPP for Windows is loaded with dozens of features, but for our
needs the following are the most important:

» Apache: An open-source web server that runs about half of all the
websites on Earth

» MariaDB: An open-source server database that is fully compatible
with MySQL (discussed in Book 1, Chapter 1)

» PHP: The server-side programming language that I talk about briefly
in Book 1, Chapter 1

» phpMyAdmin: An interface that enables you to access and
manipulate MariaDB databases

So, all this high-end software requires big bucks, right? Nope. XAMPP
for Windows is free.

To get started, head to the Apache Friends website at
www.apachefriends.org and download XAMPP for Windows. Be sure

to get the most recent version.

Installing XAMPP for Windows

Once the download is complete, follow these steps to install XAMPP for
Windows:

1. Open the Downloads folder and then launch the installation file
that you downloaded.

The download is an executable file, so you can double-click it to get
the installation off the ground.

https://www.apachefriends.org/

. Enter your User Account Control (UAC) credentials to allow the
install.

If you’re the administrator of your PC, click Yes. Otherwise, you
need to enter the username and password of the PC’s administrator
account.

. When XAMPP displays a warning about installing with UAC
activated, click OK.

This oddly worded warning means that if you install XAMPP in the
default folder (usually c:\Program Files), it might have problems

running normally because UAC imposes restrictions on that folder.
You can ignore this because, in Step 6, I show you how to install
XAMPP in a different folder that doesn't suffer from this problem.

. When the XAMPP Setup Wizard appears, click Next.

5. In the Select Components dialog box, shown in Figure 2-1,

deselect the check box beside any component you don’t want
installed, and then click Next.

For a basic install, you only need Apache, MySQL, PHP, and
phpMyAdmin. If your PC is running low on disk space, consider not
installing the other components. If you’re rich in disk space, go
ahead and install everything because, hey, after all of this you might
be inspired to learn Perl (which is another server-side programming
language).

& Setup

Select Components

B A

—@ MysoL
—® FileZilla FTP Server
— Mercury Mail Server

) Tomcat

8 Perl

—8 phpMyAdmin
R TTI N . v

Select the components you want to install; clear the compeonents you do not want to
install. Click Mext when you are ready to continue,

Click on a component to get a detailed
description

< Back Cancel

FIGURE 2-1: Use this Setup Wizard dialog box to deselect the check box beside
any component you don’t want installed.

. In the Installation Folder dialog box, type the location where you
want XAMPP installed, then click Next.

Be sure to avoid the folders c:\Program Files and C:\Program
Files (x86), for the reason I describe in Step 3. Most folks create a
xampp folder in C:\ and install everything there (as shown in Figure

2-2).

& Setup

Installation folder

Please, choose a folder to install XAMPP

Select a folder C:\xampp|

e

FIGURE 2-2: To install XAMPP, use a subfolder in the main C:\ folder (such as
C: \Xampp).

7. When the Setup Wizard asks what language you want to use,
choose a language and then click Next.

8. Click Next to begin the installation.

9. If you encounter a Windows Security dialog box, click Show
More. Select the Private Networks check box and deselect the
Public Networks check box, as shown in Figure 2-3, and then
click Allow.

rememser HOwever, just because you select the Private Networks check
box, it doesn’t mean that people on your network can access (much
less mess with) your local web server. XAMPP for Windows is
configured out of the box to be accessible only from the computer on
which it’s installed.

Windows Security

Do you want to allow public and private
networks to access this app?

Windows Firewall has blocked some features of Apache HTTP
Server on all public and private networks.

\ Apache HTTP Server

Publisher Apache Software Foundation
Path Chxampphapache\bin\httpd.exe

Allow access to these types of networks

|| Public networks

Private networks

Learn more

Show less

Allow Cancel

FIGURE 2-3: If the Windows Security dialog box shows up, be sure to allow
Apache to communicate on your private network but not on any public networks.

10. When the install is complete, deselect the Do You Want to Start
the Control Panel Now check box.

I talk about the correct way to start the Control Panel in the next
section.

11. Click Finish.

Running the XAMPP for Windows Control Panel

The XAMPP Control Panel enables you to start, stop, and configure the
XAMPP apps, particularly the Apache web server and the MySQL
database system. For best results, you should start the program with
administrator privileges, which you can do by following these steps:

1. Click Start.
2. In the All Apps list, find and open the XAMPP folder.

Depending on your version of Windows, you might have to click All
Apps to get to the All Apps list.

3. Right-click XAMPP Control Panel, click More, and then click
Run as Administrator.

Depending on your version of Windows, you might not have to click
More to get to the Run as Administrator command.

The User Account Control dialog appears.

4. If you’re the administrator of your PC, click Yes. Otherwise, you
need to enter the username and password of the PC’s
administrator account.

The XAMPP Control Panel appears, as shown in Figure 2-4.

[=] xamMPP Contrel Panel v3.3.0 [Cempiled: Apr 6th 2021] - a X

XAMPP Control Panel v3.3.0
Sevice Module PID(s) Port(s) Actions & Netstal
4 Apache Start : Config Logs B Shel
A MyS0L Start dmiin Config Logs Explorer
4 FileZila Start : Config Logs E- Services
Mercury Start Admin Config Logs & Help
x Tomcat Sfart A Config Logs | Qul

=

' [main] Control Panel Version: 3.3.0 [Compiled: Apr Gth 2021]
Al [main] Running with Administrator rights - good!
M [main] XAMPP Installation Directory: “c:\xampph’
AM [main] Checking for prerequisites
' [main] All prerequisites found
M [main] Initializing Modules
0 AM [main] Starting Check-Timer
AM [main] Control Panel Ready

FIGURE 2-4: You use the XAMPP Control Panel to control and configure apps such as
Apache and MySQL.

To start an app, click the corresponding Start button. That button name
changes to Stop, meaning you can later stop the service by clicking its
Stop button.

Q

ne You’ll always want the Apache and MySQL apps running, so
you can save a bit of time by having the XAMPP Control Panel
launch these two apps automatically when you open the program.
Click the Config button near the upper-right corner of the XAMPP
Control Panel window, select the Apache and MySQL check boxes,
and then click Save.

b

rememeer [f when you start an app you run into a Windows Security Alert
dialog box similar to the one shown earlier in Figure 2-3, click

Show More, select the Private Networks check box, deselect the
Public Networks check box, and then click Allow Access.

Accessing your local web server

With XAMPP for Windows installed and Apache up and running,
congratulations are in order: You have a web server running on your PC!
That’s great, but how do you access your shiny, new web server? There
are two ways, depending on what you want to do:

» Add files and folders to the web server: Place the files and folders
in the htdocs subfolder of your main XAMPP install folder. For

example, if you installed XAMPP to c:\xampp, your web server's
root folder will be ¢: \xampp\htdocs.

» View the files and folders on the server: Open your favorite web
browser and navigate to the http://localhost address (or to

127.0.0.1, which gets you to the same place). If you have the

XAMPP Control Panel open, you can also click the Apache app's
Admin button.

By default, your local website is configured to automatically redirect
http://localhost tO http://localhost/dashboard/, shown in Figure
2-5, which gives you access to several XAMPP tools.

You can use the following links, which appear in the page header:

» Apache Friends: Returns you to the main Dashboard page.
» FAQs: Displays a list of XAMPP frequently asked questions.

» How-To Guides: Displays a list of links to step-by-step guides for a
number of XAMPP for Windows tasks.

» PHPInfo: Displays a for-geeks-only page of information about the
version of PHP that you have installed.

L3 C (D 127000 /dashboa e ad 0O & i

Apache Friends ~ FADs HOW-TOGuides PHPink phpMyAdmin

XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for Windows 8.2.4

You have successiully installed XAMPF on this system! NMow you can starl using Apache, ManaDB, PHF and other components. You can

find more indo in the FALS section or check the HOW-T sindes for getting started with FHP applications

FIGURE 2-5: The http://localhost/dashboard/ address gives you access to a few
XAMPRP tools.

» phpMyAdmin: Opens the phpMyAdmin tool, which lets you create
and manipulate MariaDB/MySQL databases. You can open
phpMyAdmin also by navigating directly to
http://localhost/phpmyadmin/, or in the XAMPP Control Panel,
by clicking the MySQL app's Admin button. However you get there,
just be sure to have the MySQL app running before you open
phpMyAdmin.

Setting Up the XAMPP for OS§ X
Development Environment

If you’ll be doing your web work on a Mac, I recommend the web
development environment XAMPP for OS X (yep, the name uses OS X
instead of macOS), which in its most recent version (at least as I write
this in mid-2023) requires OS X Snow Leopard (10.6) or later. XAMPP
for OS X is packed with programs and features, but you’ll probably only
concern yourself with the following:

» Apache: An open-source web server that runs about half of all the
websites on Earth

» MariaDB: An open-source server database fully compatible with
MySQL (discussed in Book 1, Chapter 1)

» PHP: The server-side programming language that [mention in Book
1, Chapter 1

» phpMyAdmin: An interface that enables you to access and work
with MariaDB databases

The best news of all is XAMPP for OS X is completely free. Nice! To
get the show on the road, surf to the Apache Friends website at
www.apachefriends.org, and then download the most recent version of

XAMPP for OS X.

Installing XAMPP for OS' X

Once you've downloaded XAMPP for OS X, follow these steps to install
it:

1. In Finder, double-click the installation file that you downloaded
to open the XAMPP installer window.

2. Double-click the XAMPP icon.

3. If macOS displays a warning that “the developer cannot be
verified,” you need to do the following to get back on track:

a. Click Cancel.
b. Open System Settings and click Privacy & Security.
c. Click the Open Anyway button.

d. Enter your Mac administrator credentials, and then click the
Modify Settings button.

e. In Finder, double-click the XAMPP icon you downloaded
earlier to restart the installer.

f. When macOS warns you once again that “the developer
cannot be verified,” say “It’s cool, bro” and click Open.

4. Enter your macOS administrator password and then click OK.

5. When the XAMPP Setup Wizard appears, click Next.

https://www.apachefriends.org/

6. In the Select Components dialog, deselect the XAMPP Developer
Files check box, as shown in Figure 2-6, and then click Next.

The developer files might sound like they’re right up your alley, but
they’re for people who want to add to or modify the code for
XAMPP itself.

7. In the Installation Directory dialog, click Next.
8. Click Next to launch the installation.

9. If macOS asks whether you want the application “httpd” (that
would be the Apache web server) to accept incoming network
connections, be sure to click Allow.

Otherwise, your web server won’t work.

[] Setup

Select Components

Select the components you want to install; clear the components you do not want
to install. Click Next when you are ready to continue.

Click on a component to get a

detailed description
XAMPF Developer Files

Cancel < Back Mext =

FIGURE 2-6: In the Setup wizard dialog, deselect the check box beside XAMPP
Developer Files.

10. When the install is complete, click Finish.

If you want to head right into XAMPP Manager, leave the Launch
XAMPP check box selected.

rememeer What about the security of your local web server? Fortunately,
that’s not an issue because people on your network can’t access
your web server. XAMPP is configured by default to be accessible
only from the Mac on which it’s installed.

Running XAMPP Application Manager

XAMPP Application Manager enables you to start, stop, and configure
the XAMPP servers, particularly the Apache web server and the MySQL
database system. To launch XAMPP Application Manager, you have two
choices:

» If you still have the final Setup wizard dialog onscreen, leave the
Launch XAMPP check box selected and click Finish.

» In Finder, open the Applications folder, open the XAMPP folder, and
then double-click Manager-OSX.

XAMPP Application Manager appears. To work with the XAMPP
servers, click the Manage Servers tab, shown in Figure 2-7.

] XAMPP 8.2.4-0
Welcome Manage Servers Server Events
Server Status

@ MySQL Database Stopped Start

& ProFTPD Stﬂp;‘:Ed Stop

£ Apache Web Server Running

Restart
Configure

Start All Stop All Restart All

FIGURE 2-7: You use the XAMPP control panel to control and configure services such as
Apache and MySQL.

In the Manage Servers tab, you can perform the following actions:

» Start a server. Click the server and then click Start.

» Start all the servers. Click Start All.

» Restart a server. Click the server and then click Restart.
» Restart all the servers. Click Restart All.

» Stop a server. Click the server and then click Stop.

» Stop all the servers. Click Stop All.

Accessing your local web server

With XAMPP for OS X installed and Apache up and running, it’s time
for high-fives all around because you have a web server running on your
Mac! That’s awesome, but how do you access your web server? There
are two ways, depending on what you want to do:

» Add files and folders to the web server: Place the files and folders
in the htdocs subfolder of your main XAMPP install folder. To get

there, open Applications, open XAMPP, and then double-click
htdocs. Alternatively, if you have XAMPP Application Manager
open, you can click the Welcome tab, click Open Application Folder,
and then open htdocs.

» View the files and folders on the server: Open your favorite web
browser and navigate to the http://localhost address (or to

http://127.0.0.1, which gets you to the same place). Alternatively,

if you have XAMPP Application Manager running, you can click the
Welcome tab and then click Go To Application.

L [E welcoms 1o KAl N

L

. D localhwostidachbasrd, G M &

Apacha Frionds FAOs HOW-TO Gubdes PHPinis prhpbylidimin

XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for OS X 8.2.4

Wou have successiully installed XAMPF on this syatem! Now you can star using Apache, MariaD8, PHF and other componants. You

can find mong info in the FAQS section or chack the HOW-TO Guides for getting staded with PHP applcations

FIGURE 2-8: The nttp://localhost/dashboard/ address gives you access to a few XAMPP
for OS X features.

By default, your local website is configured to automatically redirect
http://localhost tO http://localhost/dashboard/, shown in Figure
2-8, which gives you access to several XAMPP tools.

You can use the following links in the page header:

» Apache Friends: Returns you to the main Dashboard page.
» FAQs: Displays a list of XAMPP frequently asked questions.

» How-To Guides: Displays a list of links to step-by-step guides for a
number of XAMPP for OS X tasks.

» PHPInfo: Displays a for-geeks-only page of information about the
version of PHP that you have installed.

» phpMyAdmin: Opens the phpMyAdmin tool, which lets you create
and manipulate MariaDB/MySQL databases. You can also open
phpMyAdmin by navigating directly to
http://localhost/phpmyadmin/. Either way, make sure you have
the MySQL Database server running before you open phpMyAdmin.

Choosing Your Text Editor

I mention at the beginning of this chapter that all you need to develop
web pages is a text editor. However, saying that all you need to code is a
text editor is like saying that all you need to live is food: It's certainly
true, but more than a little short on specifics. After all, to a large extent,
the quality of your life depends on the food you eat. If you survive on
nothing but bread and water, well, surviving is all you're doing. What
you really need is a balanced diet that supplies all the nutrients your
body needs. And pie.

The bread-and-water version of a text editor is the barebones program
that came with your computer: Notepad if you run Windows, or TextEdit
if you have a Mac. You can survive as a web developer using these
programs, but that’s not living, if you ask me. You need the editing
equivalent of vitamins and minerals (and, yes, pie) if you want to
flourish as a web coder. These nutrients are the features and tools that
are crucial to being an efficient and organized developer:

» Syntax highlighting:Syntax refers to the arrangement of characters
and symbols that create correct programming code, and syntax
highlighting is an editing feature that color-codes certain syntax
elements for easier reading. For example, while regular text might
appear black, all HTML tags might be shown in blue and CSS
properties might appear red. The best text editors let you choose the
syntax colors, either by offering prefab themes or by letting you
apply custom colors.

» Line numbers: It might seem like a small thing, but having a text
editor that numbers each line, as shown in Figure 2-9, can be a major
timesaver. When the web browser alerts you to an error in your code
(refer to Book 5, Chapter 2), it gives you an error message and,
crucially, the line number of the error. This enables you to quickly
locate the culprit and (fingers crossed) fix the problem pronto.

» Code previews: A good text editor will let you view a preview of
how your code will look in a web browser. The preview might
appear in the same window as your code or in a separate window,
and it should update automatically as you modify and save your
code.

» Code completion: When you start typing something, this handy
feature displays a list of possible code items that complete your
typing. You can then select the one you want and press Tab or Enter
to add it to your code without having to type the whole thing.

» Spell checking: You always want to put your best web foot forward,
which in part means posting pages that don’t contain typos or
misspellings. A good text editor has a built-in spell checker that will
catch your gaffes before you put your pages on the web.

1 f!eOCTYPE himl=
} <html Langs"en™=
whiepd=
<meta charset="ytf=-8"=
=meta nanme="viewport" content="width=device-width, initial-scale=1.8%=
=title=Adding Padding</titlex
<itylex
{
9 b z Bord Lk
18 }
11
12 body {
3 -
ustify
}
18 aside {
19 border: Ipx solid Eblack;
29 margin: 1.5rem;
21 1
.padded {
padding: 1lrem:
1
<fetyle=
< fhead=
28 <body=
29 <aside class="padded">
<teMoter</b= Creating & new word by chopping off the initial letter or syllable of an existing word
31 is called =i=aphaeresis</i» (which means “to take away™). This not-as-uncommon-as-you-might=think
32 process was the scurce of words such as <i=mend</i> (a shortening of <i-amend</i=), <i=spy</i= {from
33 cimgspy</i=), «wizcutec/i= [(from <i=acutec/i=}, amd <isquire</i= (from <iresquirec/i=}.
34 ofasides
<fbody=
< fhtml>

FIGURE 2-9: Line numbers, such as the ones shown here down the left side of the
window, are a crucial text editor feature.

» Text processing: The best text editors offer a selection of text
processing features, such as automatic indentation of code blocks,
converting tabs to spaces and vice versa, shifting chunks of code
right or left, removing unneeded spaces at the end of lines, and
hiding blocks of code.

The good news is that there’s no shortage of text editors that support all
these features and many more. That’s also the bad news because it
means you have a huge range of programs to choose from. To help you
get started, here, in alphabetical order, are a few editors to take for test
drives:

» Brackets (https://brackets.io/): Available for Windows and
Mac. Also free!

https://brackets.io/

» Notepad++ (https://notepad-plus-plus.org/): Available for
Windows only. Another freebie.

» Nova (https://nova.app): Available for Mac only. $99, but a free
trial is available.

» Sublime Text (www.sublimetext.com): Available for both Windows
and Mac. $99, but a free trial is available.

» Visual Studio Code (https://code.visualstudio.com/):
Available for Windows and Mac. Why, yes, this one is free, as well.

https://notepad-plus-plus.org/
https://nova.app/
http://www.sublimetext.com/
https://code.visualstudio.com/

Chapter 3

Finding and Setting Up a Web
Host

IN THIS CHAPTER

» Understanding web hosting providers

» Examining the various choices for hosting your site
» Choosing the host that’s right for you
» Getting comfortable with your new web home

» Getting your site files to your web host

You will end up with better software by releasing as early as practically
possible, and then spending the rest of your time iterating rapidly based
on real-world feedback. So trust me on this one: Even if version I sucks,
ship it anyway.

— JEFF ATTWOOD

You build your web pages from the comfort of your Mac or PC, and if
you have a local development environment running (as I describe in
Book 1, Chapter 2), you can even use your computer to preview how
your web pages appear before you put them online.

That’s fine and dandy, but I think you’ll agree that the whole point of
building a web page is to, you know, put it on the web! First, you need to
subject your code to the wilds of the wider web to make sure it works
out there. Even if it seems to be running like a champ on your local
server, you can’t give it the seal of approval until you’ve proven that it
runs champlike on a remote server. Second, once your code is ready, the
only way the public can appreciate your handiwork is for you to get it
out where they can access it.

Whether you’re testing or shipping your code, you need somewhere to
put it, and that’s what this chapter is about. Here you explore the wide
and sometimes wacky world of web hosts. You delve into what they
offer, investigate ways to choose a good one, and then take a tour of your
web home away from home.

Understanding Web Hosting
Providers

A common question posed by web development newcomers is “Where
the heck do I put my web page when it’s done?” If you’ve asked that
question, you’re doing okay because it means you’re clued in to
something crucial: Just because you’ve created a web page and you have
an internet connection doesn’t mean your site is automatically part of the
web.

After all, people on the web have no way of getting to your computer.
Even if you’re working with a local web development environment
(which I discuss in Book 1, Chapter 2), you’re working in splendid
isolation because no one either on your network or on the internet can
access that environment.

In other words, your computer isn’t set up to hand out documents (such
as web pages) to remote visitors who ask for them. Computers that can
do this are called servers (because they serve stuff out to the web), and
computers that specialize in distributing web pages are called web
servers. So, your web page isn’t on the web until you store it on a remote
web server. Because this computer is, in effect, playing host to your
pages, such machines are also called web hosts. Companies that run
these web hosts are called web hosting providers.

Now, just how do you go about finding a web host? Well, the answer to
that depends on a bunch of factors, including the type of site you have,
how you get connected to the internet in the first place, and how much
money (if any) you’re willing to fork out for the privilege. In the end,
you have three choices:

» Your existing internet provider
» A free hosting provider

» A commercial hosting provider

rememeer [0 the rest of this chapter, I assume that you want a web host that
enables you not only to store HTML, CSS, and JavaScript files but
also to work with MySQL data and PHP scripts on the server. If
you’ll be creating a static site that doesn’t require a full-fledged
server, you should consider some excellent (and free!) hosting
alternatives. See Book 6, Chapter 4 to learn how to create and
deploy static web pages.

Using your existing internet provider

If you access the internet via a corporate or educational network, your
institution might have its own web server you can use. If you get online
via an internet service provider (ISP), surf to the ISP’s support pages,
which should tell you whether the company has a web server available.
Almost all ISPs provide space so their customers can put up personal
pages free of charge.

Finding a free hosting provider

If cash is in short supply, a few hosting providers will bring your website
in from the cold out of the goodness of their hearts. In some cases, these
services are open only to specific groups such as students, artists, and
nonprofit organizations. However, plenty of providers put up personal
sites free of charge.

What’s the catch? Well, there are almost always restrictions both on how
much data you can store and on the type of data you can store (no ads,
no dirty pictures, and so on). You might also be required to display some
kind of banner advertisement for the hosting provider on your pages.

Signing up with a commercial hosting provider

For personal and business-related websites, many web artisans end up
renting a chunk of a web server from a commercial hosting provider.
You normally hand over a setup fee to get your account going and then
pay a monthly fee.

Why shell out all that cash when so many free sites are lying around?
Because, as with most things in life, you get what you pay for. By
paying for your host, you generally get more features, better service, and
fewer annoyances (such as the ads that some free sites have you
display).

A Buyer’s Guide to Web Hosting

Unfortunately, choosing a web host isn’t as straightforward as you might
like 1t to be. For one thing, hundreds of hosts are clamoring for your
business; for another, the pitches and come-ons your average web host
employs are strewn with jargon and technical terms. I can’t reduce the
number of web hosts, but I can help you understand what those hosts are
yammering about. Here’s a list of the terms you’re most likely to come
across when researching web hosts:

» Storage space: This term refers to the amount of room allotted to
you on the host’s web server to store your files. The amount of
acreage you get determines the amount of data you can store. For
example, if you get a IMB (1 megabyte) limit, you can’t store more
than 1MB worth of files on the server. HTML files don’t take up
much real estate, but large graphics sure do, so you need to watch
your limit. For example, you could probably store about 200 pages in
IMB of storage (assuming about SKB per page), but only about 20
images (assuming about 50KB per image). Generally, the more you
pay for a host, the more storage space you get.

» Bandwidth: The bandwidth is a measure of how much of your data
the server serves. For example, suppose the HTML file for your page
is 1KB (1 kilobyte) and the graphics associated with the page
consume 9KB. If someone accesses your page, the server ships out a
total of 10KB; if ten people access the page (either at the same time

»

or over a period of time), the total bandwidth is 100KB. Most hosts
give you a bandwidth limit (or cap), which is most often a certain
number of megabytes or gigabytes per month. (A gigabyte is equal to
about 1,000 megabytes.) Again, the more you pay, the greater the
bandwidth you get.

warning [f you exceed your bandwidth limit, users will usually still
be able to get to your pages (although some hosts shut down access
to an offending site). However, almost all web hosts charge you an
extra fee for exceeding your bandwidth, so check this out before
signing up. The usual penalty is a set fee per every megabyte or
gigabyte over your cap.

Domain name: The domain name is a general internet address, such
as wiley.com Or whitehouse.gov. A domain name tends to be easier
to remember than the long-winded addresses most web hosts supply
you by default, so they’re a popular feature. Two types of domain
names are available:

e A regular domain name (such as yourdomain.com Or

yourdomain. org)

e A subdomain name (such as

yourdomain.webhostdomain.com)
To get a regular domain, you either need to use one of the many
domain registration services such as GoDaddy (www.godaddy.com) or
Register.com(www.register.com). A more convenient route is to

choose a web hosting provider that will do this for you. Either way, it
will usually cost you $35 per year (although some hosts offer cheap
domains as a loss leader and recoup their costs with hosting fees;
also, discount domain registrars such as GoDaddy offer domains for
as little as $9.99 per year (although that price might only apply to the
first year, so buyer beware). If you go the direct route, almost all web
hosts will host your domain, which means that people who use your
domain name will get directed to your website on the host’s web

http://wiley.com/
http://whitehouse.gov/
https://www.godaddy.com/
http://register.com/
https://www.register.com/

»

»

»

»

server. For this to work, you must tweak the domain settings on the
registrar. This task usually involves changing the DNS servers
associated with the domain so that they point to the web host’s
domain name servers. Your web host will give you instructions on
how to do this.

With a subdomain name, webhostdomain.com 1S the domain name of

the web hosting company, and it simply tacks on whatever name you
want at the beginning. Many web hosts will provide you with this
type of domain, often for free.

Email addresses: Most hosts offer you one or more email addresses
along with your web space. The more you pay, the more mailboxes
you get. Some hosts offer email forwarding, which enables you to
have messages sent to your web host address rerouted to some other
email address.

Shared server: If the host offers a shared server (or virtual server),
you'll be sharing the server with other websites — dozens or even
hundreds of them. The web host takes care of all the highly technical
server management chores, so all you have to do is maintain your
site. This option is by far the best (and cheapest) choice for
individuals or small business types.

Dedicated server: With a dedicated server, you get your own server
computer on the host. That may sound like a good thing, but it’s
usually up to you to manage the server, which can be a dauntingly
technical task. Also, dedicated servers are much more expensive than
shared servers.

Operating system: You usually have two choices for the operating
system on the web server, Unix (or Linux) and Windows Server.
Unix systems have the reputation of being very reliable and fast,
even under heavy traffic loads, so they’re usually the best choice for
a shared server. Windows systems are a better choice for dedicated
servers because they’re easier to administer than their Unix cousins.
Note, too, that Unix servers are case sensitive in terms of file and
directory names, while Windows servers are not.

http://webhostdomain.com/

»

»

»

»

»

»

»

Databases: This term refers to the number and type of databases you
may create with your account. Unix systems usually offer MySQL
databases, whereas Windows servers offer SQL Server databases.

Administration interface: This is the host app that you use to
perform tasks on the server, such as uploading files or creating users.
Many hosts offer the excellent cPanel interface, and most Unix-
based systems offer the phpMyAdmin app for managing your
MySQL data.

Ad requirements: A few free web hosts require you to display some
type of advertising on your pages, such as a banner ad across the top
of the page, a pop-up ad that appears each time a person accesses
your pages, or a watermark ad, usually a semitransparent logo that
hovers over your page. Fortunately, free hosts that insist on ads are
rare these days, so you can usually find a host without this
requirement (your visitors will thank you!).

Uptime: Uptime refers to the percentage of time the host’s server is
up and serving. There’s no such thing as 100 percent uptime because
all servers require maintenance and upgrades at some point.
However, the best hosts have uptime numbers over 99 percent. (If a
host doesn’t advertise its uptime, it’s probably because it’s very low.
Be sure to ask before committing yourself.)

Tech support: If you have problems setting up or accessing your
site, you want to know that help — in the form of tech support — is
just around the corner. The best hosts offer 24/7 tech support, which
means you can contact the company — by chat, phone, or email —
24 hours a day, 7 days a week.

FTP support: You usually use the internet’s F'TP service to transfer
your files from your computer to the web host. If a host offers F' 7P
access (some hosts have their own method for transferring files), be
sure you can use it any time you want and there are no restrictions on
the amount of data you can transfer at one time.

Website statistics: Website statistics will tell you things such as how
many people have visited your site, which pages are the most
popular, how much bandwidth your site is consuming, and which

browsers and browser versions surfers are using. Most decent hosts
offer a ready-made stats package, but the best ones also give you
access to the raw log files so you can play with the data yourself.

» Ecommerce: Some hosts offer a service that lets you set up a web
store so you can sell stuff on your site. This service usually includes
a shopping script, access to credit card authorization and other
payment systems, and the capability to set up a secure connection.
You usually get this feature in only the more expensive hosting
packages, and you’ll most often have to pay a setup fee to get your
store built.

» Scalability: This term refers to the host's capability to modify your
site’s features as required. For example, if your site becomes popular,
you might need to increase your bandwidth limit. If the host is
scalable, it can easily change your limit (or any other feature of your
site).

Finding a Web Host

Okay, you’re ready to start researching the hosts to find one that suits
your web style. As [mention earlier, there are hundreds, perhaps even
thousands, of hosts, so how is a body supposed to whittle them down to
some kind of short list? Here are some ideas:

» Ask your friends and colleagues. The best way to find a good host
is that old standby, word of mouth. If someone you trust says a host
is good, chances are you won’t be disappointed — assuming you and
your pal have similar hosting needs. If you want a full-blown
ecommerce site, don’t solicit recommendations from someone who
has only a humble home page.

» Solicit host reviews from experts. Ask existing webmasters and
other people “in the know” about which hosts they recommend or
have heard good things about. A good place to find such experts is
Web Hosting Talk (www.webhostingtalk.com), a collection of

forums related to web hosting.

https://www.webhostingtalk.com/

» Contact web host customers. Visit sites that use a particular web
host and send an email message to the webmaster asking what they
think of the host’s service.

» Peruse the lists of web hosts. A number of sites track and compare
web hosts, so they’re an easy way to get in a lot of research. Careful,
though, because a lot of sketchy lists are only trying to make a buck
by getting you to click ads. Here are some reputable places to start:

e CNET Web Hosting Solutions: www.cnet.com/web-hosting

e PC Magazine Web Site Hosting Services Reviews:

WWW.PRpCmag.com/reviews/web-hosting-services

e Review Hell: www.reviewhell.com

e Review Signal Web Hosting Reviews:

https://reviewsignal.com/webhosting

Finding Your Way around Your New
Web Home

After you sign up with a web hosting provider and your account is
established, the web administrator creates two things for you: a directory
on the server that you can use to store your website files, and your very
own web address. (This is true also if you’re using a web server
associated with your corporate or school network.) The directory —
which is known in the biz as your root directory — usually takes one of
the following forms:

/yourname/
/home/ yourname/

/yourname/public_html/

In each case, yourname is the login name (or username) the provider
assigns to you, or it may be your domain name (with or without the .com
part). Remember, your root directory is a slice of the host's web server,
and this slice 1s yours to mess around with however you like. Usually,
you can do all or most of the following to the root:

https://www.cnet.com/web-hosting/
https://www.pcmag.com/reviews/web-hosting-services
https://www.reviewhell.com/
https://reviewsignal.com/webhosting

» Add files to the directory.

» Add subdirectories to the directory.

» Move or copy files from one directory to another.
» Rename files or directories.

» Delete files from the directory.

Your web address normally takes one of the following shapes:

https://provider/yourname/
https://yourname.provider/

https://www.yourname.com/

Here, provider is the host name of your provider (for example,
www.hostcompany.com OF just hostcompany. com), and yourname 1s your
login name or domain name. Here are some examples:

https://www.hostcompany.com/mywebsite/
https://mywebsite.hostcompany.com/

https://www.mywebsite.com/

Your directory and your web address

A direct and important relationship exists between your server directory
and your address. That is, your address points to your directory and
enables other people to view the files you store in that directory. For
example, suppose I decide to store a file named thingamajig.html in
my directory and my main address is
https://mywebsite.hostcompany.com/. This means someone else can
view that page by typing the following URL into a web browser:

https://mywebsite.hostcompany.com/thingamajig.html

Similarly, suppose I create a subdirectory named stuff and use it to
store a file named index.html. A surfer can view that file by convincing
a web browser to head for the following URL:

https://mywebsite.hostcompany.com/stuff/index.html

In other words, folks can surf to your files and directories by
strategically tacking on the appropriate filenames and directory names

https://www.hostcompany.com/
https://www.hostcompany.com/
https://https//mywebsite.hostcompany.com/

after your main web address.

rememeer FOr most web servers, the default file in each directory is
index.html, where default means it’s the file that gets served if no
filename 1s specified. For example, the following addresses will
both display the index.nhtm1 file:

https://mywebsite.hostcompany.com/stuff/index.html
https://mywebsite.hostcompany.com/stuff/

Making your hard disk mirror your web home

As a web developer, one of the key ways to keep your projects organized
is to set up your directories on your computer, and then mirror those
directories on your web host. Believe me, this will make your testing and
uploading duties immeasurably easier.

rememser Copying a file from your computer to a remote location (such as
your web host's server) is known in the file transfer trade as
uploading.

This process begins at the root. On the web host, you already have a root
directory assigned to you by the hosting provider, so now you need to
designate a folder on your computer to be the root mirror. If you’re using
the XAMPP web development environment (refer to Book 1, Chapter 2),
the XAMPP installation’s htdocs subfolder is perfect as your local root.
Otherwise, choose or create a folder on your computer to use as the local
root.

What you do from here depends on the number of web development

projects you’re going to build, and the number of files in each project:

» A single web development project consisting of just a few files: In
this case, just put all the files into the root directory.

» A single web development project consisting of many files: The
more likely scenario for a typical web development project is to have
multiple HTML, CSS, JavaScript, and PHP files, plus lots of
ancillary files such as images and fonts. Although it’s okay to place
all your HTML files in the root directory, do yourself a favor and
organize all your other files into subfolders by file type: a css

subfolder for CSS files, a 5s subfolder for JavaScript files, and so on.

» Multiple web development projects: As a web developer, you'll
almost certainly create tons of web projects, so it’s crucial to
organize them. The ideal way to do this is to create a separate root
subdirectory for each project. Then within each of these
subdirectories, create sub-subdirectories for file types such as CSS,
JavaScript, images, and so on.

To help you understand why mirroring your local and remote directory
structures is so useful, suppose you set up a subfolder on your computer
named graphics that you use to store your image files. To insert into
your page a file named mydog. jpg from that folder, you'd use the
following reference:

graphics/mydog.Jjpg

When you send your HTML file to the server and then display the file in
a browser, it looks for mydog. jpg in the graphics subdirectory. If you
don't have such a subdirectory — either you didn’t create it or you used
a different name, such as images — the browser won’t find mydog. jpg
and your image won't appear. However, if you match the subdirectories
on your web server with the subfolders on your computer, your page will
work properly without modifications both at home and on the web.

warnine One common faux pas beginning web developers make is to
include the local drive and all the folder names when referencing a
file. Here’s an example:

C:\xampp\htdocs\graphics\mydog.jpg

This image will show up just fine when it’s viewed from your computer.
But it will fail miserably when you upload it to the server and view it on
the web because the c:\xampp\htdocs\ part exists only on your
computer.

warning The Unix (or Linux) computers that play host to the vast
majority of web servers are downright finicky when it comes to
uppercase and lowercase letters in file and directory names. It’s
crucial that you check the file references in your code to be sure the
file and directory names you use match the combination of
uppercase and lowercase letters used on your server. For example,
suppose you have a CSS file on your server that’s named
styles.css. If your HTML references that file as, say, sTyLES.CSS,

the server won't find the file and your styles won’t get applied.

Uploading your site files

Once your web page or site is ready for its debut, it’s time to get your
files to your host’s web server. If the server is on your company or
school network, you send the files over the network to the directory set
up by your system administrator. Otherwise, you upload the files to the
root directory created for you on the hosting provider’s web server.

How you go about uploading your site files depends on the web host, but
here are the four most common scenarios:

» Use an FTP program. It’s a rare web host that doesn’t offer support
for the File Transfer Protocol (FTP, for short), which is the internet’s
most popular method for transferring files from here to there. To use
FTP, you usually need to get a piece of software called an FTP
client, which enables you to connect to your web host’s FTP server
(your host can provide you with instructions for this) and offers an
interface for standard file tasks, such as navigating and creating
folders, uploading the files, and deleting and renaming files. Popular
Windows clients are CuteFTP (www.globalscape.com/cuteftp) and

https://www.globalscape.com/cuteftp

Cyberduck (https://cyberduck.io). For the Mac, try Transmit
(https: panic.com transmit)OrIﬁleZiﬂa(httDs: filezilla-

project.org)

» Use your text editor’s file upload feature. Some text editors come
with an FTP client built-in, so you can edit a file and then
immediately upload it with a single command. The Nova text editor
(https://nova.app) supports this too-handy-for-words feature.

» Use the File Manager feature of cPanel. I mention earlier that lots
of web hosts offer an administration tool called cPanel that offers an
interface for hosting tasks such as email and domain management.
cPanel also offers a file manager feature that you can use to upload
files and perform other file management chores.

» Use the web host’s proprietary upload tool. For some reason, a
few web hosts offer only their own proprietary interface for
uploading and messing around with files and directories. Refer to
your host’s Help or Support page for instructions.

Making changes to your web files

What happens if you send a web development file to your web host and
then realize you’ve made a typing gaffe or spy a coding mistake? Or
what if you have more information to add to one of your web pages?
How do you make changes to the files you’ve already sent?

Well, here’s the short answer: You don’t. That’s right, after you’ve sent
your files, you never have to bother with them again. That doesn’t mean
you can never update your site, however. Instead, you make your
changes to the files that reside on your computer and then send these
revised files to your web host. These files replace the old files, and your
site is updated just like that.

warning Be sure you send the updated file to the correct directory on the
server. Otherwise, you may overwrite a file that happens to have the
same name in some other directory.

https://cyberduck.io/
https://panic.com/transmit/
https://filezilla-project.org/
https://nova.app/

Book 2

Coding the Front End, Part 1:
HTML and CSS

Contents at a Glance

Chapter 1: Structuring the Page with HTML
Getting_the Hang_of HTML
Understanding_Tag_Attributes

Learning_ the Fundamental Structure of a Web Page

Some Notes on Structure versus Style

Applying_the Basic Text Tags

Creating Links

Building Bulleted and Numbered Lists

Inserting_Special Characters

Inserting_Images
Carving_Up the Page
Commenting_Your HTML Code
Chapter 2: Styling the Page with CSS

Figuring_ Out Cascading_Style Sheets

Getting_the Hang_ of CSS Rules and Declarations

Adding_Styles to a Page

Styling Page Text
Working_with Colors

Getting_ to Know the Web Page Family
Using CSS Selectors

Reuvisiting the Cascade

Chapter 3: Sizing and Positioning Page Elements
Learning_about the CSS Box Model
Styling Sizes
Adding_Padding

Building_ Borders

Making_Margins
Getting_a Grip on Page Flow

Floating_Elements

Positioning Elements

Chapter 4: Creating the Page Layout
What Is Page Layout?

Making_Flexible Layouts with Flexbox
Shaping_the Overall Page Layout with CSS Grid

Chapter 1
Structuring the Page with HTML

0000000000000 00

IN THIS CHAPTER
» Getting comfy with HTML
» Figuring out HTML tags and attributes

» Understanding the basic blueprint for all web pages
» Adding text, images, and links to your page

» Building bulleted and numbered lists

I am always fascinated by the structure of things, why do things work
this way and not that way.

— URSUS WEHRLI

When it comes to web development, it’s no exaggeration to say that the
one indispensable thing, the sine qua non for those of you who studied
Latin in school, is HTML. Absolutely everything else you make as a
web developer — your CSS rules, your JavaScript code, even your PHP
scripts — can’t hang its hat anywhere but on some HTML. These other
web development technologies don’t even make sense outside of an
HTML context.

So, in a sense, this chapter is the most important for you as a web coder
because all the rest of the book depends to a greater or lesser degree on
the HTML know-how found in the following pages. If that sounds
intimidating, not to worry: One of the great things about HTML is that
it’s not a huge topic, so you can get up to full HTML speed without a
massive investment of time and effort.

Because HTML is so important, you’ll be happy to know that I don’t
rush things. You’ll get a thorough grounding in all things HTML, and

when you’re done you’ll be more than ready to tackle the rest of your
web development education.

Getting the Hang of HTML

Building a web page from scratch may seem like a daunting task. It
doesn’t help that the codes you use to set up, configure, and format a
web page are called the Hypertext Markup Language (HTML for short),
a name that could only warm the cockles of a geek’s heart. Here’s a
mercifully brief review of each term:

» Hypertext: An oblique reference to the links that are the defining
characteristic of web pages. In prehistoric times — that is, the 1980s
— tall-forehead types referred to any text that, when selected, takes
you to a different document, as hypertext.

» Markup: Instructions that specify how the content of a web page
should be displayed in the web browser.

» Language: The set of codes that make up all the markup
possibilities for a page.

But even though the name HTML is intimidating, the codes used by
HTML aren’t even close to being hard to learn. There are only a few of
them, and in many cases they even make sense!

At its most basic, HTML is nothing more than a collection of markup
codes — called fags — that specify the structure of your web page. In
HTML, structure is a rubbery concept that can refer to anything from the
entire page all the way down to a single word or even just a character or
two.

You can think of a tag as a kind of container. What types of things can it
contain? Mostly text, although lots of tags contain things like chunks of
the web page and even other tags.

Most tags use the following generic format:

<tag>content</tag>

What you have here are a couple of codes (the <tag> and </ tag>

placeholders, above) that define a container. Most of these codes are
one- or two-letter abbreviations, but sometimes they're entire words. You
always surround these codes with angle brackets, <>, which tell the web

browser that it’s dealing with a chunk of HTML and not just some
random text.

The first of these codes — represented by the <tag> placeholder — is

called the start tag and marks the opening of the container; the second of
the codes — represented by the </ tag> placeholder — is called the end

tag and marks the closing of the container. (Note the extra slash (/) that
appears in the end tag.)

In between you have content, which refers to whatever is contained in
the tag. For example, here’s a simple sentence that might appear in a
web page (check out bk02ch01/example01.html in this book’s example
files):

In this book, you learn that HTML is awesome.

Figure 1-1 shows how this might appear in a web browser.

i -

In this book, you learn that HTML is awesome.

& himipreview.github.lof?https:/igithub.com/ipauimctefwe g -and-dev-Td-2e/blobfmainfok02chiifexampled himl oy

FIGURE 1-1: The sample sentence as it appears in a web browser.

Ho hum, right? Suppose you want to punch this up a bit by emphasizing
awesome. In HTML, the tag for emphasis is , so you'd modify your
sentence like so:

In this book, you learn that HTML is awesome.

Note how I’ve surrounded the word awesome with and ? The
first 1s the start tag and it says to the browser, “Yo, Browser Boy!
You know the text that comes after this? Be a good fellow and treat it as
emphasized text.” This continues until the browser reaches the end tag
, which lets the browser know it's supposed to stop what it’s doing.

So the tells the browser, “Okay, okay, that’s enough with the
emphasis already!”

All web browsers display emphasized text in italics, so that’s how the
word now appears, as shown in Figure 1-2 (check out
bk02ch01/example02.html).

L) i htmipreview github. e hitps:ifgithub.comfpaulmefefweb-cading -and-dev-fd-2e/blobimainfbkd2eh 0 fexampled2. bt U o

In this book, you learn that HTML is awesome.

FIGURE 1-2: The sentence revised to italicize the word awesome.

There are tags for lots of other structures, including important text,
paragraphs, headings, page titles, links, and lists. HTML is just the
collection of all these tags.

warnine One of the most common mistakes rookie web weavers make is
to forget the slash (/) that identifies an end tag. If your page appears
wrong when you view it in a browser, check for a missing slash.
Also check for a backslash (\) instead of a slash, which is another
common error.

Understanding Tag Attributes

You'll often use tags straight up, but all tags are capable of being
modified in various ways. This change might be as simple as supplying a
unique identifier to the tag for use in a script or a style, or it might be a
way to change how the tag operates. Either way, you modify a tag by
adding one or more attributes to the start tag. Most attributes use the
following generic syntax:

<tag attribute="value">

Here, you replace attribute with the name of the attribute you want to
apply to the tag, and you replace vaiue with the value you want to
assign the attribute.

For example, the <a> tag marks up text as a link. A link to what, you
ask? To whatever address you specify as the value of the href attribute
(which I explain in more detail later in the “Linking basics” section), as
demonstrated in the following example (bk02ch01/example03.html):

Be sure to stop by my home page.

As shown in Figure 1-3, the web browser converts the home page text
into a link that points to the address https://paulmcfedries.com/.
(Refer to the section “Creating Links,” later in this chapter, for more info
on the <a> tag.)

(=]

- - i hirmipreview github. e hitps:[igithub.comjipaulmele/web-coding - and-dev-id- 2eblobimainfbk 02 chilfexample03_html

Be sure to stop by my home page.

hitps:ipauimeledies com

FIGURE 1-3: For the <a> tag, the nrer attribute specifies the link destination.

Learning the Fundamental
Structure of a Web Page

In this section, I show you the tags that serve as the basic blueprint you'll
use for all your web pages.

Your HTML files will always lead with the following tag:
<!DOCTYPE html>

This tag (it has no end tag) is the so-called doctype declaration, and it
has an eye-glazingly abstruse technical meaning that, happily, you can
safely ignore. All I'll say about it is that you have to include this tag at
the top of all your HTML files to make sure your pages render properly.

https://paulmcfedries.com/

(Also, I tend to write pocTYPE in uppercase letters out of habit, but
writing it as doctype is perfectly legal.)

Next up you add the <html lang="en"> tag. This tag tells any web

browser that tries to read the file that it's dealing with a file that contains
HTML doodads. It also uses the 1ang attribute to specify the document's

language, which in this case is English.

Similarly, the last line in your document will always be the
corresponding end tag: </htm1>. You can think of this tag as the HTML
equivalent for “The End.” So, each of your web pages will include this
on the second line:

<html lang="en">
and this on the last line:
</html>

The next items serve to divide the page into two sections: the head and
the body. The head section is like an introduction to the page. Web
browsers use the head to glean various types of information about the
page. A number of items can appear in the head section, but the only one
that makes sense at this early stage is the title of the page, which I talk
about in the next section, “Giving your page a title.”

To define the head, add <head> and </head> tags immediately below the
<html> tag you typed earlier. So your web page should now appear like
this:

<!DOCTYPE html>
<html lang="en">
<head>
</head>
</html>

rememeer Although technically it makes no difference if you enter your tag
names in uppercase or lowercase letters, the HTML powers-that-be
recommend HTML tags in lowercase letters, so that's the style I use
in this book, and I encourage you to do the same.

rememeer NOte that [indented the <head> and </head> tags a bit (by four
spaces). This indentation is good practice when HTML tags reside
within another HTML container because it makes your code easier
to read and easier to troubleshoot.

While you're in the head section, here’s an added head-scratcher:

<meta charset="utf-8">

You place this element between the <head> and </head> tags (indented
another four spaces for easier reading). It tells the web browser that your
web page uses the UTF-8 character set, which you can mostly ignore
except to know that UTF-8 contains almost every character (domestic
and foreign), punctuation mark, and symbol known to humankind.

The body section is where you enter the text and other fun stuff that the
browser will display. To define the body, place <body> and </body> tags

after the head section (that is, below the </head> tag):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>
</body>
</html>

warning A common page error is to include two or more copies of these
basic tags, particularly the <body> tag. For best results, be sure you
use each of the four basic structural tags — <! DOCTYPE>, <html1>,
<head>, and <body> — only one time on each page.

Giving your page a title

When you surf the web, you've probably noticed that your browser
displays some text in the current tab. That tab text is the web page title,
which is usually a short phrase that gives the page a name. You can give
your own web page a name by adding the <tit1e> tag to the page's head
section.

To define a title, surround the title text with the <title>and </title>
tags. For example, if you want the title of your page to be “My Humble
Home Page,” enter it as follows:

<title>My Humble Home Page</title>

Note that you always place the title inside the head section, so your basic
HTML document now appears like this (bk02ch0O1/example04.html):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>My Humble Home Page</title>
</head>
<body>
</body>
</html>

Figure 1-4 shows this HTML file loaded into a web browser. Notice how
the title appears in the browser's tab bar.

L] N My Humble Home Page 5 -+

i hiripreview github.ieThit i nfpaulmehafweb P-4 -1 - 2 main/bk02 chi fexample0d kit ¥ 1

FIGURE 1-4: The text you insert into the <tit1e> tag shows up in the browser tab.

Here are a few things to keep in mind when thinking of a title for your
page:

» Be sure your title describes what the page is all about.

» Don’t make your title longer than 50 or 60 characters. Otherwise, the
browser might chop off the end because the tab doesn’t have enough
room to display it.

» Use a title that makes sense when someone views it out of context.
For example, if someone really likes your page, that person might
add it to their list of favorites or bookmarks. The browser displays
the page title in the Favorites list, so it’s important that the title
makes sense when the person accesses their bookmarks later.

» Don’t use cryptic or vague titles. Titling a page “Link #42” or “My
Web Page” might make sense to you, but your visitors will almost
certainly be scratching their heads.

Adding some text

Now it’s time to put some flesh on your web page’s bones by entering
the text you want to appear in the body of the page. For the most part,
you can type the text between the <body> and </body> tags, like this
(bk02ch01/example05.html):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>My Humble Home Page</title>
</head>
<body>
Hello HTML World!
</body>
</html>

Figure 1-5 shows how a web browser displays this HTML.

L] @ My Humble Homs Page i +
& htmipreview.github.bahttps:fgithub paulmcfafwet mg=and-dow-fd-2¢ bfmain/ok02chi lexa 05 mml N

Hello HTML World!

FIGURE 1-5: Text you add to the page body appears in the browser's content window.

Before you start typing willy-nilly, however, you should know the
following:

»

»

»

»

»

»

You might think you can line things up and create some interesting
effects by stringing together two or more spaces. Ha! Web browsers
chew up all those extra spaces and spit them out into the nether
regions of cyberspace. Why? Well, the philosophy of the web is that
you can use only HTML tags to lay out a document. So a run of
multiple spaces (or whitespace, as it’s called) is ignored.

Tabs also fall under the rubric of whitespace. You can enter tabs all
day long, but the browser ignores them.

Browsers also like to ignore the carriage return. It might sound
reasonable to the likes of you and me that pressing Enter (or Return
on a Mac) starts a new paragraph, but that’s not so in the HTML
world.

If you want to separate two chunks of text, you have multiple ways
to go, but here are the two easiest:

e For no space between the texts: Place a
 (for line break)
tag between the two bits of text.

e For some breathing room between the texts: Surround each
chunk of text with the <p> and </p> (for paragraph) tags.

If HTML documents are just plain text, does that mean you're out of
luck if you need to use characters such as © and €? Luckily, no. For
the most part, you can just add these characters to your file.
However, HTML also has special codes for these kinds of characters.
I talk about them a bit later in this chapter in the “Inserting Special
Characters” section.

If, for some reason, you’re using a word processor instead of a text
editor, know that it won’t help to format your text using the
program’s built-in commands. The browser cheerfully ignores even
the most elaborate formatting jobs because browsers understand only
HTML (and CSS and JavaScript). And besides, a document with

formatting is, by definition, not a pure text file, so a browser might
bite the dust trying to load it.

Some Notes on Structure versus
Style

One of the key points of front-end web development is to separate the
structure of the web page from its styling. This makes the page faster to
build, easier to maintain, and more predictable across a range of
browsers and operating systems. HTML provides the structure side,
while CSS handles the styling.

That’s fine as far as it goes, but HTML performs its structural duties
with a couple of quirks you need to understand:

» This isn’t your father’s idea of structure. That is, when you think
of the structure of a document, you probably think of larger chunks
such as articles, sections, and paragraphs. HTML does all that, but it
also deals with structure at the level of sentences, words, and even
characters.

» HTML’s structures often come with some styling attached. Or, I
should say, all web browsers come with predefined styling that they
use when they render some HTML tags. Yes, I know I just said that
it’s best to separate structure and style. Think of it this way: When
you build a new deck using cedar, your completed deck has a natural
cedar appearance to it, but you’re free to apply a coat of varnish or
paint. HTML is the cedar, whereas CSS is the paint.

I mention these quirks because they can help answer some questions that
might arise as you work with HTML tags.

rememser Another key to understanding why HTML does what it does is
that much of HTML has been set up so that a web page is
understandable to an extent by software that analyzes the page. One
important example is a screen reader used by surfers with low
vision. If a screen reader can easily figure out the entire structure of
the page from its HTML tags, it can present the page properly to the
user. Similarly, software that seeks to index, read, or otherwise
analyze the page will be able to do its task successfully only if the
page’s HTML tags are a faithful representation of the page’s
intended structure.

Applying the Basic Text Tags

HTML has a few tags that enable you to add structure to text. Many web
developers use these tags only for the built-in browser formatting that
comes with them, but you really should try to use the tags semantically,
as the geeks say, which means to use them based on the meaning you
want the text to convey.

Emphasizing text

One of the most common meanings you can attach to text is emphasis.
By putting a little extra oomph on a word or phrase, you tell the reader to
add stress to that text, which can subtly alter the meaning of your words.
For example, consider the following sentence:

You'll never fit in there with that ridiculous thing on your head!
Now consider the same sentence with emphasis added to one word:

You'll never fit in there with that ridiculous thing on your head!

You emphasize text on a web page by surrounding that text with the
 and tags (bk02ch01/example06.html)):

You'll never fit in there with that ridiculous thing on your head!

All web browsers render the emphasized text in italics, as shown in
Figure 1-6.

L:

You'll never fit in there with that ridiculous thing on your head!

& hitmipreview github iaThitps:figithub com/paulmefefweb-coding -and -dev-fd-2e/blobimainblklZech fexampledB. himl (& 3

FIGURE 1-6: The web browser renders emphasized text using italics.

HTML has a closely related tag: <i>. The <i> tag's job is to mark up
alternative text, which refers to any text that you want treated with a
different mood or role than regular text. Common examples include
book titles, technical terms, foreign words, or a person’s thoughts. All
web browsers render text between <i> and </1i> in 1talics.

Marking important text

One common meaning that you'll often want your text to convey is
importance. It might be some significant step in a procedure, a vital
prerequisite or condition for something, or a crucial passage within a
longer text block. In each case, you’re dealing with text that you don’t
want your readers to miss, so it needs to stand out from the regular prose
that surrounds it.

In HTML, you mark text as important by surrounding it with the
 and tags, as in this example
(bk02chol/example07.html):

As you enter the building, you'll see on the wall to your
right a large, red button that says, "DO NOT PRESS!" You
will be sorely tempted to press that button. The desire
to press that button will be well-nigh irresistible.
However, I urge you in the strongest possible terms:

Do not press that button!

All web browsers render text marked up with the tag in bold,
as shown in Figure 1-7.

L:

As you enter the building, you'll see on the wall to your right a large, red button that says, "DO NOT
PRESS!" You will be sorely tempted to press that button. The desire to press that button will be well-
nigh irresistible. However, [urge you in the strongest possible terms: Do not press that button!

i himipreview. github.ia/Fhitpe:fgithub. comfpaulmehefweb-coding -and-dev-1d- 2e/blab/mainik02eh0ljeampled? mml - 0

FIGURE 1-7: The browser renders important text using bold.

Just to keep us all on our web development toes, HTML also offers a
close cousin of the tag: the tag. You use the tag to
mark up keywords in the text. A keyword is a term that you want to draw
attention to because it plays a different role than the regular text. It could
be a company name or a person's name (think of those bold faced names
that are the staple of celebrity gossip columns). The browser renders text
between the and tags in a bold font.

Nesting tags
It's perfectly legal — and often necessary — to combine multiple tag

types by nesting one inside the other. For example, check out this code
(bk02ch01/example08.html):

As you enter the building, you'll see on the wall to your
right a large, red button that says, "DO NOT PRESS!"™ You
will be sorely tempted to press that button. The desire
to press that button will be well-nigh irresistible.
However, I urge you in the strongest possible terms:

Do not press that button!

Did you notice what I did there? In the text between the and
 tags, I marked up the word not with the and tags.
The result? You got it: bold, italic text, as shown in Figure 1-8.

c i@ hmipreview. github.iafZhps:{fgithub. compaulmelsweb- coding -and-d

As you enter the building, you'll see on the wall to your right a large, red button that says, "DO NOT
PRESS!" You will be sorely tempted to press that button. The desire to press that button will be well-
nigh irresistible. However, I urge you in the strongest possible terms: Do not press that button!

FIGURE 1-8: The browser usually combines nested tags, such as the bold, italic text shown
here.

Adding headings

Earlier you saw that you can give your web page a title using the aptly
named <title> tag. However, that title appears only in the browser's tab.
What if you want to add a title that appears in the body of the page?
That's almost easier done than said because HTML comes with a few
tags that enable you to define headings, which are bits of text that appear

in a separate paragraph and usually stick out from the surrounding text
by being bigger, appearing in a bold typeface, and so on.

There are six heading tags, ranging from <h1>, which uses the largest
type size, down to <h6>, which uses the smallest size. Here's some web

page code (bk02chO1/example09.html) that demonstrates the six heading
tags, and Figure 1-9 shows how they appear in a web browser:

<hl1>This is Heading 1</hl>
<h2>This is Heading 2</h2>
<h3>This is Heading 3</h3>
<h4>This is Heading 4</h4>
<h5>This is Heading 5</h5>
<h6>This is Heading 6</h6>

For comparison, here's some regular text.

L; [& htmipresiew. github. T htps: igithub, comipaulmc tevwab-coding -and-dev-Id- 2efblob mainfbk02 ok BEA

This is Heading 1
This is Heading 2

This is Heading 3

This is Heading 4

This is Heading $

This is Hesding &

For comiparison, here's some regular text,

FIGURE 1-9: The six HTML heading tags.

What’s up with all the different headings? The idea is that you use them
to create a kind of outline for your web page. How you do this depends
on the page, but here’s one possibility:

» Use <n1> for the overall page title.

» Use <nh2> for the page subtitle.

» Use <h3> for the titles of the main sections of your page.

» Use <h4> for the titles of the subsections of your page.

Adding quotations

You might have noticed that each chapter of this book begins with a
short, apt quotation. Hey, who doesn't love a good quote, right? The
readers of your web pages will be quote-appreciators, too, I’'m sure, so
why not sprinkle your text with a few words from the wise?

In HTML, you designate a passage of text as a quotation by using the
<blockquote> tag. Here’s an example (bk02ch01/example10.html):

Here's what the Scottish biographer James Boswell had to say about puns:
<blockqgquote>

For my own part I think no innocent species of wit

or pleasantry should be suppressed: and that a good

pun may be admitted among the smaller excellencies

of lively conversation.
</blockquote>

I couldn't agree more!

The web browser renders the text between <blockquote> and
</blockquote> In its own paragraph that it also indents slightly from the
left margin, as shown in Figure 1-10.

i himipreview.gethub.saf? httpe: [igithub. comipauimeievab-coding -and-dev-1d- 2eblobimainBk0 2 chi facamplé Pitir 1
Here's what the Scottish biographer James Boswell had 1o say about puns:

For my own part [think no innocent species of wit or pleasantry should be suppressed: and that a good pun
may be admitted among the smaller excellencies of lively conversation.

I couldn't agree more!

FIGURE 1-10: The web browser renders <b1lockquote> text indented slighted from the left.

Creating Links

When all is said and done (actually, long before that), your website will
consist of anywhere from 2 to 102 pages (or even more, if you've got
lots to say). Here’s the thing, though: If you manage to cajole someone
onto your home page, how do you get that person to your other pages?
That really 1s what the web is all about, isn’t it, getting folks from one
page to another? And of course, you already know the answer to the
question. You get visitors from your home page to your other pages by
creating links that take people from here to there. In this section, you

learn how to build your own links and how to finally put the hypertext
into HTML.

Linking basics
The HTML tags that do the link thing are <a> and . Here's how the
<a> tag works:

Here, nref stands for hypertext reference, which is just a fancy-
schmancy way of saying “address” or “URL.” Your job is to replace
address with the address of the web page you want to use for the link.

And yes, you have to enclose the address in quotation marks.

The form of address value you use depends on where the web page is
located with respect to the page that has the link. There are three
possibilities:

» Local web page in the same directory: Refers to a web page that's
part of your website and is stored in the same directory as the HTML
file that has the link. In this case, the <a> tag’s href value is the

filename of the page. Here's an example:

» Local web page in a different directory: Refers to a web page
that’s part of your website and is stored in a directory other than the
one used by the HTML file that has the link. In this case, the <a>

tag’s href value is a backslash (/), followed by the directory name,
another backslash, and then the filename of the page. Here's an
example:

» Remote web page: Refers to a web page that’s not part of your
website. In this case, the <a> tag’s href value is the full URL of the

page. Here's an example:

You’re not done yet, though, not by a long shot (insert groan of
disappointment here). What are you missing? Right: You have to give
the reader some descriptive link text to click. That’s pretty
straightforward because all you do is insert the text between the <a> and
 tags, like this:

Link text

Need an example? You got it (bk02ch01/examplel1.html):

For web coding fun, check out the

Web Dev Workshop!

Figure 1-11 shows how it appears in a web browser. Note how the
browser colors and underlines the link text, and when I point my mouse
at the link, the address I specified in the <a> tag appears in the lower-left
corner of the browser window.

@ hripreview. github.io/?hitps:figithub. comipaulmeleweb-coding -and-dev-d-2eblob/main/bk02c k0 jexampbe 11 htr

For web coding fun, check out the Web Dev Workshop!

FIGURE 1-11: How the link appears in the web browser.

Anchors aweigh: Internal links

When a surfer clicks a standard link, the page loads and the browser
displays the top part of the page. However, it’s possible to set up a
special kind of link that will force the browser to initially display some
other part of the page, such as a section in the middle of the page. For
these special links, I use the term internal links because they take the
reader directly to some inner part of the page.

When would you ever use an internal link? Most of your HTML pages
will probably be short and sweet, and the web surfers who drop by will
have no trouble navigating their way around. But if, like me, you suffer
from a bad case of terminal verbosity combined with bouts of extreme
long-windedness, you’ll end up with web pages that are lengthy, to say
the least. Rather than force your readers to scroll through your tomelike
creations, you can set up links to various sections of the document. You
can then assemble these links at the top of the page to form a sort of
“hypertable of contents,” as an example.

Internal links link to a specially marked element — called an anchor —
that you’ve inserted somewhere on the same page. To understand how
anchors work, think of how you might mark a spot in a book you’re
reading. You might dog-ear the page, attach a note, or place something
between the pages, such as a bookmark or your cat’s tail.

An anchor performs the same function: It marks a particular spot in a
web page, and you can then use a regular <a> tag to link to that spot.
Here’s the general format for an anchor tag:

<element id="name'">

An anchor tag appears a lot like a regular tag, except that it also includes
the id attribute, which is set to the name you want to give the anchor.
Here's an example:

<section id="sectionl">

rememeer YOU can use whatever you want for the name, but it must begin
with a letter and can include any combination of letters, numbers,
underscores (), and hyphens (-). Also, id values are case-
sensitive; for example, the browser treats the id value sectioni
differently than the id value sectioni.

To set up the anchor link, you create a regular <a> tag, but the href
value becomes the name of the anchor, preceded by a hash symbol (#):

Here's an example that links to the anchor I showed earlier:

'&53

Tsture - Have you been wondering why the tag to create a link 1s <a> and
not something more intuitive, such as <1ink> (which is used for
something completely different)? The a in the <a> tag comes from
the word anchor. Confusingly, this isn't the same anchor as in an
anchor tag or an anchor link. Instead, in the early days of HTML,
the link text that you clicked was called anchor text, and that text
was created by surrounding it with the <a> and tags. The

phrase anchor text is no longer used, but the <a> tag is here to stay.

Although you'll mostly use anchors to link to sections of the same web
page, there’s no law against using them to link to specific sections of
other pages. Simply add the appropriate anchor to the other page and
then link to it by adding the anchor’s name (preceded, as usual, by #) to
the end of the page’s filename. Here’s an example:

Building Bulleted and Numbered
Lists

For some reason, people love lists: Best (and Worst) Dressed lists, Top
Ten lists, My All-Time Favorite X lists, where X is whatever you want it
to be: movies, songs, books, / Love Lucy episodes — you name it.
People like lists, for whatever reasons.

Okay, so let’s make some lists. Easy, right? Well, sure, any website
jockey can just plop a Best Tootsie Roll Flavors Ever list on a page by
typing each item, one after the other. Perhaps our list maker even gets a

bit clever and inserts the
 tag between each item, which displays
them on separate lines. Ooooh.

Yes, you can make a list that way, and it works well enough, I suppose,
but there's a better way. HTML has a few tags designed to give you
much more control over your list-building chores. For example, you can
create a bulleted list that actually has those little bullets out front of each
item. Nice! Want a Top Ten list instead? HTML has your back by
offering special tags for numbered lists, too.

Making your point with bulleted lists

A no-frills,
-separated list isn’t very useful or readable because it
doesn’t come with any visual indicators that help differentiate one item
from the next. An official, HTML-approved bulleted list solves that
problem by leading off each item with a bullet — a cute little black dot.

Bulleted lists use two types of tags:

» The entire list 1s surrounded by the <u1> and </u1> tags. Why u/?
Well, what the rest of the world calls a bulleted list, the HTML pooh-
bahs call an unordered list.

» Each item in the list is preceded by the <1i> (list item) tag and is
closed with the </11i> end tag.

Here’s the general setup:

Bullet text goes here
And here</1i>
Yes, here as well</1li>
You get the idea..</1li>

Note that I've indented the list items by four spaces, which makes it
easier to get that they’re part of a <u1></u1> container. Here’s an

example to chew on (bk02chO1/examplel2.html):
<h3>My All-Time Favorite Oxymorons</h3>

Pretty ugly</1li>

Awfully good
Jumbo shrimp
Original copy
Random order
Act naturally</1li>
<1i>Tight slacks</1li>
Freezer burn
Sight unseen</1i>
Crash landing</1li>

Figure 1-12 shows how the web browser renders this code, cute little
bullets and all.

@ hrnlpreview. github.io/?hitps:figithub.compaulmele)y

My All-Time Favorite Oxymorons

+ Pretty ugly

« Awfully good
+ Jumbo shrimp
» Original copy
Random order
« Act naturally
« Tight slacks

+ Freezer burm
* Sight unseen
* Crash landing

FIGURE 1-12: A typical bulleted list.

Numbered lists: Easy as one, two, three

If you want to include a numbered list of items — it could be a Top Ten
list, bowling league standings, steps to follow, or any kind of ranking —
don’t bother adding the numbers yourself. Instead, you can use a
numbered list to make the web browser generate the numbers for you.

Like bulleted lists, numbered lists use two types of tags:

» The entire list is surrounded by the <o1> and </01> tags. The o/ here

is short for ordered list because those HTML nerds just have to be
different, don't they?

» Each item in the list is surrounded by <1i> and </11i>.

Here's the general structure to use:

First item</1i>
Second item</1i>
<1i>Third item</1i>
You got this..</1i>

I’ve indented the list items by four spaces to make it easier to see that
they’re inside an <o1></01> container. Here’s an example

(bk02ch01/examplel3.html):

<h3>My Ten Favorite U.S. College Nicknames</h3>

<1i>U.C. Santa Cruz Banana Slugs</1li>
Delta State Fighting Okra
Kent State Golden Flashes
Evergreen State College Geoducks
<1li>New Mexico Tech Pygmies
South Carolina Fighting Gamecocks
Southern Illinois Salukis
Whittier Poets
Western Illinois Leathernecks</1i>
Delaware Fightin' Blue Hens

Note that I didn’t include a number before each list item. However, when
I display this document in a browser (check out Figure 1-13), the
numbers are automatically inserted. Pretty slick, huh?

i iy @ himipreview.githube o https:figithub.comipauimcfe/we b-coding=and-dev=fd- 2a/blob/mainfbk02 chi fexample 3, him h =

My Ten Favorite U.S. College Nicknames

1. U.C, Santa Cruz Banana Slugs

2. Delta State Fighting Okra

3. Kent State Golden Flashes

4. Evergreen State College Geoducks
5. New Mexico Tech Pygmies

6. South Carolina Fighting Gamecocks
7. Southern Minois Salukis

8. Whittier Poets

. Western Illinois Leathernecks

10. Delaware Fightin® Blue Hens

b=

FIGURE 1-13: When the web browser renders the ordered list, it's kind enough to add the
numbers for you automatically.

Inserting Special Characters

Earlier in this chapter, I talk briefly about a special <meta> tag that goes
into the head section:

<meta charset="utf-8">

That tag, which on the surface appears to be nothing but gibberish,
actually adds a bit of magic to your web page. The voodoo is that now
you can add special characters such as © and ™ directly to your web
page text and the web browser will display them without complaint.

The trick 1s how you add these characters directly to your text, and that
depends on your operating system. First, if you're using Windows, you
have two choices:

» Hold down the Alt key and then press the character’s four-digit
ASCII code using your keyboard’s numeric keypad. For example,
you type an em dash (—) by pressing Alt+0151.

» Paste the character from the Character Map application that comes
with Windows.

If you’re a Mac user, you also have two choices:

» Type the character’s special keyboard shortcut. For example, you
type an em dash (—) by pressing Option+Shift+- (hyphen).

» Paste the character from the Symbols Viewer that comes with
macOS.

However, there’s another way to add special characters to a page. The
web wizards who created HTML came up with special codes called
character entities (which is surely a name only a true geek would love)
that represent these oddball symbols.

These codes come in two flavors: a character reference and an entity
name. Character references are basically just numbers, and the entity
names are friendlier symbols that describe the character you’re trying to
display. For example, you can display the registered trademark symbol
(®) by using the «#174; character reference or the sreg; entity name, as
shown here:

Print-On-Non-Demandé&l74;
or
Print-On-Non-Demandé®

Note that both character references and entity names begin with an
ampersand (&) and end with a semicolon (;). Don't forget either

character when using special characters in your own pages.

rememeer One common use of character references is to display HTML
tags without the web browser rendering them as tags. To do this,
replace the tag’s less-than sign (<) with < (or <) and the tag's
greater-than sign (>) with > (or s#062;).

Inserting Images

Whether you want to tell stories, give instructions, pontificate, or just
plain rant about something, you can do all of that and more by adding
text to your page. But to make it more interesting for your readers, add a
bit of eye candy every now and then. To that end, you can uses an
HTML tag to add one or more images to your page.

However, before we get too far into this picture business, I should tell
you that, unfortunately, you can’t use just any old image on a web page.
Browsers are limited in the types of images they can display. You can
use four main types of image formats:

» GIF: The original web graphics format (it’s short for Graphics
Interchange Format). GIF (it’s pronounced “giff” or “jiff”) is limited
to 256 colors, so it’s best for simple images like line art, clip art, and
text. GIFs are also useful for creating simple animations.

» JPEG: Gets its name from the Joint Photographic Experts Group
that invented it. JPEG (it’s pronounced “jay-peg”) supports complex
images that have many millions of colors. The main advantage of
JPEG files i1s that, given the same image, they’re smaller than PNGs,

so they take less time to download. Careful, though: JPEG uses lossy
compression, which means it makes the image smaller by discarding
redundant pixels. The greater the compression, the more pixels that
are discarded and the less sharp the image will appear. That said, if
you have a photo or similarly complex image, JPEG is almost always
the best choice because it gives the smallest file size.

» PNG: The Portable Network Graphics format supports millions of
colors. PNG (pronounced “p-n-g” or “ping”) is a compressed format,
but unlike JPEGs, PNGs use lossless compression. This means
images retain sharpness, but the file sizes can get quite big. If you
have an illustration or icon that uses solid colors or a photo that
contains large areas of near-solid color, PNG is a good choice. PNG
also supports transparency.

» SVG: With the Scalable Vector Graphics (SVG) format, images are
generated using vectors (mathematical formulas based on points and
shapes on a grid) rather than pixels. Surprisingly, these vectors reside
as a set of instructions in a special text-based format, which means
you can edit the image using a text editor! SVG is a good choice for
illustrations, particularly if you have software that supports the SVG
format, such as Inkscape or Adobe Illustrator.

Okay, enough of all that. Time to start squeezing some images onto your
web page. As I mention earlier, an HTML code tells a browser to display
an image. It’s the tag, and here’s how it works:

Here, src is short for source, i 1ename is the name of the graphics file
you want to display, and description is a short description of the image
(which is read by screen readers or revealed when users aren't displaying

images or when the image fails to load). Note that there’s no end tag to
add here.

Here’s an example. Suppose you have an image named 1ogo.png. To
add it to your page, you use the following line:

In effect, this tag says to the browser, “Excuse me? Would you be so
kind as to go out and grab the image file named 10go.png and insert it in

the page right here where the tag is?”” Dutifully, the browser loads
the image and displays it in the page.

For this simple example to work, bear in mind that your HTML file and
your graphics file need to be sitting in the same directory. Many
webmasters create a subdirectory just for images, which keeps things
neat and tidy. If you plan on doing this, be sure to study my instructions
for using directories and subdirectories in Book 1, Chapter 3.

Here's an example (bk02chO1/example14.html), with Figure 1-14
showing how things appear in a web browser:

To see a World in a Grain of Sand

And a Heaven in a Wild Flower

<img src="images/flower-and-ant.jpg"
alt="Macro photo showing an ant exploring a flower">

L o -4 i himipreview github. e hitps:igithub.comiipaulmelefweb-codng - and-dev-id- 2eblobimainfbk 02 chilfexampled_him th

To see a World in a Grain of Sand
And a Heaven in a Wild Flower

FIGURE 1-14: A web page with an image thrown in.

Carving Up the Page

Adding a bit of text, some links, and maybe a list or three to the body of
the page is a good start, but any web page worth posting will require
much more than that. For starters, all your web pages require a high-
level structure. Why? Well, think about the high-level structure of this

book, which includes the front and back covers, the table of contents, an
index, and seven mini-books, each of which contains several chapters,
which in turn consist of many sections and paragraphs within those
sections. It’s all nice and neat and well-organized, if I do say so myself.

Now imagine, instead, that this entire book was just page after page of
undifferentiated text: no mini-books, no chapters, no sections, no
paragraphs, plus no table of contents or index. I’ve just described a
book-reader’s worst nightmare, and I’m sure I couldn’t even pay you to
read such a thing.

Your web pages will suffer the same fate unless you add some structure
to the body section, and for that you need to turn to HTML’s high-level
structure tags.

The first thing to understand about these tags is that they’re designed to
infuse meaning — that is, semantics — into your page structures. You’ll
learn what this means as I introduce each tag, but for now get a load of
the abstract page shown in Figure 1-15.

<main>

<article>

<aside>

<footer>

FIGURE 1-15: An abstract view of HTMLS’s semantic page structure tags.

I next discuss each of the tags shown in Figure 1-15.

The <header> tag

You use the <header> tag to create a page header, which is usually a

strip across the top of the page that includes elements such as the site or
page title and a logo. (Don’t confuse the page header with the page’s
head section that appears between the <head> and </head> tags.)

Since the header almost always appears at the top of the page, the
<header> tag is usually placed right after the <body> tag, as shown in the

following example and in Figure 1-16 (refer to
bk02chO1/examplel5.html):

<body>
<header>

<hl>Welcome to Web Dev Workshop</hl>
<hr>

</header>

</body>

@ hirnlpreview github ieThttp s:github comipaulmelefweb-coding -and - dev-id
AP

AL

LN

Welcome to Web Dev Workshop

FIGURE 1-16: A page header with a logo, title, and horizontal rule.

The <nav> tag

The <nav> tag defines a page section that includes a few elements that
help visitors navigate your site. These elements could be links to the
main sections of the site, links to recently posted content, or a search
feature. The <nav> section typically appears after the header, as shown
here and in Figure 1-17 (refer to bk02chO1/examplel6.html):

<body>
<header>

<hl>Welcome to Web Dev Workshophl>
<hr>
</header>
<nav>
Home
Tools
Code
Books
</nav>

</body>

i iy @ himipreview.github. o/ https:figithub.comipaulmcfe/we b-coding=and-dev-fd- 2a/blob/mainfbk02 chi fexample 16, him h =

AT

LY,

Welcome to Web Dev Workshop

Home Tools Code Books

FIGURE 1-17: The <nav> section usually appears just after the <neader> section.

The <main> tag
The <main> tag sets up a section to hold the content that is, in a sense,

the point of the page. For example, if you're creating the page to tell
everyone all that you know about Siamese Fighting Fish, your Siamese
Fighting Fish text, images, links, and so on would go into the <main>

section.

The <main> section usually comes right after the <head> and <nav>
sections:

<body>
<header>

</header>

<nav>

</nav>
<main>
Main content goes here

</main>

</body>

The <article> tag

You use the <article> tag to create a page section that contains a
complete composition of some sort: a blog post, an essay, a poem, a
review, a diatribe, or a jeremiad.

In most cases, you'll have a single <article> tag nested inside your
page’s <main> section:

<body>
<header>

</header>

<nav>

</nav>
<main>
<article>
Article content goes here
</article>

</main>
</body>

However, it isn't a hard-and-fast rule that your page can have only one
<article> tag. In fact, it isn’t a rule at all. If you want to have two or
more compositions in your page — and thus two or more <article>
sections within your <main> tag — be my guest.

The <section> tag

The <section> tag indicates a major part of the page: usually a heading
tag followed by some text. How do you know whether a chunk of the
page is major or not? The easiest way is to imagine if your page had a
table of contents. If you'd want a particular part of your page to be
included in that table of contents, it’s major enough to merit the
<section> tag.

Most of the time, your <section> tags will appear within an <article>
tag:

<main>
<article>

<section>
Section 1 heading goes here
Section 1 text goes here

</section>

<section>
Section 2 heading goes here
Section 2 text goes here

</section>

</article>

</main>

The <aside> tag

You use the <aside> tag to cordon off a bit of the page for content that,
although important or relevant for the site as a whole, is at best
tangentially related to the page's <main> content. The <aside> is often a
sidebar that includes site news or links to recent content, but it might
also include links to other site pages related to the current page.

The <aside> tag most often appears within the <main> area but after the
<article> content:

<body>
<header>

</header>

<nav>

</nav>
<main>

<article>

</article>
<aside>

Aside content goes here
</aside>

</main>

</body>

The <footer> tag

You use the <footer> tag to create a page footer, which is typically a

strip across the bottom of the page that includes elements such as a
copyright notice, contact info, and social media links.

Since the footer almost always appears at the bottom of the page, the
<footer> tag is usually positioned right before the </body> tag, as
shown here:

<body>
<header>

</header>

<nav>

</nav>
<main>

<article>

</article>

<aside>

</aside>
</main>
<footer>
Footer content goes here
</footer>
</body>

Handling non-semantic content with <div>

The <header>, <nav>, <main>, <article>, <section>, <aside>, and
<footer> tags create meaningful structures within your page, which is
why HTML nerds call these semantic elements. Even the humble <p>

tag, which I introduced earlier in this chapter, is semantic in that it
represents a single paragraph, usually within a <section> tags.

But what are would-be web weavers to do when they want to add a
chunk of content that just doesn’t fit any of the standard semantic tags?
That situation happens a lot, and the solution is to slap that content
inside a div (for division) element. The <div> tag is a generic container
that doesn't represent anything meaningful, so it’s the perfect place for
any non-semantic stuff that needs a home:

<div>
Non-semantic content goes right here
</div>

Here’s an example (bk02chO1/examplel7.html)):

<div>
Requisite social media links:

</div>

<div>
Facebook
X

Instagram
Hooli
</div>
Note in Figure 1-18 that the browser renders the two <div> elements on
separate lines.

L C A Not Secure | 192.168.0.194/webcoding/bk02ch01/examplel7.html

Requisite social media links:
Facebook X Instagram Hooli

FIGURE 1-18: The browser renders each <div> element on a new line.

Handling words and characters with

If you might want to do something with a small chunk of a larger piece
of text, such as a phrase, a word, or even a character or three, you need
to turn to a so-called inline element, which creates a container that exists
within some larger element and flows along with the rest of the content
in that larger element.

The most common inline element to use 1s span, which creates a
container around a bit of text (bk02ch01/example18.html):

<p>

Notice how an

inline element flows right along with the

rest of the text.

</p>
What's happening here is that the tag is applying a style called
small caps to the text between and . As shown in Figure

1-19, the text flows along with the rest of the paragraph.

€ c i@ hmpreview.githulbio/Thitps:ffgithulb.com{paulmerefweb-coding-and-d

Motice how an ivLine eLesesT flows right along with the rest of the text.

FIGURE 1-19: Using makes the container flow with the surrounding text.

Commenting Your HTML Code

One way you can help to make your code more readable and
understandable — particularly if someone else is going to be examining
your code or if you want to give yourself a hand when you return to the
code several months from now — is to add a generous helping of
comments to the code. In an HTML file, a comment is a bit of text that
the web browser ignores when it renders the page. That might sound
useless to you, but rest assured that comments have quite a few uses:

» To add text that explains why a particular chunk of HTML is written
the way it is

» To help differentiate parts of the HTML code that use similar tag
structures

» To mark sections of the HTML file that you or someone else needs to
start or complete

To mark some text as a comment, precede the text with <!-- and follow
the text with -->. Here’s an example (bk02chO1/example19.html):

<div>
Requisite social media links:
</div>
L=
Each of the following links needs to be updated with the
full address of our corresponding social media page.
Thanks!
-—>
<div>
Facebook
X
Instagram
Hooli

Chapter 2
Styling the Page with CSS

0000000000000 00

IN THIS CHAPTER

» Understanding cascading style sheets

» Learning the three methods you can use to add a style sheet
» Applying styles to web page elements
» Working with fonts and colors

» Taking advantage of selectors and other style sheet timesavers

HTML elements enable Web-page designers to mark up a document's
structure, but beyond trust and hope, you don t have any control over
your text’s appearance. CSS changes that. CSS puts the designer in the
driver s seat.

— HAKON WIUM LIE, THE “FATHER” OF CSS

One of the things that makes web coding with HTML so addictive is that
you can slap up a page using a few basic tags and, when you examine
the result in the browser, it usually works pretty good. A work of art it’s
not, but it won’t make your eyes sore. That basic functionality and
appearance are baked-in courtesy of the default formatting that all web
browsers apply to various HTML elements. For example, text
appears in a bold font, there's a bit of vertical space between <p> tags,
and <n1> text shows up quite a bit larger than regular text.

The browsers' default formatting means that even a basic page appears
reasonable, but ’'m betting you’re reading this book because you want to
shoot for something more than reasonable. In this chapter, you discover
that the secret to creating beautiful pages is to override the default
browser formatting with your own. You explore custom styling and dig
into specific styles for essentials such as fonts, alignment, and colors.

Figuring Out Cascading Style
Sheets

If you want to control the appearance of your web pages, the royal road
to that goal is a web development technology called cascading style
sheets, or CSS. As I mention in Book 2, Chapter 1, your design goal
should always be to separate structure and formatting when you build
any web project. HTML’s job is to take care of the structure part, but to
handle the formatting of the page you must turn to CSS. Before getting
to the specifics, I answer three simple questions: What’s a style? What’s
a sheet? What’s a cascade?

Styles: Bundles of formatting options

If you’ve ever used a fancy-schmancy word processor such as Microsoft
Word, Google Docs, or Apple Pages, you’ve probably stumbled over a
style or two in your travels. In a nutshell, a s#y/e is a combination of two
or more formatting options rolled into one nice, neat package. For
example, you might have a Title style that combines four formatting
options: bold, centered, 24-point type size, and a Verdana typeface. You
can then apply this style to any text, and the program dutifully formats
the text with all four options. If you change your mind later and decide
your titles should use, say, an 18-point font, all you have to do is
redefine the Title style. The program automatically trudges through the
entire document and updates each bit of text that uses the Title style.

In a web page, a style performs a similar function. That is, it enables you
to define a series of formatting options for a given page knickknack,
such as a tag like <div> or <n1>. Like word processor styles, web page
styles offer two main advantages:

» They save time because you create the definition of the style's
formatting once, and the browser applies that formatting each time
you use the corresponding page element.

» They make your pages easier to modify because all you need to do is
edit the style definition — all the places where the style is used

within the page are updated automatically.

For example, Figure 2-1 shows some <h1> text as it appears with the
web browser’s default formatting (check out bk02ch02/example01.html
in this book’s example files). Figure 2-2 shows the same <h1> text, but
now I've souped up the text with several styles, including a border, a font

size of 72 pixels, the Verdana typeface, and page centering (check out
bk02ch02/example02.html).

¥ i Mimipreviaw.githul ok it mit mfafwit and-dav-Td-2a)t i 2 fawarr h i & 0O E i

Hello CSS World!

FIGURE 2-1: An <n1> heading that appears with the web browser’s default formatting.

& Dirndpeivies.githi o tpsgittak et i Jiay- I~ 21 nain/bkia aw T nlo& & & O0F ¢

| Hello CSS World! |

FIGURE 2-2: The same text from Figure 2-1, now with added styles.

Sheets: Collections of styles

So far so good, but what the heck is a sheet? The term style sheet
harkens back to the days of yore when old-timey publishing firms would
keep track of their preferences for things such as typefaces, type sizes,
and margins. All these so-called house styles were stored in a manual
known as a style sheet. On the web, a style sheet is similar: It’s a
collection styles that you can apply to a web page.

Cascading: How styles propagate

The cascading part of the name cascading style sheets is a bit technical,
it refers to a mechanism built into CSS for propagating styles between
elements. For example, suppose you want all your page text to be blue
instead of the default black. Does that mean you have to create a
“display as blue” CSS instruction for every single text-related tag on
your page? No, thank goodness! Instead, you apply it just once, to, say,
the <body> tag, and CSS makes sure that every text tag in the <body> tag

gets displayed as blue. This is called cascading a style. I go into this
cascading business in a bit more detail later in the chapter (in the section
titled “Revisiting the Cascade”), but before you get there, you need to
learn more about how CSS works.

Getting the Hang of CSS Rules and
Declarations

Before I show you how to use CSS in your web pages, I want to take a
second to give you an overview of how a style is structured.

The simplest case is where a single formatting option is applied to an
element. The general syntax is
selector {

property: value;

}

Here, selector is a reference to the web page doodad to which you want

the style applied. This reference (known in the CSS trade as a selector
because it selects what you want to format) is often an HTML element
name (such as h1 or div), but CSS has a powerful toolbox of ways you

can reference things, which I discuss later in this chapter.

The property part is the name of the CSS property you want to apply.
CSS ofters a large collection of properties, each of which is a short,
alphabetic keyword, such as font-family for the typeface, color for the
text color, and border-width for the thickness of a border. The property
name is followed by a colon (:), a space for readability, the vaiue you
want to assign to the property, and then a semicolon (;). This
combination — property name, colon, space, and value — is known in
the trade as a CSS declaration (although the moniker property-value pair
is common, as well).

rememeer Always enter the property name using lowercase letters. If the
value includes any characters other than letters or a hyphen, you
need to surround the value with quotation marks.

Note, too, that the declaration is surrounded by braces ({ and). All the
previous code — from the selector down to the closing brace (}) is
called a style rule.

For example, the following rule applies a 72-pixel (indicated by the px
unit) font size to the <h1> tag:

hl {
font-size: 72px;
)
Your style rules aren't restricted to just a single declaration: You’re free
to add as many as you need. The following example shows the rule I
used to style the h1 element as shown earlier in Figure 2-2 (again, check
out bk02ch02/example02.html):

hl {
border-color: black;
border-style: solid;
border-width: 1lpx;
font-family: Verdana;
font-size: 72px;
text-align: center;

}

rememeer NOte that the declaration block — that is, the part of the rule
within the braces ({ and }) — is most easily read if you indent the
declarations with a tab or with either two or four spaces. The order
of the declarations isn't crucial; some developers use alphabetical
order, whereas others group related properties.

Besides applying multiple styles to a single selector, it’s also possible to
apply a single style to multiple selectors. You set up the style in the usual

way, but instead of a single selector at the beginning of the rule, you list
all the selectors that you want to style, separated by commas. In the
following example, a yellow background color is applied to the
<header>, <aside>, and <footer> tags:

header,
aside,
footer {
background-color: yellow;

}

Adding Styles to a Page

With HTML tags, you just plop the tag where you want it to appear on
the page, but styles aren't quite so straightforward. In fact, you can style
your web page in three main ways: inline styles, internal style sheets,
and external style sheets.

Inserting inline styles
An inline style is a style rule that you insert directly into whatever tag
you want to format. Here’s the general syntax to use:

<element style="propertyl: valuel; property2: valueZ; ..">

That is, you add the sty1e attribute to your tag, and then set it equal to
one or more declarations, separated by semicolons.

For example, to apply 72-pixel type to an <h1> heading, you'd add an
inline style that uses the font-size CSS property:

<hl style="font-size: 72px;">

rememeer NOte that an inline style gets applied only to the tag within
which it appears. Consider the following code
(bk02ch02/example03.html):

<hl style="font-size: 72px;">The Big Kahuna</hl>
<hl>Kahunas: Always Big?</hl>

<hl>Wait, What the Heck Is a Kahuna?</hl>

As shown in Figure 2-3, the larger type size only gets applied to the first
<h1> tag, whereas the other two h1 elements appear in the browser's
default size.

& htmipresiew. github. a7 il

The Big Kahuna

Kahunas: Always Big?
Wait, What the Heck Is a Kahuna?

FIGURE 2-3: Only the top <n1> tag has the inline style, so only its text is styled at 72 pixels.

Embedding an internal style sheet

Inline styles are a useful tool, but because they get shoehorned inside
tags they end up scattered all over the page’s HTML code and tend to be
difficult to maintain. Also, an inline style applies to just a single element,
but you’re more likely to want a particular style rule applied to multiple
page elements.

For easier maintenance of your styles, and to take advantage of the many
ways that CSS offers to apply a single style rule to multiple page
elements, you need to turn to style sheets, which can be either internal
(as I discuss here) or external (as I discuss in the next section).

An internal style sheet 1s a style sheet that resides within the same file as
the page’s HTML code. Specifically, the style sheet is embedded
between the <style> and </style> tags in the page's head section, like
SO:

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>Page title</title>
<style>

Here’s the general syntax to use:

An internal style sheet consists of one or more style rules embedded
within a <style> tag, which is why an internal style sheet is also
sometimes called an embedded style sheet.

In the following code (bk02ch02/example04.html), I apply border styles
to the n1 and n2 elements: solid and dotted, respectively. Figure 2-4
shows the result.

HTML.:

CSS:

border-style: dotted;
border-width: 2px;
}
</style>

& Fimdpeevisw.githan boFhibnsfgithut 3 = fid= 2 main bk D3k 2 fessenpe04 i 5 o & 0w 0O i E

[Whither Solid Colors?

In Praise of Polka Dots

What's Dot and What's Not

‘What Dot to Wear

FIGURE 2-4: An internal style sheet that applies different border styles to the n1 (top) and
n2 elements.

Note, in particular, that my single style rule for the h2 element gets
applied to all the <h2> tags in the web page. That's the power of an

internal style sheet: You need only a single rule to apply one or more
styles to every instance of a particular element.

The internal style sheet method is best when you want to apply a
particular set of style rules to just a single web page. If you have rules
that you want applied to multiple pages, you need to go the external style
sheet route.

Linking to an external style sheet

Style sheets get insanely powerful when you use an external style sheet,
which is a separate file that contains your style rules. To use these rules
within any web page, you add a special <1ink> tag inside the page head.
This tag specifies the name and location of the external style sheet file,
and the browser then uses that file to grab the style rules.

Here are the steps you need to follow to set up an external style sheet:

1. Use your favorite text editor to create a shiny new text file.
2. Add your style rules to this file.
Note that you don’t need the <style> tag or any other HTML tags.

3. Save the file.

It's traditional to save external style sheet files using a . css
extension (for example, styles.css), which helps you remember
down the road that this is a style sheet file. You can either save the
file in the same folder as your HTML file or create a subfolder
(named, say, css Of styles).

4. For every page in which you want to use the styles, add a <1ink>
tag inside the page's head section.

Here’s the general format to use (where filename.css is the name of
your external style sheet file):

<link rel="stylesheet" href="filename.css">

If you created a subfolder for your CSS files, be sure to add the
subfolder to the href value (for example,

href="styles/filename.css").

For example, suppose you create a style sheet file named styles.css,
and that file includes the following style rules (bk02ch02/styles.css):

hl {

color: red;

font-size: 20px;

}

You then refer to that file by using the <1ink> tag, as shown here
(bk02ch02/example05.html):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Page title</title>
<link rel="stylesheet" href="styles.css">
</head>
<body>
<h1>This Heading Will Appear Red</hl>
<p>This text will be displayed in a 20-pixel font</p>
</body>
</html>

Why is having an external style sheet so powerful? You can add the
same <1ink> tag to any number of web pages, and they'll all use the
same style rules. This one-sheet-to-style-them-all approach makes it a
breeze to create a consistent look and feel for your site. And if you
decide that your <h1> text should be, say, green instead, all you have to
do is edit the style sheet file (styles.css). Automatically, every single
one of your pages that link to this file will be updated with the new

style!

Styling Page Text

You'll spend the bulk of your CSS development time applying styles to
your web page text. CSS offers a huge number of text properties, but
those I show in Table 2-1 are the most common. I discuss each of these
properties in more detail in the sections that follow.

TABLE 2-1 Some Common CSS Text Properties

Property

Example

Description

font-size

font-size: 20px;

Sets the size of the text

font-family

font-family: serif;

Sets the typeface of the text

font-weight

font-weight: bold;

Sets whether the text uses a bold font

font-style font-style: italic; Sets whether the text uses an italic font
text- text-decoration: Applies (or removes) underline or strikethrough
decoration underline; styles

text-align

text-align: center;

Aligns paragraph text horizontally

text-indent

text-indent: 8px;

Sets the size of the indent for the first line of a
paragraph

Setting the type size
When it comes to the size of your page text, the CSS tool to pull out of
the box 1s font-size:

font-size:

value;

Here, vaiue is the size you want to apply to your element, which means
a number followed by the unit you want to use. I discuss the units you
can use in the next section, but for now we can stick with one of the
most common units: pixels. The pixels unit is represented by the letters
px, and a single pixel is equivalent to 1/96 of an inch. All browsers set a
default size for regular text, and that default is usually 16px. However, if
you prefer that, say, all your paragraph (<p>) text get displayed at the 20-
pixel size, you'd include the following rule in your style sheet:

p {
font-size: 20px;

}

Getting comfy with CSS measurement units

CSS offers a few measurement units that you need to know. You use
these units not only for setting type sizes but also for setting the size of
padding, borders, margins, shadows, and many other CSS properties.
Table 2-2 lists the most common CSS measurement units.

TABLE 2-2 Some CSS Measurement Units

Unit Name Type Equals

px pixel Absolute 1/96 of an inch

pt point Absolute 1/72 of an inch

em em Relative The element's default, inherited, or defined font size
rem rootem Relative The font size of the root element of the web page

vw viewport width Relative 1/100 of the current width of the browser's content area

viewport , 1/100 of the current height of the browser’s content
Relative

vh height area

Here are some notes about these units that I hope will decrease that
furrow in your brow:

» An absolute measurement unit is one that has a fixed size: either
1/96 of an inch in the case of a pixel or 1/72 of an inch in the case of

a point.

» A relative unit 1s one that doesn’t have a fixed size. Instead, the size
depends on whatever size is supplied to the element. For example,
suppose the browser’s default text size is 16px, which is equivalent
then to 1em. If your page consists of a single <article> tag and you
set the article element's font-size property to 1.5em, the browser
will display text within the <article> tag at 24px (since 16 times 1.5
equals 24). If, however, the browser user has configured their default
text size to 20px, they'll get your article text displayed at 30px (20
times 1.5 equals 30).

» The em unit can sometimes be a head-scratcher because it takes its
value from whatever element it's contained within. For example, if
your page has an <article> tag and you set the article element's
font-size property to 1.5em, the browser will display text within
the <article> tag at 24px (assuming a 16px default size). However,
if within the <article> tag you have a <section> tag and you set
the section element's font-size property to 1.25em, the browser
will display text within the <section> tag at 30px (since 24 times
1.25 equals 30).

» If you want more consistency in your text sizes, use rem instead of
em, because rem is always based on the default font size defined by
either the web browser or the user. For example, if your page uses a
16px default size and has an <article> tag with the font-size
property set to 1.5rem, the browser will display text within the
<article> tag at 24px. If within the <article> tag you have a
<section> tag and you set the section element's font-size
property to 1.25rem, the browser will display text within the
<section> tag at 20px (since 16 times 1.25 equals 20).

Applying a font family

You can make a huge difference in the overall appeal of your web pages
by paying attention to the typefaces you apply to your headings and
body text. A typeface is a particular design applied to all letters,
numbers, symbols, and other characters. CSS types prefer the term font

family, hence the property you use to set text in a specific typeface is
named font-family:

font-family: value;

Here, vaiue is the name of the typeface, which needs to be surrounded
by quotation marks if the name contains spaces, numbers, or punctuation
marks other than a hyphen (-). Feel free to list multiple typefaces, as

long as you separate each with a comma. When you list two or more font
families, the browser reads the list from left to right, and uses the first
font that's available either on the user’s system or in the browser itself.

When it comes to specifying font families, you have three choices:

» Use a generic font. This font is implemented by the browser itself
and set by using one of the following five keywords: serif (offers
small cross strokes at the ends of many characters), sans-serif
(doesn't use the cross strokes), cursive (similar to handwriting),
fantasy (a decorative font), or monospace (gives equal space to each

character). Figure 2-5 shows each of these generic fonts in action
(for the code, check out bk02ch02/example06.html).

& himipreview.github. o Thitg

Generic font family: serif

Generic font family: sans-serif
Generic ﬁmr fami@: cursive

Generic font Fami]y: Fantasy
Generic font family: monospace

FIGURE 2-5: Generic fonts are implemented by all web browsers and come in five

flavors: serif, sans-serif, cursive, fantasy, and monospace.

» Use a system font. This typeface is installed on the user’s computer.
How can you possibly know that? You don’t. Instead, you have two
choices. One possibility is to use a system font that’s installed
universally. Examples include Georgia and Times New Roman
(serifs), Verdana and Tahoma (sans serifs), and Courier New
(monospace). The other way to go is to list several system fonts,

knowing that the browser will use the first one that’s implemented on
the user’s PC. Here’s a sans-serif example:

font-family: "Gill Sans", Calibri, Verdana, sans-serif;

ne One useful system font is system-ui, which tells the web
browser to use the default typeface of the user's operating system.
This font can give your web pages a familiar feel. (For an example,
check out bk02ch02/example07.html, mentioned in the next section.)

» Use a Google font. Google Fonts offers access to hundreds of free
and well-crafted fonts that you can use on your site. Go to
https://fonts.google.com, click a font you like, and then click the
plus sign (+) beside styles such as bold and italic. In the Use On the
Web section of the right sidebar, copy the <1ink> tags and then paste
them in your HTML file, somewhere in the <head> section (before
your <style> tag if you're using an internal style sheet, or before
your CSS <1ink> tag if you're using an external style sheet). Go back
to the Use On the Web section, copy the font-family declaration,

and then paste that into each CSS rule where you want to use the
font.

Changing the font weight
In Book 2, Chapter 1, I talk about how the and <ob> tags have

semantic definitions (important text and keywords, respectively). But
what if you want text to appear bold, but that text isn’t important or a
keyword? In that case, you can style the text the CSS way with the
font-weight property:

font-weight: value;

Here, vaiue is either the word bo1d, or one of the numbers 100, 200,
300, 400, 500, 600, 700 (this is the same as using bo1d), 800, and 900,
where the higher numbers give bolder text and the lower numbers give
lighter text (check out bk02ch02/example07.html and Figure 2-6); 400 is

https://fonts.google.com/

regular text, which you can also specify using the word norma1. Note,

however, that depending on the typeface you're using, not all of these
values will give you bolder or lighter text.

L i & himipreview github. jo/fhitps:/igithub, comipaulmchefweb-coding -and-dov-id- 2ablob/mainfok0 2ch 02 fexample T, Htm I 1

Amazingly few discotheques provide jukeboxes.

Amazingly few discotheques provide jukeboxes.

Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.
Amazingly few discotheques provide jukeboxes.

FIGURE 2-6: These sentences demonstrate font-weight values from 100 (top) to 900
(bottom).

Styling text with italics

In Book 2, Chapter 1, I mention that the and <i> tags have
semantic significance (emphasis and alternative text, respectively). But
what if you have text that should get rendered in italics but not with
emphasis or as alternative text? No problem: Get CSS on the job by
adding the font-style property to your rule
(bk02ch02/example08.html):

font-style: italic;

Styling links

When you add a link to the page, the web browser displays the link text

in a different color (usually blue) and underlined. This might not fit with

the rest of your page design, so go ahead and adjust the link styling as
needed.

You can apply any text style to a link, including changing the font size,
typeface, and color (which I discuss later in this chapter), and adding
bold or italics.

One common question web coders ask is “Links: underline or not?”” Not
everyone is a fan of underlined text, and if you fall into that camp, you
can use the following rule to remove the underline from your links:

a {
text-decoration: none;

}

warning Creating a custom style for links is standard operating procedure
for web developers, but a bit of caution is in order because a
mistake made by many new web designers it to style links too much
like regular text (particularly when they've removed underlining
from their links). Your site visitors should be able to recognize a
link from ten paces, so be sure to make your links stick out from the
regular text in some way.

ne If you style, say, an aside element with various text properties
(such as color and font-size) and then include a link within that
aside, the web browser will stubbornly refuse to apply the aside
element's styles to the link! Cue the frustration! The reason is
technical, but the solution is to use either the descendant
combinator or the child combinator, both of which I discuss later in
this chapter (in the “Getting to Know the Web Page Family”
section).

Aligning text horizontally

By default, your web page text lines up nice and neat along the left
margin of the page. Nothing wrong with that, but what if you want
things to align along the right margin, instead? Or perhaps you want to
center something on the page. Wouldn’t that be nice? You can do all that
and more by pulling out the text-align property (check out
bk02ch02/example09.html and Figure 2-7):

text-align:

left|center|right|justify;

The justify value tells the web browser to align the element's text on
both the left and right margin.

L C

When setting ragged text with
a computer, ke a moment Lo
refine your software's
understanding of what
constitutes an honest rag,
Many programs are
predisposed o invoke a
minimum as well as a
maximum line, If permitted 1o
do g0, they will hyphenate
words and adjust spaces
regardless of whether they are
tagging or justifying the text.
Ragged setiing under these
conditions produces an
orderly ripple down the
righthand side, making the
text look like a neatly pinched
piecrust. — Robert Bringhurst,
The Elements of Typography

& FAmipreview. github. io/Thitpe:iigithub. comipaulmci

When seiting ragged text with
a computer, take & moment (o
refine your software's
understanding of what
constitutes an bonest rag.
Many programs are
predisposed o invoke a
minimum as well as a
maxirmum ling, If permitted to
do so, they will hvphenate
words and adjust spaces
regardless of whether they are
tagging or justifying the text.
Ragged setting under these
conditions produces an
orderly ripple down the
righthand side, making the
text look like a neatly pinched
piecrust. — Robert Bringhurst,
The Elements of Typography

When setting ragged text with
i u.-umpuler.mlw il MOrment 1o
refine your software’s
understanding of what
constitutes an honest rag.
Many programs ane
predisposed to invoke a
minimum as well as a
maximum line, If permitted 1o
do so, they will hyphenate
words and adjust spaces
regardless of whether they are
tagging or justifying the text.
Ragged setting under these
conditions produces an
orderly ripple down the
righthand side, making the
text look like a neatly pinched
piecrust. —Robert Bringhurst,
The Elements of Typography

R EEL E

When setting ragged text with
a computer, take a moment 1o
refine your software’s
understanding of what
constitutes an honest rag,
Many programs are
predisposed to invoke a
minimum a5 well as &
maximum line, If permitted to
do s0, they will hyphenate
words and adjust spaces
regardless of whether they are
tagging or justifving the text.
Ragpged seiting under these
conditions produces an
orderly ripple down the
righthand side, making the
text look like a neatly pinched
piecrust. —Robent Bringhurst,
The Elements of Typography

FIGURE 2-7: The 1eft, center, right, and justify alignment options in action (from left to

right).

Indenting a paragraph's first line

You can signal the reader that a new paragraph is being launched by
indenting the first line a bit from the left margin. This is easier done than
said with CSS by applying the text-indent property:

text-indent: value;

Here, vaiue is a number followed by any of the CSS measurement units
I mention earlier in this chapter. For example, a common indent value is
1em, which I've applied here to the p element:

p {

text-indent: lem;

Working with Colors

When rendering the page using their default styles, browsers don’t do
much with colors, other than showing link text a default and familiar
blue. But CSS offers some powerful color tools, so there’s no reason not
to show the world your true colors.

Specifying a color
I begin by showing you the three main ways that CSS provides for
specifying the color you want:

» Use a color keyword. CSS defines more than 140 color keywords.
Some of these are straightforward, such as red, yellow, and purple,

while others are, well, a bit whimsical (and hunger-inducing):
lemonchiffon, papayawhip, and peachpuff. My Web Dev WOI‘kShOp

(https: webdevworkshop.io/tools/css-color-keywords)liStS

them all, as shown in Figure 2-8.

» Use the rgb () function.rgb () 1s a built-in CSS function that takes
three values: one for red, one for green, and one for blue (separated
by spaces). Each of these can be a value between 0 and 255, and
these combinations can produce any of the 16 million or so colors on

the spectrum. For example, the following function produces a nice
red:

rgb (255 99 71)

https://webdevworkshop.io/tools/css-color-keywords/

- ™ & wobdevworkshop koloolsioss -color-keywaords, G- - T -

TOOLS CODE BOOKS

CSS COLOR KEYWORDS

A complete list of the keywords along with their swatches and RGB codes

C553 defines more than 140 color keywords that you can use instead of rghb (), hal (), or a hex triplet. This
page lists all the available keywords along with an example swatch, the color's RGB hex triplet, the red, green,
and blue components (in decimal), and the hue, saturation, and luminance values.

Color Keywaord Red Green
lightpink effbecl
pink effeich
crimson #dcldadc
lavenderblush sfffafs
palevieletred rdbTea3

hatpink I FEOb4

deeppink #ff1493

FIGURE 2-8: Go to the Web Dev Workshop to access a full list of the CSS color
keywords.

» Use an RGB code. An RGB code is a six-digit value that takes the
form #rrggbb, where rris a two-digit value that specifies the red
component of the color, gg is a two-digit value that specifies the
green component, and bb is a two-digit value that specifies the blue
component. Alas, these two-digit values are hexadecimal — base 16
— numbers, which run from 0 to 9 and then a to f. As two-digit
values, the decimal values 0 through 255 are represented as 00
through ff'in hexadecimal. For example, the following RGB code
produces the same red as in the previous example:

#££6347

Coloring text
To apply a CSS color to some text, you use the color property:

color: value;

Here, vaiue can be a color keyword, an rgb () function, or an RGB
code. The following three rules produce the same color text:

color: tomato;
color: rgb (255 99 71);
color: #ff6347;

Coloring the background

For some extra page pizazz, try adding a color to the background of
either the entire page or a particular element. You do this in CSS by
using the background-color property:

background-color: value;

Here, vaiue can be a color keyword, an rgb () function, or an RGB
code. The following example displays the page with white text on a
black background:
body {
color: rgb (255 255 255);

background-color: rgb(0 0 0);
}

warnine When you're messing around with text and background colors,
make sure you leave enough contrast between the text and
background to ensure that your page visitors can still read the text
without shaking their fists at you. But too much contrast isn’t
conducive to easy reading, either. For example, using pure white for
text and pure black for the background (as I did in the preceding
code, tsk, tsk) isn’t great because there’s too much contrast.
Darkening the text a shade and lightening the background a notch
makes all the difference:

body {

color: rgb (222 222 222);
background-color: rgb (32 32 32);

Getting to Know the Web Page
Family

One of the prerequisites for becoming a web developer is understanding
both the structure of a typical web page and the odd (at least at first)
lingo associated with that structure. As an example, I’'m going to refer to
the semantic HTML elements that I demonstrate in Book 2, Chapter 1
(in Figure 1-16, in particular). Figure 2-9 shows that semantic structure
as a tree diagram:

The tree has the <htm1> tag at the top. The second level consists of the
<head> tag and the <body> tag, and the <head> tag leads to a third level
that consists of the <tit1e> and <style> tags. For the <body> tag, the
third level contains four tags: <header>, <nav>, <main>, and <footer>.
The <main> tag leads to the <article> tag, which contains two
<section> tags and an <aside> tag.

<html>
<head- <body>
<titles <styles <header> || <navs <main> || <footers

<article>

<gection=> <section> <aside>

FIGURE 2-9: The structure of a semantic HTML web page.

Okay, I can see the “So what?”” thought bubble over your head, so I'll get
to the heart of the matter. With this structure in mind, you can now
identify and define five useful members of the web page family tree:

» Parent: An element that contains one or more other elements in the
level below it. For example, in Figure 2-9, the <htm1> tag is the
parent of the <head> and <body> tags, whereas the <head> tag is the
parent of the <title> and <style> tags.

» Child: An element that is contained within another element that sits
one level above it in the tree. (Which is another way of saying that
the element has a parent.) In Figure 2-9 the <header>, <nav>,
<main>, and <footer> tags are children of the <body> tag, whereas
the two <section> tags and the <aside> tag are children of the
<article> tag.

» Siblings: Two or more elements that share the same parent element.
In Figure 2-9 the <header>, <nav>, <main>, and <footer> tags are

siblings because they share the <body> tag as a parent element.

» Ancestor: An element that contains one or more levels of elements.
In Figure 2-9, the <body> tag is an ancestor of the <aside> tag,
whereas the <htm1> tag is an ancestor of everything on the page.

» Descendant: An element that is contained within another element
that sits one or more levels above it in the tree. In Figure 2-9, the
<section> tags are descendants of the <main> tag, whereas the

<article> tag is a descendant of the <body> tag.

This no doubt seems far removed from web development, but these ideas
play a crucial role in CSS (and also in JavaScript; refer to Book 3)
because they enable your code to target page elements powerfully and
succinctly. That targeting is done with special codes called selectors,
which I discuss next.

Using CSS Selectors

When you add a CSS rule to an internal or external style sheet, you
assemble your declarations into a declaration block (that is, you
surround them with the { and } thingies) and then assign that block to a
selector that specifies the page item (or items) you want to style. For

example, the following rule throws a few properties at the page's <h1>
tags:
hl {
font-size: 72px;
font-family: Verdana;

text-align: center;

}

But the selector you assign to the declaration block doesn’t have to be an
HTML tag name. In fact, CSS has a huge number of ways to specify a
selector to define what parts of the page you want to style. When you
use a tag name, for example, you’re specifying a type selector. However,
there are many more selectors — a few dozen, in fact — but lucky for
you, the ones I discuss in the sections that follow should cover most of
your web development needs.

The class selector (.)

If you master just one CSS selector, make it the class selector because
you’ll use it time and again in your web projects. A class selector is one
that targets its styles at a particular web page class. So, what’s a class?
I’m glad you asked. A class is an attribute assigned to one or more page
tags that enables you to create a kind of grouping for those tags. Here’s
the syntax for adding a class to an element:

<element class="class-name">

Replace e1ement with the name of the element and replace c1ass-name
with the name you want to assign. The name must begin with a letter and
the rest can be any combination of letters, numbers, hyphens (-), and
underscores (). Here's an example:

<div class="caption">

With your classes assigned to your tags as needed, you’re ready to start
selecting those classes using CSS. You do that by preceding the class
name with a dot (.) in your style rule:

.class—-name {
propertyl: valuel;
property2: valueZ;

}

For example, here’s a rule for the caption class
(bk02ch02/example10.html):

.caption {
font-size: .75rem;
font-style: italic;
)
The advantage here is that you can assign the caption class to any tag

on the page, and CSS will apply the same style rule to each of those
elements.

The id selector (%)

In Book 2, Chapter 1, I talk about creating an anchor by adding a unique
id attribute to a tag, which enables you to create a link that targets the
anchor:

<element id="id-name">

Here's an example:
<h2 id="subtitle">

You can also use the id attribute as a CSS selector, which enables you to

target a particular element with extreme precision. You set this up by
preceding the id value with a hashtag symbol (#) in your CSS rule:

#id-name {
propertyl: valuel;
property2: valueZ2;

}

For example, here's a rule for the subtitle id
(bk02ch02/examplel1.html):

#subtitle {
color: gray;
font-size: 1.75rem;

font-style: italic;

This isn’t as useful as the class selector because it can only target a
single element, which is why web developers use id selectors only
rarely.

The descendant combinator

Rather than targeting specific tags, classes, or ids, you might need to
target every instance of a particular element that is contained within
another element. As I explain earlier (refer to “Getting to Know the Web
Page Family”), those contained elements are called descendants, and
CSS offers the descendant combinator for applying styles to them. To
set up a descendant selector, you include in your rule the ancestor
selector and the descendant selector you want to style, separated by a
space:

ancestor descendant
propertyl: valuel;
property2: valueZ2;

}

For example, here’s a rule that applies a few styles to every <a> tag that's
contained with an <aside> tag (bk02ch02/example12.html):

aside a {
color: red;
font-style: italic;
text-decoration: none;

}

The child combinator (>)

The descendant combinator that I discuss in the preceding section is one
of the most powerful in the CSS kingdom because it targets all the
descendants of a particular selector that reside within an ancestor, no
matter how many levels down the page hierarchy those descendants live.
However, it’s often more suitable and more manageable to target only
those descendants that reside one level down: in short, the children of
some parent element.

To aim some styles at the child elements of a parent, you use the CSS
child combinator, where you separate the parent and child selectors with

a greater-than sign (>):

parent > child {
propertyl: valuel;
property2: valuel;

}

For example, here's a rule that targets the links that are the immediate
children of an <aside> tag (bk02ch02/examplel3.html):

aside > a {
color: green;
font-style: bold;
text-decoration: none;

}

The subsequent-sibling combinator (~)

One common CSS task is to apply a style rule to a particular subject that
meets the following criteria:

» The target element appears in the HTML after a specified element,
which is known as the reference element.

» The target element and the reference element are siblings.

To apply some styles to such a subject, you use the subsequent-sibling
combinator, where you separate the reference and target selectors with a
tilde (~):

reference ~ target {
propertyl: valuel;
property2: valuel;

}

For example, here's a rule that targets any u1 element that’s a subsequent
sibling of an h3 element (bk02ch02/example14.html):

h3 ~ ul {
background: lightpink;
border: 5px outset crimson;

list-style-type: square;

padding: 8px 20px;
}

The next-sibling combinator (+)

Rather than target all the siblings that come after some reference
element, as does the subsequent-sibling combinator that I discuss in the
preceding section, you might need to target only the next sibling that
comes after the reference element.

For example, suppose you have a page full of h2 elements, each of
which is followed by multiple p elements, where the first p element is
some text that summarizes the p elements that follow. In this case, it
makes sense to style those first p elements differently, perhaps by
italicizing the text.

To apply a style rule to just the next sibling that comes after some
reference element, you use the next-sibling combinator, where you
separate the reference and target selectors with a plus sign (+):

reference + target {
propertyl: valuel;
property2: valueZ2;

}

For example, here's a rule that targets any p element that’s the next
sibling of an h2 element (bk02ch02/examplel5.html):

h2 + p {
font-style: italic;
}

A review of some pseudo-classes

A class selector targets elements assigned a particular class. However, in
many cases, instead of having a class in common, the elements you want
to target have a particular condition in common. For example, consider
each page element that's a first child of its parent. All such page
elements have the condition of first-child-ness in common. How can you
target such elements? By using a pseudo-class, which is a CSS selector

that acts like a class by generically targeting elements that meet some
condition (such as first-child-ness).

All pseudo-classes begin with a colon (:), followed by one or more
dash-separated words. You can use a pseudo-class on its own or
modified by an element. Here’s the general on-its-own syntax:

:pseudo-class {
propertyl: valuel;
property2: valueZ2;

}

Using a pseudo-class on its own means your rule matches every element
that meets the pseudo-class’s underlying condition.

To style every element that’s a first child of its parent element, you use
the : first-child pseudo-class:

:first-child {

font-style: italic;

)
However, you're more likely to want to apply your rule to first children
of a specific element type. You do that by putting the element name
before the pseudo-class, like so:

element:pseudo-class {

propertyl: valuel;
property2: valueZ2;

}

For example, the following rule applies a style to every p element that’s
a first child of its parent:
p:first-child ({

font-style: italic;
}

You can combine pseudo-classes with other selectors, particularly the
combinators. For example, the following rule applies a style to every p
element that's a first child of an article element:

article > p:first-child {
font-style: italic;
)
Another common way to combine pseudo-classes and selectors is to
modify the element name with a class, like so:
element.class:pseudo-class {

propertyl: valuel;
property2: valueZ2;

}

For example, the following rule applies a style to every p element that
uses the intro class and is a first child of its parent:

p.intro:first-child f{
font-style: italic;

)
CSS offers several dozen pseudo-classes. Yep, several dozen. If that
sounds like an alarming amount, don't worry: Many — perhaps even the
majority of — pseudo-classes are obscure and used only occasionally at
best, even by professionals. In Table 2-3, I list the most useful pseudo-
classes.

TABLE 2-3 Some Common Pseudo-Classes

Pseudo-Class Selects Example

element:first-child Any child element that is the first p:first-child {

: :
of a parent element's children. fextoindent: 0

}

Refer to
bk02ch02/example16.html.

element:last-child Any child element that is the last p:1ast-child {

of a parent element’s children. margin-bottom: 1.5rem;

}

Refer to
bk02ch02/example17.html.

element:nth-child (n) One or more elements based on tr:nth-child(even) {
their position in a parent

Pseudo-Class

Selects

Example

element’s collection of children.
For n, you can use any of the

following:

An integer. For
example, nth-
child(2) selects
the second child of
the parent.

An integer multiple.

For example, nth-
child(3n) selects
every third child of
the parent.

An integer multiple
plus an integer
offset. For example,
p:nth-
child(3n+2)
selects any p
element that's in the
second (n=0), fifth
(n=1), eighth (n=2),
and so on position
of a parent’s child
elements.

The keyword even.
For example, nth-
child(even)
selects the even-
numbered children
of the parent.

background-color:
lightgray;
}

Refer to
bk02ch02/example18.html.

Pseudo-Class

Selects

Example

e The keyword odd.
For example, nth-
child (odd) selects
the odd-numbered

children of the
parent.

element:first-of-type

Any child element that's the first
of its type in a parent element’s

children.

aside:first-of-type {
border: 5px double

black;

}

Refer to
bk02ch02/example19.html.

element:last-of-type

Any child element that’s the last
of its type in a parent element’s

children.

p:last-of-type {
margin-bottom: 1.5rem;

}

Refer to
bk02ch02/example20.html.

element:nth-of-type (n)

One or more elements of a

specified type based on their
position in a parent element’s

collection of children. You
specify n using the same

methods | outline earlier for the

:nth-child() pseudo-class.

p:nth-of-type (3n) {
background-color: gray;
}

Refer to
bk02ch02/example21.html.

element: focus

The element that has the focus
(that is, the element currently
selected on the page, usually by
tabbing to the element, but also
by clicking within an element

such as a text box).

input:focus {

background-color:

lightsteelblue;

}

Refer to
bk02ch02/example22.html.

Pseudo-Class Selects

Example

element:hover The element over which the user
is hovering the mouse pointer.

button:hover {
box-shadow: 10px 5px 5px
grey;

}

Refer to
bk02ch02/example23.html.

element:is (selector- Any of the selectors in the
1ist) specified selector list.

:is(hl, h2, h3) {
margin: 20px 16px;
}

Refer to
bk02ch02/example24.html.

element:not (selector- Every element that doesn't
list) match any of the selectors in the
specified selector list.

:not (.decorative) {
font-family: Georgia,
serif;

}

Refer to
bk02ch02/example25.html.

element:where (selector- Any of the selectors in the
list) specified selector list.

:where (hl, h2, h3) {
margin: 20px 16px;
}

Refer to
bk02ch02/example26.html.

element:has (selector- Any element that's a parent of
1ist) any item in a selector list of child
elements. You can also use
:has () to match an ancestor, a
previous sibling, or a later
sibling; see the example file.

nav:has (> a) {
background: lightgrey;
border: 4px double
darkgrey;

}

Refer to
bk02ch02/example27.html.

'&éﬁ‘

TECHNICAL

sture The :is () and :where () pseudo-classes sure look identical,
don't they? The difference is that while the specificity of :is () is

the highest specificity of whatever’s in the selector list, the
specificity of :where () is always zero. Refer to “Revisiting the
Cascade,” later in this chapter, to learn about specificity.

A few pseudo-elements you need to know

As your CSS career progresses, sooner or later (almost always sooner)
you'll bump up against two conundrums that have bedeviled web page
designers since Day One:

» How can I insert and style content on the fly based on the current
state of an element?

» How can I style a specific chunk of an element, such as its first line?

The common thread that runs through both problems is that you want to
style something that’s not part of the original page’s HTML. In the first
case, you want to add new content; in the second case, you want to style
a chunk that doesn’t have an HTML equivalent. In other words, you
want to work with page items that are not quite elements, which are
known as pseudo-elements in the land of CSS.

All pseudo-elements begin with two colons (: :), followed by a keyword.
Here’s the general syntax:

element: :pseudo-element {
propertyl: valuel;
property2: value2;

}

where:

» element 1s the name of the element type you want to target.

» pseudo-element is the name of the pseudo-element.

Table 2-4 lists the four most useful pseudo-elements: : :after and

: :before, which you use to add content on the fly — known as
generated content — and : : first-letter and ::first-1ine, which
you use to style chunks of an element.

TABLE 2-4 Some Common Pseudo-Elements

Pseudo-Class Description

Example

parent::after { Generates a new last child element for

content : the specified target parent element

'content’';
propertyl:
valuel;
property2:

valueZ;

:is(h2, h3)::after {
content: 'q';

color: #333;
font-size: lrem;
margin-left: 0.25rem;
}

Refer to
bk02ch02/example28.html.

parent::before (Generates a new first child element for
{ the specified target parent element

content:

"content';

propertyl:

valuel;

property2:

valueZ;

}

.tip::before {
content: 'TIP';
display: block;
color: green;
font-size: 12px;
}

Refer to
bk02ch02/example29.html.

element::first- largets the first letter of a specified

letter { block-level element

propertyl:
valuel;
property2:

valueZ;

h2 + p::first-letter {
color: crimson;
font-size: 32px;

}

Refer to
bk02ch02/example30.html.

Pseudo-Class Description Example

element::first- largets the first line of text in a specified n2 + p::first-line {

line { block element text-transform:
propertyl: uppercase;

valuel; }

propertyZ2: Refer to

value2; bk02ch02/example31.html.

Revisiting the Cascade

'&5&‘
"stuee 1 close this first CSS chapter with a quick review of the cascade
concept, which you need to drill into your brain if you want to write
good CSS and troubleshoot the inevitable CSS problems that will

crop up in your web development career.

At its heart, the cascade is a sorting algorithm for property declarations.
For each element (or pseudo-element) on the page, the cascade begins by
looking through all the page's CSS sources for every property
declaration with a selector that matches the element.

If a given property declaration occurs only once for the element, the
cascade applies that declaration to the element, no questions asked.
However, often a property has multiple declarations for the same
element and two or more of those declared property values are different.
When multiple possible values can apply to an element property, the
algorithm must figure out which declaration to use. To decide which
declaration gets applied, the cascade assigns a weight — a measure of
relevance — to each declaration and then styles the element using the
declaration that has the greatest weight.

To figure out the declaration with the greatest weight, the cascade
algorithm works through one or more tiebreaking criteria in the

following order:

» The declaration type
» The origin type
» Specificity

» Source code order

The next few sections flesh out the specifics of these tiebreakers.

Understanding declaration types

CSS includes a kind of Get Out of Jail Free card that enables a property
declaration to climb to the top (or close to the top) of the cascade’s
relevance hierarchy. That miraculous mechanism is the ! important
annotation, which you add to a declaration just after the end of the
property value:

color: navy !important;

A declaration that includes the ! important annotation is said to be using
the important declaration type, whereas all other declarations are said to
be using the normal declaration type.

warning [t's tempting to trot out the ! important annotation any time you
have a problem getting the cascade to do what you want. Every
now and then you may have a good reason to go this route.
However, it’s almost always better to understand why the cascade is
doing what it’s doing and come up with a solution — for example, a
more relevant selector — before launching the nuclear option of the
l important annotation.

Understanding origin types

The source of a particular CSS declaration is known as its origin. The
origin is important because the cascade algorithm takes the origin into

account when it decides which declarations to use when rendering the
page. Here's a quick summary of the major origin types:

» User agent style sheet: The list of default styles that the web
browser applies to certain HTML tags.

» User style sheet: The styles that the web browser user has
configured, such as a new default type size.

» Author style sheets: The styles that you create or that a third-party
developer has created. Author style sheets come in three varieties:

o External style sheets: The style rules that reside in separate
.css files.

e Internal style sheets: The style rules you add between the
<style> and </style> tags in the head section of the HTML
file.

e Inline styles: The style declarations you add to a tag's style
attribute.

What do the origin types have to do with the cascade algorithm, exactly?
Friend, it’s all about weight.

Declaration type, origin type, and weight

The two declaration types (normal and important) combine with the
different origin types to define a built-in hierarchy of weight. That is, for
a given declaration, the cascade assigns a weight based on the
declaration’s type and origin. When two or more declarations for the
same property are competing to be applied to an element, the cascade
first uses the declaration type/origin type hierarchy in Table 2-5 (listed
from lowest weight to highest weight) to decide which declaration gets
applied.

TABLE 2-5 Declaration Type/Origin Type Weight
Hierarchy

Weight Ranking (lowest to Declaration

highest) Origin Type Type

1 User agent stylesheet Normal

2 User stylesheet Normal

3 Author stylesheets: Internal or Normal
external

4 Author stylesheets: Inline Normal

5 Author stylesheets: Internal or Important
external

6 Author stylesheets: Inline Important

7 User stylesheet Important

8 User agent stylesheet Important

So, for example, a normal property declaration in any author stylesheet
(weight ranking 3 or 4 in Table 2-5) always overrides the same normal
property declaration in the user agent stylesheet (weight ranking 1 in
Table 2-5) because author stylesheets are given more weight. Similarly,
an inline normal property declaration (weight ranking 4) overrides the
same normal property declaration in an external or internal stylesheet
(weight ranking 3) because inline styles are given more weight.

Figuring out specificity

What happens when two or more property declarations with the same
declaration type and the same origin type target the same element? The
declarations will have the same weight ranking from Table 2-5, so you
have to turn to the cascade’s next tiebreaking mechanism: specificity.

One of the jobs of the cascade is to differentiate between two kinds of
selector:

» Broad: A selector that targets a large range of elements. For
example, the following rule targets every element in the body of the
page:

body {
color: slateblue;

}

» Narrow: A selector that targets a small range of elements. For
example, the following rule targets just the element that has the id
value of subtitle:

#subtitle {

color: dodgerblue;

}

Most crucially for your purposes here is the CSS concept called
specificity, which is a measure of whether a particular selector is broad,
narrow, or something in between. That is, a selector that targets a broad
range of elements 1s said to have low specificity, whereas a selector that
targets a narrow range of elements is said to have high specificity.

The general idea is that, from the cascade's point of view, the more
narrowly a selector targets an element, the more likely it is that the CSS
developer’s intention was to have the rule apply to the element.
Therefore, the more specific a selector, the higher its specificity score
and the more weight the cascade gives to the selector’s declaration
block.

Let me stress here that the preceding is from the point of view of the
cascade, which gives preference to selectors with the highest specificity.
That doesn’t mean that you must always prefer high-specificity selectors.
Sometimes a broad selector will get the job done; sometimes a narrow
selector will do. You get to decide the specificity of your selectors, but
you must choose your selectors knowing that, for a given property
declaration, the cascade will give preference to the selector with the
highest specificity.

Specificity is calculated as a kind of score that examines the components
of a given selector and plops them into one of the following three
buckets, which for easy memorization I’ve labeled I, C, and E:

» I: Score one point for each ID selector (that is, a selector that begins
with #).

» C: Score one point for each class or pseudo-class selector.

» E: Score one point for each element (type) or pseudo-element
selector.

You then take the total for each category — each ICE bucket, as 1 like to
say — and arrange the scores in the following general way:

[-C-E

For example, if a selector has one ID selector, two class selectors, and
four element selectors, the specificity is as follows:

1-2-4

Similarly, a selector with no ID selectors, three class selectors, and two
element selectors would have the following specificity:

0-3-2

How does the cascade decide which of these has the higher specificity?
[t compares each bucket, reading them from left to right:

1. Compare the I (ID) buckets of selector A and selector B:

e If one selector has a higher I score, that selector has the higher
specificity, so skip the rest of the steps.

e If both selectors have the same score, continue with Step 2.

2. Compare the C (class, pseudo-class) buckets of selector A and
selector B:

e If one selector has a higher C score, that selector has the
higher specificity, so skip the rest of the steps.

e If both selectors have the same C score, continue with Step 3.

3. Compare the E (element, pseudo-element) buckets of selector A and
selector B:

e If one selector has a higher E score, that selector has the
higher specificity.

¢ [f both selectors have the same E score, it means the selectors
have the same specificity, so the cascade moves on to the next
tiebreaker (which is source code order; head to the next
section “The ultimate tiebreaker: source code order™).

So, in the preceding specificity scores, 1-2-4 has a higher specificity
than 0-3-2.

To help you get a feel for converting selectors into specificity scores, the
following table offers a few examples.

I C Specificity (I-C-

Selector Bucket Bucket E Bucket Ef y(
#title #title 1-0-0

#title > h2 #title h2 1-0-1
.warning .warning 0-1-0
section section 0-0-1

header > nav > a:hover thover header, nav, a 0-1-3
p.intro + aside .intro p, aside 0-1-2

footer > div.social::before .social footer, div, 0-1-3

::before
#nav-header li.external > #nav .external p, 1li, span 1-1-3
span

In practice, you can use specificity to figure out why a particular element
has styles that don't seem right. Quite often, the problem is that the
browser is applying some other style rule that has a selector with a
higher specificity.

Q

ne Rather than calculate the specificity yourself, you can let one of
several online calculators handle that chore for you. Here’s a good
one: https://polypane.app/css—-specificity-calculator/.

https://polypane.app/css-specificity-calculator

The ultimate tiebreaker: Source code order

If two or more property declarations have the same declaration type, the
same origin type weight ranking, and the same selector specificity, the
cascade has one last tiebreaking strategy it can fall back on: source code
order. That is, given multiple property declarations with equal weight,
the declaration that appears latest in the source code is declared the
winner.

Just to be clear (because this tiebreaker is crucial to figuring out what the
cascade is doing and to solving cascade problems), here’s what I mean
by latest in the source code:

» If the declarations all reside in the same internal or external
stylesheet, /atest means the declaration that’s closest to the bottom of
the stylesheet. Consider the following code:

p {
color: darkorchid;

}

div, aside, p {
color: indigo;

}

Text in the p element will be colored indigo because that declaration
appears later in the source code than the darkorchid declaration.

» If the declarations reside in different external stylesheets, /atest

means the external stylesheet <1ink> tag that's closest to the bottom
of the HTML file nead section. Consider the following:
<head>
<meta charset="utf-8">
<title>Remember MySpace?</title>
<link rel="stylesheet" href="yourstyles.css">

<link rel="stylesheet" href="mystyles.css">
</head>

If both external stylesheets have a property declaration with equal
weight, the declaration in the mystyles.css files will be the one the

browser applies.

Putting it all together: The cascade algorithm

Okay, now I can combine all the stuff about declaration types, origin
types, specificity, and source code order to explain just how the cascade
goes about choosing which property declarations to apply to an element.

The cascade calculates declaration weights by running through the
following steps:

1. Sort the property declarations based on the declaration type/origin
type weight ranking, from highest (most weight) to lowest.

2. Check for the property declaration that has the highest ranking. One
of two things can happen here:

e If just one declaration has the top ranking, apply that
declaration and then skip the rest of the steps.

e [f two or more declarations are tied at the top of the ranking,
discard all the other declarations and proceed to Step 3.

3. For the property declarations tied with the highest declaration
type/origin type weight ranking, calculate the specificity of each of
the declarations’ selectors and sort the declarations from highest
specificity to lowest.

4. Check for the property declaration with the highest specificity.
Again, one of two things can happen now:

e If one declaration has the highest specificity, apply that
declaration and then skip the rest of the steps.

e [f two or more declarations are tied with the highest
specificity, discard all the other declarations and proceed to
Step 5.

5. For the declarations tied with the highest specificity, sort the
declarations by their order of appearance in the CSS source code.

6. Apply whichever property declaration appears latest in the code.

Chapter 3
Sizing and Positioning Page
Elements

0000000000000 00

IN THIS CHAPTER
» Wrapping your head around the CSS box model

» Setting the sizes of page elements
» Encrusting elements with padding, borders, and margins
» Letting elements float where they may

» Positioning elements exactly where you want them

Every element in web design is a rectangular box. This was my ah-ha
moment that helped me really start to understand CSS-based web design
and accomplish the layouts I wanted to accomplish.

— CHRIS COYIER

I’m not going to lie to you: When you’re just getting started with CSS,
the elements on the page will sometimes seem to defy your every
command. Like surly teenagers, they ignore your best advice and refuse
to understand that you are — or you are supposed to be — the boss of
them. Okay, I did lie to you a little: That can happen to even the most
experienced web coders. Why the attitude? Because although web
browsers are fine pieces of software for getting around the web, by
default they’re not adept at laying out a web page. Like overly
permissive grandparents, they just let the page elements do whatever
they like. Your job as a parent, er, | mean, a web developer, is to
introduce some discipline to the page.

Fortunately, CSS comes with a huge number of tools and techniques that
you can wield to make stubborn page elements behave themselves. In
this chapter, you discover many of these tools and explore how best to

use them to gain mastery over anything you care to add to a web page.
You delve into styles that cover properties such as dimensions (the
height and width of things), padding and margins (the amount of space
around things), borders (lines around things), and position (where things
appear on the page).

Learning about the CSS Box Model

Everything in this chapter is based on something called the CSS box
model. So 1 begin by discussing what this box model thing is all about
and why it’s important.

Every web page consists of a series of HTML tags, and each of those
tags represents an element on the page. In the strange and geeky world
known as Style Sheet Land, each of these elements is considered to have
an invisible box around it (okay, it’s a very strange world). You might be
tempted to think that this invisible box surrounds only block-level
elements, which are the tags that start new sections of text: <p>,

<blockquote>, <h1> through <n6>, <div>, all the page layout semantic
tags, such as <header>, <article>, and <section>. That makes sense,
but in fact every single tag, even inline tags such as <a> and ,
have a box around them.

This box has the following components:

» Content: The stuff inside the box (the text, the images, or whatever)
» Padding: The space around the content
» Border: A line that surrounds the box padding

» Margin: The space outside of the border separating the box from
other boxes to the left and right, as well as above and below

» Dimensions: The height and width of the box

» Position: The location of the box within the page

Of these, the first four — the content, padding, border, and margin —
make up the box model. Figure 3-1 shows what the aforementioned

invisible box looks like in the abstract, and Figure 3-2 points out the box
model components using an actual page element (the code for which you
can find in bk02ch03/example01.html in this book’s example files).

margin

left content right

bottom
FIGURE 3-1: The components of the CSS box model.

An awfully long time ago, an informal or humorous name used in place of a
person’s given name was said to be that person's ekename. The old word eke
means “extra” or “additional,” and it survives today in phrases such as “to cke out
a living." Error or mishearing is a common source of new English words, and
ekename gives us a good example of this strange-but-true process at work.

Margin

k4

Note: Creating a new word by chopping off the initial letter or

syllable of an existing word is called aphaeresis (which means “to
«—stake away™). This not-as-uncommon-as-you-might-think process
was the source of words such as mend (a shortening of amend),
spy {Irom espy), cute (from acwure), and squire (from esquire).

Content

k4

Whenever someone would say the phras¢ “an ekename,” there was always a good
change that some listener (who had never heard the word before) would think the
persop was actually saying “a nekename.” In this case, that mistake happened
often [enough that ekename turned into| nekename, which then twrned into our
word prickname.

Padding Border
FIGURE 3-2: The CSS box model applied to a page element.

Styling Sizes

When the web browser renders a page, it examines each element and
sets the dimensions of that element. For block-level elements such as
header and div, the browser sets the dimensions as follows:

» Width: Set to the width of the element's parent. Because by default
the width of the body element is set to the width of the browser’s

content area, in practice all block-level elements have their widths
set to the width of the content area.

» Height: Set just high enough to hold all the element’s content.
You can (and should) run roughshod over these defaults by styling the
element’s width and height properties:

width: value;

height: value;

In both cases, you replace value with a number and one of the CSS
measurement units I talk about in Book 2, Chapter 2: px, em, rem, vw, Or
vh. For example, if you want your page to take up only half the width of

the browser's content area, you’d use the following rule (check out
bk02ch03/example02.html):

body {
width: 50vw;
}
Most of the time you’ll only mess with an element’s width because
getting the height correct is notoriously difficult. The height depends on
too many factors: the content, the browser’s window size, the user’s
default font size, and more.

MAKING WIDTH AND HEIGHT MAKE
SENSE

Width and height seem like such straightforward concepts, but you might as well learn
now that CSS has a knack for turning the straightforward into the crooked-sideways. A
block element’s dimensions are a case in point, because you’d think the size of a block
element would be the size of its box out to the border: that is, the content, plus the
padding, plus the border itself. Nope. By default, the size of a block element’s box is
just the content part of the box.

That may not sound like a cause for alarm, but it does mean that when you’re working
with an element’s dimensions, you have to take into account its padding widths and
border sizes if you want to get things right. Believe me, doing so is no picnic.
Fortunately, help is just around the corner. You can avoid all those extra calculations by
forcing the web browser to be sensible and define an element’s size to include not just
the content but the padding and border, as well. A CSS property called box-sizing is

the superhero here:

element {
box-sizing: border-box;

}

The declaration box-sizing: border-box tells the browser to set the element's height
and width to include the content, padding, and border. You could add this declaration to
all your block-level element rules, but that’'s way too much work. Instead, you can use a
trick where you use an asterisk (*) “element,” which is a shorthand way of referencing

every element on the page:

*
box-sizing: border-box;

}

Put this at the top of your style sheet, and then you never have to worry about it again.

5
TECHNICAL . .
sture - Height and width apply only to block-level elements such as
article, div, and p, and not to inline elements such as span and a.
However, it's possible to convert inline elements into blocks. CSS

offers two methods for this inline-to-block makeover:

» Make it an inline block. If you want to set an inline element’s
width, height, or other block-related properties but still allow the
element to flow along with the surrounding text, add the following to
the element’s CSS rule:

display: inline-block;

» Make it a true block. If you want to set an inline element’s block-
related properties and you no longer want the element to flow with
the surrounding text, turn it into an honest-to-goodness block-level
element by adding the following to the element’s CSS rule:

display: block;

Adding Padding

In the CSS box model, the padding is the space that surrounds the
content out to the border, if the box has one. Your web pages should
always have lots of whitespace (that is, blank, content-free chunks of the
page), and one way to do that is to give each element generous padding
to ensure that the element’s content isn’t crowded either by its border or
by surrounding elements.

The padding has four sections — above, to the right of, below, and to the
left of the content — so CSS offers four corresponding properties for

adding padding to an element:

element {

padding-top: top-value;

padding-right: right-value;

padding-bottom: bottom-value;

padding-left: left-value;

}

Each value is a number followed by a CSS measurement unit: px, em,
rem, vw, O vh. Here's an example:

.margin-note {

padding-top: lrem;

padding-right: 1.5rem;

padding-bottom:

.S5rem;

padding-left: 1.25rem;

}

CSS also offers a shorthand syntax that uses the padding property. You
can use four different syntaxes with the padding property, and they're all

listed in Table 3-1.

TABLE 3-1 The padding Shorthand Property

Syntax

Description

padding: valuel;

Applies vaiue: to all four sides

padding: valuel valueZ2;

Applies vaiue1 to the top and bottom and vaiuez to the
right and left

padding: valuel value2

value3;

Applies vaiuei to the top, vaiue2 to the right and left, and
value3 to the bottom

padding: valuel value2

value3 valued;

Applies vaiue1 to the top, vaiuez to the right, vaiues to the
bottom, and va1ue< to the left

Q

ne To help you remember the four-value syntax, note that the
values start at the top of the element's box and proceed clockwise

around the box.

Here's how you’d rewrite the previous example using the padding
shorthand:

.margin-note {
padding: lrem 1l.5rem .5rem 1.25rem;

}

To illustrate what a difference padding can make in your page designs,
take a peek at Figure 3-3 (and bk02ch03/example03.html). Here you
have two <aside> elements, where the one on top looks cramped and
uninviting, whereas the one on the bottom offers ample room for
reading. These two elements are styled identically, except the one on the
bottom has its padding set with the following declaration:

padding: lrem;

c @ himipreview.github o?hitps:figithub.comjipaulmele/web-coding -and-dev-bd- 2e/blobimain/bk02ch03fexampled3 html (o

Mote: Creating a new word by chopping off the initial leter o
syllable of an existing word is called aphaeresis (which means "o
iake “""“',"'"| This m-:u.-um'nrnrrmﬂ-:u.-:_mu-rn:lg_ht-lh'tnl: process
s the source of words such as mend (a shorening of amend)
apy (from espyl, cinde {from aode), and sguice (Irom esguine].

MNote: Crealing a new word by chopping off the matial betier
or syllable of an existing word s called aphaeresis (which
mmans o take away™). This nol-aS-unoommon-as-you-might-
think process was the source of words such as mend (a
shortening of amerd), spy (from espy). cwde (from acute), and
squire (from exgaire]),

FIGURE 3-3: Without padding (top), your text can look uncomfortably crowded by its border,
but when you add padding (bottom), the same text has room to breathe.

Building Borders

Modern web design eschews vertical and horizontal lines as a means of
separating content, preferring, instead, to let copious amounts of
whitespace do the job. However, that doesn't mean you should never use
lines, particularly borders, in your designs. An element’s border is the
set of lines that enclose the element’s content and padding. These lines
are invisible by default, but you can use CSS not only to display the
borders but also to format them to suit your design needs. Borders are an

often useful way to make it clear that an element is separate from the
surrounding elements in the page.

Four lines are associated with an element’s border — above, to the right
of, below, and to the left of the padding — so CSS offers four properties
for adding borders to an element:

element {
border-top: top-width top-style top-color;
border-right: right-width right-style right-color;
border-bottom: bottom-width bottom-style bottom-color;

border-left: left-width left-style left-color;
}

Each border requires three values:

» Width: The thickness of the border line, which you specify using a
number followed by a CSS measurement unit: px, em, rem, vw, Or vh.
Note, however, that most border widths are measured in pixels, often
1px. You can also specify one of the following keywords: thin,
medium, Or thick.

» Style: The type of border line, which must be one of the following
keywords: dotted, dashed, solid, double, groove, ridge, inset, OI
outset. Note that the effects of styles such as double, groove,
ridge, inset, Or outset appear only when you use a relatively wide
border (between at least 3px and 8px, depending on the style).

» Color: The color of the border line. You can use a color keyword, an
rgb () function, or an RGB code, as I describe in Book 2, Chapter 2.

Here's an example that adds a 1-pixel, dashed, red bottom border to the
header element:

header {
border-bottom: 1lpx dashed red;
}

If you want to add a full border around an element and you want all four
sides to use the same width, style, and color, CSS mercifully offers a
shorthand version that uses the border property:

border: width style color;

Here's the declaration I used to add the borders around the elements in
Figure 3-2 (bk02ch03/example03.html):

border: lpx solid black;

Making Margins

The final component of the CSS box model is the margin, which is the
space around the border of the box. Margins are an important detail in
web design because they prevent elements from rubbing up against the
edges of the browser content area, ensure that two elements don't overlap
each other, and create separation between elements.

As with padding, the margin has four sections — above, to the right of,
below, and to the left of the border — so CSS offers four corresponding
properties for adding margins to an element:

element {
margin-top: top-value;
margin-right: right-value;
margin-bottom: bottom-value;
margin-left: left-value;

}

Each value is a number followed by one of the standard CSS
measurement units: px, em, rem, vw, or vh. Here's an example:

aside {
margin-top: lrem;
margin-right: .5rem;
margin-bottom: 2rem;
margin-left: 1.5rem;

}

Like padding, CSS also offers a shorthand syntax that uses the margin
property. Table 3-2 lists the four syntaxes you can use with the margin

property.

ne To help you remember the four-value syntax, note that the
values start at the top of the element's box and proceed clockwise
around the box.

Here's the shorthand version of the previous example:

aside {
margin: lrem .5rem 2rem 1.5rem;

}

TABLE 3-2 The margin Shorthand Property

Syntax Description

margin: valuel; Applies vaiuei to all four sides

Applies vaiue1 to the top and bottom and vaiuez to the right
and left

margin: valuel valueZ;

margin: valuel value2 Applies vaiuei to the top, vaiuez to the right and left, and
value3; value3 to the bottom

margin: valuel value2 Applles valuel to the top, value2 to the right, value3 to the
value3 valued; bottom, and va1ue4 to the left

Resetting the margin

If you notice a web developer pulling their hair or gnashing their teeth,
it’s a good bet that they’re battling the web browser’s default styles for
margins. These defaults are one of the biggest sources of frustration for
web coders because they force you to relinquish control over one of the
most important aspects of web design: the whitespace on the page.

Most modern web developers have learned not to fight against these
defaults but to eliminate them entirely. They simply reset everything to
zero by adding the following rule to the top of every style sheet they
build:

* A
margin: O;

The downside is that you must now specify the margins for all your page
elements, but that extra work is a blessing in disguise because now you
have complete control over the whitespace in your page.

Collapsing margins ahead!

CSS has no shortage of eccentricities, and you’ll come across most of
them in your web development career. In this section you look at one of
the odder things that CSS does. First, here’s some HTML and CSS code
to chew over (bk02ch03/example04.html):

HTML.:

<header>

<h1>News of the Word</hl>

<p class="subtitle">Language news you won't find anywhere else (for good
reason!)</p>
</header>
<nav>

Home

What's New

What's 0ld

What's What

</nav>
CSS:

nav {
margin-top: .5rem;
padding: .75rem;
border: 1lpx solid black;
}

I’d like to draw your attention in particular to the margin-top: .5rem
declaration in the nav element's CSS rule. As Figure 3-4 shows, the
browser has rendered a small margin above the nav element.

€ o i htmipreview.githubioThitps:[igithub comfpaulmcfefweb-coding-and-dev-fd-2e/blobimain/bk02ch03/example0d_html & o
MNEWS
News of the Word

Language news you won’t find anywhere else (for good reason!)
z

| Home What's Mew What's Old What's What

rem

FIGURE 3-4: The nav element (with the border) has a .srem top border.

Suppose now I decide that I want a bit more space between the header

and the nav elements, so I add a bottom margin to the header
(bk02ch03/example05.html):

header {
margin-bottom: .5rem;

}

Figure 3-5 shows the result.

_.‘\'}-.‘-.".'L
News of the Word

Language news you won't find anywhere else (for good reason!)
LI

Home What's New What's Old What's What

JSrem (still!)

FIGURE 3-5: The nheader element with a bottom margin added (with the border) has a .srem
top border.

No, you're not hallucinating: The space between the header and nav
elements didn't change one iota! Welcome to the wacky world of CSS!
In this case, the wackiness comes courtesy of a CSS “feature” called
collapsing margins. When one element’s bottom margin butts up against
another element’s top margin, common sense would dictate that the web
browser would add the two margin values together. Hah, you wish!

Instead, the browser uses the larger of the two margin values and throws
out the smaller value. That s, it collapses the two margin values into a
single value.

So, does that mean you’re stuck? Not at all. To get some extra vertical
space between two elements, you have four choices:

» Increase the margin-top value of the bottom element.
» Increase the margin-bottom value of the top element.

» If you already have margin-top defined on the bottom element and
the top element doesn't use a border, add a padding-bottom value to
the top element.

» If you already have margin-bottom defined on the top element and
the bottom element doesn't use a border, add a padding-top value to
the bottom element.

In the last two bullets, combining a top or bottom margin on one element
with a bottom or top padding on the other element works because the
browser doesn’t collapse a margin-and-padding combo.

Getting a Grip on Page Flow

When a web browser renders a web page, one of the boring things it
does is lay out the tags by applying the following rules to each element
type:

» Inline elements: Rendered from left to right within each element’s
parent container

» Block-level elements: Stacked on top of each other, with the first

element at the top of the page, the second element below the first,
and so on

This way of laying out inline and block-level elements is called the page
flow. For example, consider the following HTML code
(bk02ch03/example06.html):

<header>
The page header goes here.
</header>
<nav>
The navigation doodads go here.
</nav>
<section>
This is the first section of the page.
</section>
<section>
This is—you got it—the second section of the page.
</section>
<aside>
This is the witty or oh-so-interesting aside.
</aside>
<footer>
The page footer goes here.
</footer>

This code is a collection of six block-level elements — a header, a nav,
two section tags, an aside, and a footer. Figure 3-6 shows how the
web browser renders them as a stack of boxes.

i htmipresiew. github. o Thing

The page header goes here.
The navigation doodads go here.

This is the first section of the page.

This 15— you got it—the second section of the page.

This is the witty or oh-so-interesting aside.

The page footer goes here.

FIGURE 3-6: The web browser renders the block-level elements as a stack of boxes.

Nothing is inherently wrong with the default page flow, but having your
web page render as a stack of boxes lacks a certain flair. Fortunately for
your creative spirit, you’re not married to the default, one-box-piled-on-
another flow. CSS gives you many useful methods for breaking out of
the normal page flow. In the rest of this chapter, I talk about two ways of
giving your pages some out-of-the-flow pizzazz: floating and
positioning. (For more ways to break out of the default page flow, refer
to Book 2, Chapter 4.)

Floating Elements

When you float an element, the web browser takes the element out of the
default page flow. Where the element ends up on the page depends on
whether you float it to the left or to the right:

» Float left: The browser places the element as far to the left and as
high as possible within the element’s parent container.

» Float right: The browser places the element as far to the right and as
high as possible within the element’s parent container.

In both cases, the non-floated elements flow around the floated element.

You convince the web browser to float an element by adding the f1oat
property:

element |
float: left|right|none;
}

For example, consider the following code (bk02ch03/example07.html)
and its rendering in Figure 3-7:

<header>

<hl>News of the Word</hl>
<p class="subtitle">Language news you won't find anywhere else (for good
reason!)</p>
</header>
<nav>
Home
What's New
What's 0ld
What's What
</nav>

News of the Word

Language news you won't find anywhere else (for good reason!)

& htmipreview.github jof@https:fgithub.com/paulmchefwab=coding -and=dev=fd-2ebobimain/bk02chd3fexample0? . html B

NEWS

Homae Whal's New What"s Old What's What

FIGURE 3-7: As usual, the browser displays the block-level elements as a stack of boxes.

As shown in Figure 3-7, the web browser is up to its usual page flow
tricks: stacking all the block-level elements on top of each other.
However, I think this page would look better if the title (the <h1> tag)
and the subtitle (the <p> tag) appeared to the right of the logo. To do that,
I can float the tag to the left (bk02ch03/example08.html):

header img {
float: left;

margin-right: 2em;

)
Figure 3-8 shows the results. With the logo floated to the left, the rest of
the content — particularly the <n1> tag and the <p> tag — now flows
around the tag.

|

& htmlpreview.github. iof? hitps: fgithub, comfpaulmciefweb-coding-and-dev-fd- 2e/blobimainbklchi3fexampled8 himl &
""" News of the Word
l Language news you won't find anywhere else (for good
reason!y
Home What's Mew What's Old What's What

FIGURE 3-8: When the logo gets floated left, the rest of the content flows around it.

Clearing your floats

The default behavior for non-floated stuff is to wrap around anything
that's floated, which is often exactly what you want. However, there will
be times when you want to avoid having an element wrap around your
floats. For example, consider the following code
(bk02ch03/example09.html) and how it gets rendered, as shown in
Figure 3-9.

<header>
<hl>Can't You Read the Sign?</hl>
</header>
<nav>
Home
Signs
Contact Us
Suggest a Sign
</nav>
<article>
<img src="images/keep-off-the-grass.jpg"
alt="A sign that reads 'Keep off the grass' with a
well-worn dirt path beside it.">
</article>
<footer>
© Can't You Read?, Inc.
</footer>

“« _ # htmipreview.github. iofFhitps:github.comfpaulmcfe/wab-coding - and-dev-fd-2e/olobimain/bk02chi3example0f htmd &

Can’t You Read the Sign?

Homez Signs Contact Us Suggest a Sign

W R0 Can't You Read?, Inc,
eS| EEP

OFF
THE
|GRASS

FIGURE 3-9: When the image is floated left, the footer wraps around it and ends up in a
weird place.

With the tag floated to the left, the rest of the content flows
around it, including the content of the <footer> tag, which now appears
by the top of the image.

You want your footer to appear at the bottom of the page, naturally, so
how can you fix this? By telling the web browser to position the footer
element so that it clears the floated image, which means that it appears

after the image in the page flow. You clear an element by adding the
clear property:
element {

clear: left|right|both|none;
}

Use clear: left to clear all left-floated elements, clear: right to
clear all right-floated elements, or ciear: both to clear everything.
When I add c1ear: 1eft to the footer element
(bk02ch03/example10.html), Figure 3-10 shows that the footer content
now appears at the bottom of the page.

footer {

clear: left;

}

4= _ # htmipreview.github. io/Fhitps:igithub.comfpaulmcle/wab-coding-and-dev-fd-2e/olobimain/bk02ch0 3 examplet0.html &

Can’t You Read the Sign?

Haomse Signs Contact Ls Suggest 3 Sign

© Can't You Read?, Inc.

FIGURE 3-10: Adding c1ear: 1eft to the footer element causes the footer to clear the left-
floated image and appear at the bottom of the page.

Collapsing containers ahead!

The odd behavior of CSS 1s apparently limitless, and floats offer yet
another example. Consider the following HTML
(bk02ch03/examplel1.html) and its result in Figure 3-11:

<article>

<section>

New words are often created.
</section>
<aside>

Note: The Oxford English Dictionary..
</aside>

</article>

Note, in particular, that I've styled the articie element with a border.

L C i himipreview.github.io/Thitps:github. compaulmeioiveb-coding-and- dev-d- 2eblob/main Bk02chD3 examplal . B 1

Mew words are often created through mistakes. The most common of these errors is
something called back formarion or false analogy. This means that someone sees an
existing word, falsely places it in a particular grammatical category, and then forms a
new word based on that false assumption. For example, the noun pease originally
meant what we know of today as the pea. However, the word pease was both singular
and plural (something like panis or scissors). But sometime around 1600 someone
thought pease was plural, o they started using the word pea as the singular,

Note: The Oxford English Dictionary lists over T00 such back-formations,
including agoraphobe from ageraphobia, exurb from exurban, sleaze from sleazy,
burgle from burglar, enthuse from enthusiasm, televise from relevision, couth from
uncouth, ept from inepr, and grunrled from disgruniled. Other examples are surveil,

baby-sit, diagnose, donate, and reminisce.

FIGURE 3-11: An <article> tag containing a <section> tag and an <aside> tag, rendered
using the default page flow.

Rather than the stack of blocks shown in Figure 3-11, you might prefer
to have the section and the aside elements side-by-side. Great idea!

Add widtn properties to each, and float the section element to the left
and the aside element to the right. Here are the rules
(bk02ch03/examplel12.html), and Figure 3-12 shows the result.

section {
float: left;
width: 28rem;
}
aside {
float: right;
width: 20rem;

The <article> tag has collapsed!

~m

= C & himipreview.github.lo/"hitps:fgithub.com/paulmecie/we b-coding-and-dav-fd-2efticb/ma

MNew words are often created through mistakes. The
most common of these errors is something called
back formation or false analogy. This means that
someone sees an existing word, falsely places it in
a particular grammatical category, and then forms a
new word based on that false assumption. For
example, the noun pease originally meant what we
know of today as the pea. However, the word pease
was both singular and plural (something like panis
or scissors). But sometime around 1600 someone
thought pease was plural, so they started using the
word pea as the singular,

Note: The Oxford English
Dictionary lists over 700 such
back-formations, including
agoraphobe from ageraphobia,
exurh from exurban, sleaze from
sleazy, burgle from burglar,
enthuse from enthusiasm, televise
from relevision, couth from
wncouth, epd from inept, and
gruniled from disgruntled. Other
examples are surveil, baby-sit,
diagnose, donate, and reminisce.

FIGURE 3-12: With its content floated, the <artic1e> element collapses down to just its

border.

Well, that's weird! The line across the top is what’s left of the article
element. What happened? Because I floated both the section and the
aside elements, the browser removed them from the page flow, which
made the article element behave as though it had no content at all. The
result? A CSS bugaboo known as container collapse.

To fix this, you have to give the parent container some content that
forces the parent to clear its own children (bk02ch03/example 13.html):

HTML:
<article class="self-clear">

CSS:

.self-clear::after {
content: "";
display: block;
clear: both;

}

The : :after pseudo-element (refer to Book 2, Chapter 2) tells the

browser to create an element and add it as the last child of whatever
element gets the class. What's being added here is an empty string (since

you don’t want to add anything substantial to the page), and that empty
string is displayed as a block that uses ciear: both to clear the
container’s children. Since the container now has some (empty) content,
it no longer collapses, as shown in Figure 3-13.

The full <article> tag now appears

o > i mipreview. github. iof?https: github. comfpaulmefefweb- coding-and-dev-id-2e fblobmain bk 02 chi3example 1. html I -
Mew words are often created through mistakes. The Mote: The Oxford English
most common of these errors is something called Dictionary lists over 700 such
back formation of falze analogy. This means that hack-formations, including
someone sees an existing word, falsely places it in agoraphobe from agoraphobia,
a particular grammatical category, and then forms a exurb from exurban, sleaze from
new word based on that false assumption. For sleazy, burgle from burglar,
example, the noun pease originally meant what we enthuse from enthusiasm, televise —
know of today as the pea. However, the word pease fromm televizion, couth from
wis both singular and plural (something like panis wncouth, ept from inept, and
or scizsors), But sometime around 1600 someone gruntled from disgruntled. Other
thought pease was plural, so they started using the examples are surveil, baby-sit,
word pea as the singular. diggnose, donate, and reminisce.

FIGURE 3-13: With the se1f-clear class added to the <article>tag, the article element
now has content that clears its own children, so the element is no longer collapsed.

Positioning Elements

A second method for breaking out of the web browser's default stacked
boxes page flow is to position an element yourself using CSS properties.
For example, you could tell the browser to place an image in the top-left
corner of the window, no matter where that element’s tag appears
in the page’s HTML code. This method is known as positioning in the
CSS world, and it’s a powerful tool, so much so that most web
developers use positioning only sparingly.

The first bit of positioning wizardry you need to know is, appropriately,
the position property:

element {

position: static|relativel|absolute|fixed|sticky;

where:

» static places the element in its default position in the page flow.

» relative offsets the element from its default position with respect to
its parent container while keeping the element in the page flow.

» absolute offsets the element from its default position with respect to

its parent (or sometimes an earlier ancestor) container while
removing the element from the page flow.

» fixed offsets the element from its default position with respect to the
browser window while removing the element from the page flow.

» sticky starts the element with relative positioning until the element's
parent crosses a specified offset with respect to the browser viewport
(usually because the user is scrolling the page), at which point the
element switches to fixed positioning. If the opposite boundary of
the element’s parent block then scrolls to where the element is stuck,
the element reverts to relative positioning and scrolls with the parent.

Because static positioning is what the browser does by default, I won't
say anything more about it. For the other four positioning values —
relative, absolute, fixed, and sticky — note that each one offsets the
element. Where do these offsets come from? From the following CSS
properties:
element |
top: top-value;
right: right-value;
bottom: bottom-value;
left: left-value;
)
where top shifts the element down, right shifts the element from the
right, bottom shifts the element up, and 1eft shifts the element from the

left.

In each case, the value you supply is either a number followed by one of
the CSS measurement units (px, em, rem, vw, Or vh) Or a percentage.

Using relative positioning

Relative positioning is a bit weird because not only does it offset an
element relative to its parent container, but it still keeps the element's
default space in the page flow intact.

Here’s an example (bk02ch03/example14.html):
HTML.:

<h1l>
kevhole path
</hl>
<div>
<i>n.</i> A straight footpath with overhanging trees
that create a tunnel effect.
</div>
<img src="images/keyholepathl.jpg"
alt="Photo of a keyhole path">
<img src="images/keyholepath2.jpg"
alt="Photo of a kevhole path" class="offset-image">
<img src="images/keyholepath3.jpg"
alt="Photo of a keyhole path">

CSS:

.offset-image {
position: relative;
left: 300px;
)
The CSS code defines a rule for a class named offset-image, which
applies relative positioning and offsets the element from the left by
300px. In the HTML code, the offset-image class is applied to the
middle image. As shown in Figure 3-14, not only is the middle image
shifted from the left, but the space in the page flow where it would have
appeared by default remains intact, so the third image's place in the page
flow doesn’t change. As far as that third image is concerned, the middle
image is still right above it.

The image’s original position in the page flow The offset image

L: e & himipréview.github.ieThiipaigithub. compaulmclevieb-coding - and - dev-Tid IEI.'.;.' kb rmaen ko0 ch)d exampleTd_himl

keyhole path
n. A straight footpath with overhanging trees that create a tunnel effect.

o -

FIGURE 3-14: The middle image uses relative positioning to shift from the left, but its place
in the page flow remains.

Giving absolute positioning a whirl

Absolute positioning not only offsets the element from its default
position, but it also removes the element from the page flow. Sounds
useful, but if the element is no longer part of the page flow, from what
element is it offset? Good question, and here’s the short answer: the
closest ancestor element that uses non-static positioning.

If that has you furrowing your brow, I have a longer answer that should
help. To determine which ancestor element is used for the offset of the

absolutely positioned element, the browser goes through a procedure
similar to this:

1. Move one level up the page hierarchy to the previous ancestor.

2. Check the position property of that ancestor element.

3. If the position value of the ancestor is static, go back to Step 1

and repeat the process for the next level up the hierarchy; otherwise
(that is, if the position value of the parent is anything other than

static), offset the original element with respect to the ancestor.

4. If, after going through Steps 1 to 3 repeatedly, you end up at the top
of the page hierarchy — that is, at the <htm1> tag — use that to

offset the element, which means in practice that the element is offset
with respect to the browser's content area.

I mention in the preceding section that relative positioning is weird
because it keeps the element’s default position in the page flow intact.
However, now that weirdness turns to goodness because if you want a
child element to use absolute positioning, you add position: relative

to the parent element’s style rule. Because you don’t also supply an
offset to the parent, it stays put in the page flow, but now you have what
CSS nerds called a positioning context for the child element.

I think an example would be welcome right about now
(bk02ch03/examplel5.html):

HTML.:

<section>
<img src="images/new.png"
alt="Starburst with the text 'New'">
<h2>
holloway
</h2>
<div>
<i>n.</i> A sunken footpath or road; a path that is enclosed by high
embankments on both sides.
</div>
<div>
There are two main methods that create holloways: By years (decades,
centuries) of constant foot traffic that wears down the path (a process
usually accelerated somewhat by water erosion); or by digging out a path
between two properties and piling up the dirt on either side.
</div>

</section>

CSS:

section {
position: relative;
border: lpx double black;
}

img {
position: absolute;
top: O;
right: 0;
)
In the CSS, the section element is styled with the position: relative
declaration, and the img element is styled with position: absolute and
top and right offsets set to 0. In the HTML code, note that the
<section> tag is the parent of the tag, so the latter's absolute
positioning will be with respect to the former. With top and right offsets
set to 0, the image will now appear in the top-right corner of the section

element and, indeed, it does, as shown in Figure 3-15.

The absolutely positioned image

ra o @ himipreview.github.lo/?hittps:github.comjpauimetefwet :;|| and-dev-1d-2ablob) malnbiod; V3 amoka1s . hEm o

holloway

n. A sunken footpath or road; a path that is enclosed by high
embankments on both sides.

There are two main methods that create holloways: By
years (decades, centuries) of constant foot traffic that wears
down the path {a process usually accelerated somewhat by
waler erosion); or by digging oul a path between two
properties and piling up the dirt on either side.

FIGURE 3-15: The img element uses absolute positioning to send it to the top right corner of
the section element.

Trying out fixed positioning

With fixed positioning, the element is taken out of the normal page flow
and 1is then offset with respect to the browser's content area, which
means the element doesn’t move, not even a little, when you scroll the
page (that is, the element is fixed in its new position).

One of the most common uses of fixed positioning is to plop a header at
the top of the page and make it stay there while the user scrolls the rest
of the content. Here’s an example that shows you how to create such a

header (bk02ch03/examplel6.html):
HTML:

<header>

<h2>
holloway
</h2>
</header>

<main>

</main>
CSS:

header {

position: fixed;

top: O;

leifits Og

width: 100%;

height: 4rem;

border: lpx double black;

background-color: rgb (147, 196, 125);
}

main {
margin-top: 4rem;

}

The HTML code includes a header element with an image and a
heading, followed by a longish main section that I don't include here for
simplicity’s sake. In the CSS code, the header element is styled with
position: fixed, and the offsets top and 1eft set to 0. These offsets

fix the header to the top left of the browser's content area. I also added
width: 100% to give the header the entire width of the window. Note,

too, that I set the header height to 64px. To make sure the main section
begins below the header, I styled the main element with margin-top:
4rem. Figure 3-16 shows the results.

i@ himipreview.github.io/Thitps:fgithub.com/paulmciefwe b-coding -and-dev-fd-2eblob/main k02 chl3examplal6. himl t

holloway

1. A sunken footpath or road; a path that is enclosed by high
embankments on both sides.

Notes:

There are two main methods that create holloways: By years
(decades, centuries) of constant foot traffic that wears down
the path (a process wsually accelerated somewhat by water
erosion); or by digging out a path between two properties and
piling up the dirt on either side.

Examples:

Down in the depths of the holloway, you could see neither
metalled roads nor telegraph poles, nor even the most
distant ghimpses of the outsized golf balls of the early
warning radar up on Fylingdales.

—William Dalrymple, “Holloway by Robert Macfarlane,
Stanley Donwood, Dan Richards — review,” The Guardian,
July 19,2013

FIGURE 3-16: A page with the header element fixed to the top of the screen. When you
scroll the rest of the page, the header remains where it is.

Making elements stick (temporarily)

Sticky positioning is a kind of combination of relative and fixed. That is,
the element starts off with relative positioning until the element’s
containing block crosses a specified threshold (usually because the user
is scrolling the page), at which point the element switches to fixed
positioning. If the opposite edge of the element’s containing block then
scrolls to where the element is stuck, the element reverts to relative
positioning and resumes scrolling with the containing block.

For example, suppose your page has a section element, and inside that
section 1S an h2 element that you've positioned as sticky. Here’s an

abbreviated version of the code (check out bk02ch03/examplel7.html
for the complete version):

HTML.:

<section>
<h2>Cat ipsum</h2>
<p>http://www.catipsum.com/</p>
<p>Sample:</p>

<p class="sample-text">
Cat ipsum dolor sit amet, prance along on top of the garden fence,

annoy the neighbor's dog and make it bark stuff and things intrigued by the
shower. Please stop looking at your phone and pet me sleep everywhere, but
not in my bed get my claw stuck in the dog's ear and adventure always but
drool yet roll over and sun my belly. Ooh, are those your $250 dollar
sandals?

</p>
</section>

CSS:

h2 {
position: sticky;
top: O;
)
In the CSS code, notice that for the h2 element, I set position: sticky.
To specify the threshold at which the element sticks, I set top: 0, which
means this element will stick in place when the top edge of the section

element hits the top of the viewport, as shown in Figure 3-17.

Stuck <h2> tag Scroll direction
[# himipreviey.github, ioihitps:[fgithub, compauimcies/web-coding - and-dev-fd- 2e/blob/main/bk 02chi 3 example17 html t 1
Cat ipsum

Please stop looking at your phone and pet me sleep everywhere, but not in my
bed get my claw stuck in the dog's ear and adventure always but drool yet roll
over and sun my belly. Ooh, are those your $250 dollar sandals?

Cheese ipsum
http: / fwww.cheeseipsum.co.uk/
Sample;

Camembert de normandie rubber cheese fromage frais. Jarlsherg chalk and
cheese say cheese parmesan cheese and biscuits st. agur blue cheese blue
castello cream cheese. Cut the cheese caerphilly cheese and wine parmesan
parmesan cottage cheese bavarian bergkase queso. Rubber cheese.

Hipster ipsum
hitps://hipsum.co/

FIGURE 3-17: A page with an n2 element stuck (temporarily) to the top of the screen.

Chapter 4
Creating the Page Layout

IN THIS CHAPTER

» Understanding page layout basics

» Learning the fundamentals of Flexbox layouts

» Getting a grip on Grid layouts

Flexbox is essentially for laying out items in a single dimension — in a

row OR a column. Grid is for layout of items in two dimensions — rows
AND columns.

— RACHEL ANDREWS

Why are some web pages immediately appealing, while others put the
“Ugh” in “ugly”? There are lots of possible reasons: colors, typography,
image quality, the density of exclamation points. For my money,
however, the number one reason why some pages soar while others are
eyesores is the overall look and feel of the page. We’ve all visited
enough websites to have developed a kind of sixth sense that tells us
immediately whether a page 1s worth checking out. Sure, colors and
fonts play a part in that intuition, but we all respond viscerally to the big
picture that a page presents.

That big picture refers to the overall layout of the page, and that’s the
subject you explore in this chapter. Here you discover what page layout
is all about, and you investigate two CSS-based methods for making
your web pages behave the way you want them to. By the time you’re
done mastering the nitty-gritty of page layout, you’ll be in a position to
design and build beautiful and functional pages that’ll have them
screaming for more.

What Is Page Layout?

The page layout is the arrangement of the page elements within the
browser’s content area, including not only what appears when you first
open the page but also the rest of the page that comes into view as you
scroll down. The page layout acts as a kind of blueprint for the page, and
like any good blueprint, the page layout details how a page looks at two
levels:

» The macro level: Refers to the overall layout of the page, which
determines how the major sections of the page — header, nav, main,
footer, and so on — fit together as a whole.

» The micro level: Refers to the layout within a section or subsection
of the page. For example, the page's header element might have one

layout, whereas the page’s article section might have another.

CSS offers two main layout techniques, each of which you can apply at
either the macro level or the micro level:

» CSS Flexible Box (Flexbox): Arranges elements either vertically or
horizontally within flexible boxes.

» CSS Grid: Arranges the elements in a row-and-column structure.

The rest of this chapter discusses each of these techniques.

Making Flexible Layouts with
Flexbox

For many years, the go-to layout technique for most CSS pros was either
floating elements or inline blocks (that is, setting a block element’s
display property to inline-block so that the element behaves, layout-
wise, as an inline element). Both techniques offered numerous banana
peels in the path that tripped up many a developer, including forgetting
to clear your floats and having containers collapse (check out Book 2,
Chapter 3 to learn more about these pitfalls).

However, beyond these mere annoyances, float-based or inline-block-
based layouts had trouble with a few more important things, making it
very hard to get

» An element's content centered vertically within the element’s
container

» Elements evenly spaced horizontally across the full width (or
vertically across the full height) of their parent container

» A footer element to appear at the bottom of the browser’s content
area

Fortunately, these troubles vanish if you use a CSS technology called
Flexible Box Layout Module, or Flexbox, for short. The key here is the
flex part of the name. As opposed to the default page flow and layouts
that use floats and inline blocks, all of which render content using rigid
blocks, Flexbox renders content using containers that can grow and
shrink — I’'m talking both width and height here — in response to
changing content or browser window size. But Flexbox also offers
powerful properties that make it a breeze to lay out, align, distribute, and
size the child elements of a parent container.

The first thing you need to know is that Flexbox divides its world into
two categories:

» Flex container: A block-level element that acts as a parent to the
flexible elements inside it

» Flex items: The elements that reside within the flex container

Setting up the flex container
To designate an element as a flex container, you set its display property
to flex:

container {
display: flex;
}

With that done, the element's children automatically become flex items.

Flexbox is a one-dimensional layout tool, which means the flex items are
arranged within their flex container either horizontally — that is, in a
row — or vertically — that is, in a column. This direction is called the
primary axis and you specify it using the flex-direction property:
element {
display: flex;

flex-direction: row|row-reverse|column|column-reverse;

}

where:

» row 1S the primary axis is horizontal and the flex items are arranged
from left to right. This is the default value.

» row-reverse 1S the primary axis is horizontal and the flex items are
arranged from right to left.

» column 1s the primary axis is vertical and the flex items are arranged
from top to bottom.

» column-reverse 18 the primary axis is vertical and the flex items are
arranged from bottom to top.

The axis that is perpendicular to the primary axis is called the secondary
axis.

As an example, here's some CSS and HTML code (check out
bk02ch04/example01.html in this book’s example files). Figure 4-1
shows how it looks if you let the browser lay it out:

HTML.:

<div class="container">
<div class="item iteml">1</div>
<div class="item item2">2</div>
<div class="item item3">3</div>
<div class="item itemd4">4</div>
<div class="item item5">5</div>
</div>

CSS:

& 3 @ himipeoview gtk boitps: ligithub. -ZefolobjmainbkizchOdfmampbethiml ¢y & S * O G !

FIGURE 4-1: If you let the browser lay out the elements, you get the default stack of blocks.

The browser does its default thing where it stacks the div blocks on top
of each other and makes each one take up the full width of its parent div

(the one with the container class), which has its boundaries marked by
the double border in Figure 4-1.

Now configure the parent div — again, the one with the container class

— as a flex container with a horizontal primary axis (check out
bk02ch04/example02.html):

.container {
display: flex;
flex-direction: row;
border: 5px double black;
}

This automatically configures the child div elements — the ones with
the item class — as flex items. As shown in Figure 4-2, the flex items

are now aligned horizontally and only take up as much horizontal space
as their content requires.

* @ himdpeoview. github. o i it 15 fene Hing fy T ftibol Tor 2.ht g s & 0O 5 i

12345

FIGURE 4-2: With their parent as a flex container, the child elements become flex items.

Aligning flex items along the primary axis

Note in Figure 4-2 that the flex items are bunched together on the left
side of the flex container (which has its boundaries shown by the double
border). This is the default alignment along the primary axis, but you can
change that by modifying the value of the justify-content property:

container {

display: flex;

justify-content: flex-start|flex-end|center|space-around |space-
between | space-evenly;

}

where:

» flex-start aligns all the flex items with the start of the flex
container (where start means left if flex-direction 1S row; right if

flex-direction 1S row-reverse; top 1f flex-direction 1S column,

or bottom if flex-direction 1S column-reverse). This value is the
default, so you can leave out the justify-content property if flex-
start is the alignment you want.

» flex-end aligns all the flex items with the end of the flex container
(where end means right if flex-direction is row; left if f1ex-
directionisrow—reverse;bOﬁOHJifflex—directioniScolumn;Or

top if flex-direction 1S column-reverse).
» center aligns all the flex items with the middle of the flex container.

» space-around assigns equal amounts of space before and after each
flex item. Note that this distribution doesn't result in even spacing
along the primary axis because the inner flex items (2, 3, and 4 in
Figure 4-3) have two units of space between them, whereas the
starting and ending flex items (1 and 5, respectively, in Figure 4-3)
have only one unit of space to the outside (that is, to the left of item
1 and to the right of item 5).

» space-between places the first flex item at the start of the flex

container, the last flex item at the end of the flex container, and then
distributes the rest of the flex items evenly in between.

» space-evenly assigns equal amounts of space before and after each

flex item, where the amount of space is calculated to get the flex
items distributed evenly along the primary axis.

Figure 4-3 (bk02ch04/example03.html) demonstrates each of the
possible values of the justify-content property when the f1ex-

direction property is set to row.

S ——
12345

- —
- —

1 3 3 4 B
i 3 3 2 5
o 1 2 3 4 5

FIGURE 4-3: How the justify-content values align flex items when the primary axis is
hOﬁZOﬂtal(flex—direction: row)

Aligning flex items along the secondary axis
Besides aligning the flex items along the primary axis, you can also
align them along the secondary axis. For example, if you've set f1ex-
direction to row, which gives you a horizontal primary axis, the
secondary axis is vertical, which means you can also align the flex items
vertically. By default, the flex items always take up the entire height of
the flex container, but you can get a different secondary axis alignment
by changing the value of the a1ign-items property:

container {
display: flex;
align-items: stretch|flex-start|flex-end|center|baseline;

}

where:

» stretch expands each flex item in the secondary axis direction until

it fills the entire height (if the secondary axis is vertical) or width (if
the secondary axis is horizontal) of the flex container. This alignment

is the default, so you can leave out the align-items property if
stretch is the alignment you want.

» flex-start aligns all the flex items with the start of the flex
container's secondary axis (where start means top if flex-direction
iSrow(ﬂfrow—reverse;Orleﬁifflex—directioniscolumn(ﬂ

column—reverse)

» flex-end aligns all the flex items with the end of the flex container's
secondary axis (where end means bottom if f1ex-direction 1S row
Orrow—reverse;Orlightifflex—directioniScolumn(ﬂ?column—

reverse).

» center aligns all the flex items with the middle of the flex
container's secondary axis.

» baseline aligns the flex items along the bottom edges of the item
text. (Technically, given a line of text, the baseline is the invisible
line upon which lowercase characters such as o and x appear to sit.)
If the flex items contain multiple lines of text, the flex items are
aligned along the baseline of the first lines in each item.

Figure 4-4 demonstrates each of the possible values of the a1ign-items
property when the secondary axis is vertical (that is, in this case, the
flex-direction property is set to row) and each flex container is given
a height of 30vh (the edges of each container are given a double border).
(Also check out bk05ch02/example04.html.) To make the baseline

example useful, I added random amounts of top and bottom padding to
each flex item.

Centering an element horizontally and vertically

In the olden days of CSS, centering an element both horizontally and
vertically within its parent was notoriously difficult. Style wizards
stayed up until late at night coming up with ways to achieve this feat.
They succeeded, but their techniques were obscure and convoluted.
Then Flexbox came along and changed everything by making it almost
ridiculously easy to plop something smack dab in the middle of the page:

& ¢ @ himlpreview.github bo/Thitps:[github. comip _.".-.-.‘—..--::.‘:,..w,'*"ﬁﬂ'ﬁ#u.i
stretch

m

tiﬂ;ﬂﬂ

flex-end

12345
12345

12

FIGURE 4-4: How the a1ign-items values align flex items when the secondary axis is
vertical.

Yes, that's all there is to it. Here's an example
(bk02ch04/example05.html):

HTML:

CSS:

}

.item {
font-family: "Georgia", serif;
font-size: 2rem;

}

As shown in Figure 4-5, the flex item sits right in the middle of its flex
container.

@ himdpeeview githul io7hat i paulmaclew ing dugey=ficd = g T ok 4 Py try 5 % O 0 0O i H

Look, ma, I'm centered!

FIGURE 4-5: To center an item, set the container’s justify-content and align-items
properties to center.

Laying out a navigation bar with Flexbox

One common web page component is a navigation bar that has several
links arranged horizontally within a nav element. You could use either

floats or inline blocks (refer to Book 2, Chapter 3) to lay out the
navigation bar, but you’ll end up resorting to finicky finagling of vertical
and horizontal padding to get the links nicely positioned within the nav

element.

With Flexbox, however, you don't need to resort to such time-consuming
tweaking to gets things lined up nice and neat. Here’s a Flexbox version
of a navigation bar (bk02ch04/example06.html). Figure 4-6 shows how
it looks in the browser:

HTML.:

<nav>

Home</1li>
Blog
Store</1i>
About</1i>
Contact</1li>

</nav>

<main>
Main content goes here..
</main>

CSS:

nav {
background-color: #ccc;
}
nav ul {
display: flex;
justify-content: space-around;
align-items: center;
height: 2.5rem;
list-style-type: none;
}
main {
margin-top: lrem;

}

~u

< ' & himipreview.github.bo/?https:/fgithub.com/pauimefafweb-coding-a

Home Blog Store About Coniact

Main content ot here..,

FIGURE 4-6: Using Flexbox, you can modify flex container properties for nicely spaced
links.

Note that [made the u1 element the flex container. By setting justify-
content t0 space-around and align-items to center, you get the flex

items — that is, the navigation links — perfectly spaced within the
navigation bar.

Allowing flex items to grow

By default, when you set the justify-content property to flex-start,
flex-end, Or center, the flex items take up only as much room along
the primary axis as they need for their content, as shown earlier in
Figures 4-2 and 4-3. This 1s admirably egalitarian, but it does often leave
a bunch of empty space in the flex container. Interestingly, one of the
meanings behind the flex in Flexbox is that you can make one or more
flex items grow to fill that empty space.

You configure a flex item to grow by setting the f1ex-grow property on
the item:
item {

flex-grow: value;

}

Here, vaiue is a number greater than or equal to 0. The default value is
0, which tells the browser not to grow the flex items. That usually results

in empty space in the flex container, as shown in Figure 4-7
(bk02ch04/example07.html).

@ hbmipresviee. githubsoyPhit thu paulmclefwe £ ! fd= Tt w2 chD fax 5 T oo 0 i

12345

Empty space in the flex container

FIGURE 4-7: By default, all flex items have a f1ex-grow value of o, which often results in
empty space.

For positive values of f1ex-grow, there are three scenarios to consider:

» You assign a positive £lex-grow value to just one flex item. The
flex item grows until no more empty space remains in the flex
container. For example, here's a rule that sets f1ex-grow to 1 for the
element with class item1 (bk02ch04/example08.html). Figure 4-8
shows that item 1 has grown until there is no more empty space in
the flex container:

.iteml
flex-grow: 1;

}

& mimipreview github o 7hit i F fefwe-cod i id-Zejblob kO2chd ex how o M O

1 2345

flex-grow: 1

FIGURE 4-8: With f1ex-grow: 1, anitem grows until the container has no more
empty space.

» You assign the same positive £lex-grow value to two or more flex

»

items. The flex items grow equally until no more empty space
remains in the flex container. For example, here's a rule that sets
flex-grow to 1 for the elements with the classes item1, item2, and
item3 (bk02ch04/example09.html). Figure 4-9 shows that items 1, 2,
and 3 have grown until there is no more empty space in the flex
container:

.iteml,

.item2,

.item3 {
flex-grow: 1;

}

1 2 3 45

flex-grow: 1

FIGURE 4-9: When items 1, 2, and 3 are styled with fiex-grow: 1, the items grow
equally.

You assign a different positive £1ex-grow value to two or more
flex items. The flex items grow proportionally based on the fiex-
grow values until no more empty space remains in the flex container.
For example, if you give one item a f1ex-grow value of 1, a second
item a flex-grow value of 2, and a third item a flex-grow value of
1, the proportion of the empty space given to each will be,
respectively, 25 percent, 50 percent, and 25 percent. Here's some
CSS code that supplies these proportions to the elements with the
classes iteml, item2, and item3 (bk02ch04/examplel0.html). Figure
4-10 shows the results:

.iteml {
flex-grow: 1;

}

.item2 {
flex-grow: 2;

}

.item3 {

flex-grow: 1;

&
TECHNICAL . . ’
sture 10 calculate what proportion of the flex container’s empty space

is assigned to each flex item, add up the f1ex-grow values, and then
divide the individual f1ex-grow values by that total. For example,
values of 1, 2, and 1 add up to 4, so the percentages are 25 percent
(1/4), 50 percent (2/4), and 25 percent (1/4), respectively.

@ hbmipreview.github.oyThtt L fefwet : i fd-2ejt wd2chdfax L T o N 0 3

1 2 3 45
| | |

flex-grow: 1 flex-grow: 2 flex-grow: 1

FIGURE 4-10: Iltems 1 and 3 get 25 percent of the container's empty space, whereas item 2
gets 50 percent.

Allowing flex items to shrink

The flexibility of Flexbox means that flex items can not only grow to fill
a flex container's empty space but also shrink if the flex container
doesn’t have enough space to fit the items. Shrinking flex items to fit
inside their container is the default Flexbox behavior, but you gain a
measure of control over which items shrink and by how much by using
the flex-shrink property on a flex item:

item {
flex-shrink: value;

}

Here, value is a number greater than or equal to 0. The default value is
1, which tells the browser to shrink all the flex items equally to get them
to fit inside the flex container.

For example, consider the following code (bk02ch04/examplel1.html):
HTML.:

<div class="container">
<div class="item iteml">1</div>
<div class="item item2">2</div>
<div class="item item3">3</div>
<div class="item itemd4">4</div>
<div class="item item5">5</div>

</div>
CSS:

.container {

display: flex;

width: 500px;

border: 5px double black;
}

.item {
width: 200px;
)
The flex container (the container class) is 500px wide, but each flex
item (the item class) is 200px wide. To get everything to fit, the browser

shrinks each item equally, and the result is shown in Figure 4-11.

& himiprevsew. github o THitps: igithut W il T

1 2 3 4 5|

| | | | flex-shrink: 1

FIGURE 4-11: By default, the browser shrinks the items equally along the primary axis until
they fit.

'&5&1‘

"sture - The browser shrinks each flex item truly equally (that is, by the
same amount) only when each item has the same size along the
primary axis (for example, the same width when the primary axis is
horizontal). If the flex items have different sizes, the browser
shrinks each item roughly in proportion to its size: Larger items
shrink more, whereas smaller items shrink less. I use the word
roughly here because in fact the calculations the browser uses to
determine the shrinkage factor are brain-numbingly complex. If you

want to learn more (don't say I didn’t warn you!), check out

https://madebymike.com.au/writing/understanding-flexbox.

For positive values of flex-shrink, you have three ways to control the
shrinkage of a flex item:

» Assign the item a flex-shrink value between 0 and 1. The

browser shrinks the item less than the other flex items. For example,
here's a rule that sets f1ex-shrink to .5 for the element with class

iteml, and Figure 4-12 shows that item 1 has shrunk less than the
other items in the container:

.iteml {
flex-shrink: .5;
}

& htmlpressew.github o Trttps: igithut

1 2 3 4 5

flex-shrink; .5

FIGURE 4-12: Styling item 1 with fiex-shrink: .5 shrinks it less than the other
items.

» Assign the item a flex-shrink value greater than 1. The browser

shrinks the item more than the other flex items. For example, the
following rule sets fiex-shrink to 2 for the element with class

item1, and Figure 4-13 shows that item 1 has shrunk more than the
other items in the container:

.iteml
flex-shrink: 2;
}

B hbmiprevsew.github o Thttpe: gtk mipailmelataal ding-and-dev-fd-2e 3 sy koD 14 fexamplal 3. b _' o

1 2 3 4 5

flex-shrink; 2

https://madebymike.com.au/writing/understanding-flexbox

FIGURE 4-13: Styling item 1 with fiex-shrink: 2 shrinks the item more than the
others.

» Assign the item a flex-shrink value of 0. The browser doesn't
shrink the item. The following rule sets flex-shrink to 0 for the
element with class item1, and Figure 4-14 shows that the browser
doesn't shrink item 1:

.iteml {
flex-shrink: 0;
}

i hibtmilprevsew.github o Thttpe: gl

1 2 3 4 5

flex-shrink; 0
FIGURE 4-14: Styling item 1 with fiex-shrink: 0 doesn't shrink the item.

warning [f a flex item is larger along the primary axis than its flex
container, and you set flex-shrink: 0 on that item, ugliness
ensues. That is, the flex item breaks out of the container and,
depending on where it sits within the container, might take one or
more other items with it. If you don’t want a flex item to shrink,
make sure the flex container is large enough to hold it.

Laying out content columns with Flexbox

Flexbox works best when you use it to lay out components along one
dimension, but that doesn’t mean you can’t use it to lay out an entire
page. As long as the page structure is relatively simple, Flexbox works
great for laying out elements both horizontally and vertically.

A good example is the classic page layout that has a header and
navigation bar across the top of the page, a main section with an article
and a sidebar beside it, and a footer across the bottom of the page. Here’s

some Flexbox code (bk02ch04/examplel5.html) that creates this layout,
which is shown in Figure 4-15:

HTML.:

CSS:

& © @ hemipreview.githubiof?hitps: igithub. comjpaulmelawed-coding-and-dev-1d Dichbejeampielsheml 5 % & ® O @ i
Header

Navigation

Article Aside

Footer

FIGURE 4-15: A classic page layout, Flexbox-style.

Here’s a closer look at what’s happening in this code:

» The <body> tag is set up as a flex container, and that container is
styled with flex-direction: column to create a vertical primary

»

»

»

»

»

»

»

axis for the page as a whole.

The body element has its height property set to 100%, which makes
the flex container always take up the entire height of the browser's
content area. Note that setting height: 100% on the body element

only works because earlier I added the same declaration to the htm1
element.

The body element also declares gap: 1rem to create a 1rem space
between each flex item.

All the content elements — header, nav, article, aside, and
footer elements are given a border and some padding.

The main element is styled with f1ex-grow: 1, which tells the
browser to grow the main element vertically until it uses up the
empty space in the flex container. This also ensures that the footer

element appears at the bottom of the content area even if there isn't
enough content to fill the main element.

The main element is also a flex container styled with f1ex-
direction: row to create a horizontal primary axis. Note, as well,
the use of the gap property to set a 1rem horizontal gap between each
flex item.

Inside the main flex container, the article element is given flex-
grow: 1, S0 it grows as needed to take up the remaining width of the
main element (that is, after the width of the aside element is taken
into account).

To get a fixed-width sidebar, the aside element's rule has both f1ex-
grow and flex-shrink set to 0, and it also includes the declaration
flex-basis: 10rem. The flex-basis property provides the browser

with a suggested starting point for the size of the element. In this
case, with both flex-grow and flex-shrink set to 0, the flex-basis

value acts like a fixed width.

ne You can use a shorthand property called f1ex to combine flex-
grow, flex-shrink, and flex-basis into a single declaration:
item {

flex: grow-value shrink-value basis-value;

}

For example, I could rewrite the aside element's rule in the preceding
example as follows:

aside {
flex: 0 0 10rem;
}

Shaping the Overall Page Layout
with CSS Grid

One of the most exciting and anticipated developments in recent CSS
history is the advent of a technology called CSS Grid. The Grid
specification gives you a straightforward way to divide a container into
one or more rows and one or more columns — that is, as a grid — and
then optionally assign the container's elements to specific sections of the
grid. With CSS Grid, you can give the web browser instructions such as
the following:

» Set up the <body> tag as a grid with four rows and three columns.

» Place the header element in the first row and make it span all three
columns.

» Place the nav element in the second row and make it span all three
columns.

» Place the article element in the third row, columns one and two.

» Place the aside element in the third row, column three.

» Place the footer element in the fourth row and make it span all three
columns.

Before you learn how to do all of this and more, you need to know that a
Grid uses two categories of elements:

» Grid container: A block-level element that acts as a parent to the
elements inside it and that you configure with a set number of rows
and columns

» Grid items: The elements that reside within the grid container and
that you assign (or the browser assigns automatically) to specific
parts of the grid

Setting up the grid container
To designate an element as a grid container, you set its display property
to grid:

container {

display: grid;
}

With that first step complete, the element's children automatically
become grid items.

Specifying the grid rows and columns
Your grid container doesn’t do much on its own. To make it useful, you
need to create a grid template, which specifies the number of rows and
columns you want in your grid. You set up your template by adding the
grid-template-columns and grid-template-rows properties to your
grid container:
container {
display: grid;
grid-template-columns: column-values;
grid-template-rows: row-values
)
The column-values and row-values are space-separated lists of the

sizes you want to use for each column and row in your grid. The sizes

can be numbers expressed in any of the standard CSS measurement units
(px, em, rem, vw, OF vh), a percentage, or the keyword auto, which tells
the browser to automatically set the size based on the other values you
specify.

Here's an example (bk02ch04/example 16.html), and Figure 4-16 shows
the result:

HTML.:

CSS:

100px 300px 200px 100px 200px

& =3

1

L umm.m«lbﬂmmwmwwnhmwwmu Zefblobmain/bki2chldjexampleiB.niml ¢y o

2

FIGURE 4-16: A basic grid created by setting just three properties: display, grid-template-

columns, and grid-template-rows.

TECHNICAL
sture You can also specify a column or row size using a unit called fr,

which 1s specific to Grid and represents a fraction of the free space
available in the grid container, either horizontally (for columns) or
vertically (for rows). For example, if you assign one column 1fr of
space and another column 2 fr, the browser gives one third of the
horizontal free space to the first column and two thirds of the
horizontal free space to the second column.

ne If you leave out the grid-template-rows property, the browser

automatically configures the row heights based on the height of the
tallest element in each row.

Creating grid gaps

By default, the browser doesn't include any horizontal space between
each column or any vertical space between each row. If you’d prefer
some daylight between your grid items, you can add the column-gap and

row-gap properties to your grid container:

container {
display: grid;
column-gap: column-gap-value;
row-gap: row-gap-value

}

In both properties, the value is a number expressed in any of the standard
CSS measurement units (px, em, rem, vw, Or vh). Here's an example
(bk02ch04/examplel7.html):

.container {
display: grid;
grid-template-columns: 100px 300px 200px;
grid-template-rows: 100px 200px;
column-gap: 10px;
row-gap: 15px;

ne You can use a shorthand property called gap to combine column-
gap and row-gap into a single declaration:
container {
display: grid;

gap: row—gap-value [column-gap-value];

}

rememeer When you use the gap shorthand property, if you specify only
row-gap-value, Grid applies the value to both rows and columns.

Assigning grid items to rows and columns

Rather than letting the web browser populate the grid automatically, you
can take control of the process and assign your grid items to specific
rows and columns. For each grid item, you specify four values:

item {
grid-column-start: column-start-value;
grid-column-end: column-end-value;
grid-row-start: row-start-value;
grid-row-end: row-end-value;

}

where:

» grid-column-start 1s a number that specifies the column where the
item begins.

» grid-column-end is @ number that specifies the column before
which the item ends. For example, if grid-column-end is set to 4,
the grid item ends in column 3. Some notes:

e If you omit this property, the item uses only the starting
column.

e If you use the keyword end, the item runs from its starting
column through to the last column in the grid.

e You can use the keyword span followed by a space and then a
number that specifies the number of columns you want the
item to span across the grid. For example, the following two
sets of declarations are equivalent:

grid-column-start: 1;

grid-column-end: 4;

grid-column-start: 1;

grid-column-end: span 3;

» grid-row-start 1s a number that specifies the row where the item

begins

» grid-row-end is @ number that specifies the row before which the
item ends. For example, if grid-row-end is set to 3, the grid item
ends in row 2. Some notes:

e If you omit this property, the item uses only the starting row.

e [fyou use the keyword end, then the item runs from its

starting row through to the last row in the grid.

e You can use the keyword span followed by a space and then a
number that specifies the number of rows you want the item
to span down the grid. For example, the following two sets of
declarations are equivalent:

grid-row-start: 2;

grid-row-end: 4;

grid-row-start: 2;

grid-row-end: span 2;

Here's an example (bk02ch04/examplel8.html), and the results are

shown in Figure 4-17:

HTML.:

<div class="container">

<diwv
<diwv
<div
<div
<diwv

class="item
class="item
class="item
class="item

class="item

iteml">1</div>
item2">2</div>
item3">3</div>
itemd">4</div>
item5">5</div>

& himlpreview.github.ia/Thit

6

FIGURE 4-17: Some grid items assigned to different columns and rows in the grid.

Q

ne In the example, note that I use a function named repeat to
specify multiple columns and rows that are the same size. Here's the
syntax to use:

repeat (number, size)

Replace number with the number of columns or rows you want to create,
and replace size with the size you want to use for each of those columns
or rows. For example, the following two declarations are equivalent:

grid-template-rows: 150px 150px 150px;
grid-template-rows: repeat (3, 150px);

Q

ne CSS also offers two shorthand properties that you can use to
make the process of assigning items to columns and rows a bit more
streamlined:

item {

grid-column: column-start-value / column-end-value;

grid-row: row-start-value / row-end-value;

}

Aligning grid items

CSS Grid ofters several properties that you can use to align stuff in your
grid. Grid’s alignment properties fall into two general categories:

» Direction: Refers to the axis along which the alignment is
performed:

e Justify: Sets the alignment along the grid container’s inline
axis.

e Align: Sets the alignment along the grid container’s block
axis.

» Target: Refers to the part of the grid to which the alignment is
applied:

e Content: Sets the alignment on all the columns or all the rows
in the grid.

e Items: Sets the alignment on individual grid items within
their assigned grid areas.

Given the preceding categories, CSS Grid defines four alignment
properties:

» justify-content: Sets the alignment along the inline axis of all
grid's columns. Here’s the syntax:

container {

justify-content: start|center|end|stretch|space-around]|space-
between|space-evenly;

}

» align-content: Sets the alignment along the block axis of all grid’s
rows. Here’s the syntax:

container {
align-content: start|center|end|stretch|space-around|space-
between|space-evenly|baseline;

}

rememeer FOT align-content (Or align-items, coming up) to work,
you need to set a height on the grid container — specifically, a height
greater than the combined natural height of all the rows. Without that
custom height, the browser will set the container height just tall
enough to fit the rows, so there's no extra space for align-content
(or align-items) to do its thing.

» justify-items: Sets the alignment along the inline axis of each grid
item within its grid area. Here's the syntax:

container {
justify-items: start|center|end|stretch;

}

» align-items: Sets the alignment along the block axis of each grid
item within its grid area. Here’s the syntax:

container {
align-items: start|center|end|stretch|baseline;

}

Laying out content columns with Grid

As a two-dimensional layout system, Grid is perfect for laying out an
entire page. This includes the classic page layout that I talk about earlier:
a header and navigation bar across the top of the page, an article with a
sidebar beside it, and a footer across the bottom of the page. Here's some
Grid code (bk02ch04/example19.html) that creates this layout, which is
shown in Figure 4-18:

HTML.:

<body>
<header>
Header
</header>
<nav>
Navigation
</nav>

<article>

border: lpx solid black;

« =3 O A Mot Secure 192.168.0.194/webcoding/bk02ch04/example13. html

Header

Navigation

Article

Aside

Footer

FIGURE 4-18: The classic page layout, Grid-style.

Here’s a detailed look at what the code does:

» The <pbody> tag is set up as a grid container, and that container is
styled with two columns and four rows.

» The body element has its height property set to 100%, which makes
the grid container always take up the entire height of the browser's
content area. Note that setting height: 100% on the body element
works only because earlier I added the same declaration to the htm1

element.

html
height: 100%;

}

» All header, nav, and footer elements span from the first column to
the end of the grid, and they're assigned rows 1, 2, and 4,
respectively.

» The article element uses only column 1 and row 3, both of which
were defined with the size 1£r, which allows the article element to
take up the free space in the grid.

» The aside element uses column 2, which was assigned a width of
10rem, so its width 1s fixed.

Book 3

Coding the Front End, Part 2:
JavaScript

Contents at a Glance

Chapter 1: An Overview of JavaScript

JavaScript: Controlling_ the Machine

What Is a Programming_Language?

Is JavaScript Hard to Learn?

What You Can Do with JavaScript
What You Can’t Do with JavaScript
What You Need to Get Started

Basic Script Construction

A Quick Introduction to the Console

Dealing with a Couple of Exceptional Cases

Adding_Comments to Your Code

Creating_External JavaScript Files

Chapter 2: Understanding_Variables

Understanding_Variables

Naming_Variables: Rules and Best Practices

Understanding_Literal Data Types

JavaScript Reserved Words

JavaScript Keywords

Chapter 3: Building Expressions

Understanding Expression Structure

Building_ Numeric Expressions

Building_String_Expressions

Building_ Comparison Expressions

Building_Logical Expressions

Understanding_Operator Precedence

Chapter 4: Controlling the Flow of JavaScript

Making_True/False Decisions with if Statements

Branching with if...else Statements

Making_Multiple Decisions

Understanding_Code Looping

Using while Loops

Using_for Loops

Using_do...while Loops

Controlling_ Loop Execution

Avoiding_Infinite Loops

Chapter 5: Harnessing the Power of Functions

What Is a Function?

The Structure of a Function
Where Do You Put a Function?

Calling_a Function

Passing_Values to Functions

Returning_a Value from a Function

Getting_Your Head around Anonymous Functions

Moving_to Arrow Functions

Running_Functions in the Future

Understanding_Variable Scope

Using_Recursive Functions
Chapter 6: Playing with the Document Object Model

Working_with Objects
Getting_to Know the Document Object Model

Specifying_Elements

Traversing_the DOM
Manipulating_Elements

Modifying_ CSS with JavaScript

Tweaking HTML Attributes with JavaScript

Chapter 7: Building Reactive Pages with Events

What's an Event?

Understanding_the Event Types

Listening_for an Event

Getting_ Data about the Event

Preventing the Default Event Action
Example: The DOMContentLoaded Event
Example: The dbiclick Event

Chapter 8: Working with Arrays

What Is an Array?

Declaring_an Array

Populating_an Array with Data
How Do | Iterate Thee? Let Me Count the Ways

Creating_Multidimensional Arrays

Manipulating_ Arrays

Chapter 9: Manipulating_Strings, Dates, and Numbers

Manipulating_Text with the String_ Object

Dealing with Dates and Times
Working_with Numbers: The Math Object

Chapter 10: Storing User Data in the Browser

Understanding_Web Storage
Introducing JSON

Adding Data to Web Storage
Getting_ Data from Web Storage

Removing_Data from Web Storage

Chapter 11: More JavaScript Goodies

Expanding_Arrays and Objects with the Spread Operator

Condensing Arrays with the Rest Parameter

Exporting_and Importing_Code

Chapter 1
An Overview of JavaScript

0000000000000 00

IN THIS CHAPTER

» Understanding programming in general and JavaScript in
particular

» Getting a taste of what you can (and can’t) do with JavaScript
» Learning the tools you need to get coding
» Adding JavaScript code to a web page

» Getting acquainted with the all-important console

What's in your hands, I think and hope, is intelligence: the ability to see
the machine as more than when you were first led up to it, that you can
make it more.

— ALAN PERLIS

When we talk about web coding, what we’re really talking about is
JavaScript. Yep, you need HTML and CSS to create a web page, and you
need tools such as PHP and MySQL to convince a web server to give
your page some data, but the glue — and sometimes the duct tape —
that binds all these technologies is JavaScript. The result is that
JavaScript is now (and has been for a while) the default programming
language for web development. If you want to control a page using code
(and I know you do), you must use JavaScript to do it.

It also means that JavaScript is (and has been for a while) universal on
the web. Sure, there are plenty of barebones home pages out there that
are nothing but HTML and a sprinkling of CSS, but everything else —
from humble personal blogs to fancy-pants designer portfolios to
bigtime corporate ecommerce operations — relies on JavaScript to make
things look good and work the way they’re supposed to (most of the
time, anyway).

So when it comes to the care and feeding of your web development
education, JavaScript is one of the most important — arguably the most
important — of all the topics you need to learn. Are you excited to start
exploring JavaScript? I knew it!

JavaScript: Controlling the Machine

When a web browser is confronted with an HTML file, it goes through a
simple but tedious process: It reads the file one line at a time, starting
from (usually) the <ntm1> tag at the top and finishing with the </htm1>
tag at the bottom. Along the way, it might have to break out of this line-
by-line monotony to perform some action based on what it has read. For
example, if it stumbles over the tag, the browser will immediately
ask the web server to ship out a copy of the graphics file specified in the
src attribute (refer to Book 2, Chapter 1).

The point here is that, at its core, a web browser is just a page-reading
machine that doesn't know how to do much of anything else besides
follow the instructions (the markup) in an HTML file. (For convenience,
I’m ignoring the browser’s other capabilities, such as saving
bookmarks.)

One of the reasons that many folks get hooked on creating web pages is
that they realize from the beginning that they have control over this
page-reading machine. Slap some text between a tag and its
corresponding end tag and the browser dutifully displays the text as
bold. Create a CSS Grid structure (check out Book 2, Chapter 4) and the
browser displays your formerly haphazard text in nice, neat rows and
columns, no questions asked. These two examples show that, instead of
just viewing pages from the outside, you now have a key to get inside
the machine and start working its controls. That is the hook that grabs
people and gets them seriously interested in web page design.

Imagine if you could take this idea of controlling the page-reading
machine to the next level. Imagine if, instead of ordering the machine to
process mere tags and text, you could issue much more sophisticated

commands that could control the inner workings of the page-reading
machine. Who wouldn't want that?

Well, that’s the premise behind JavaScript. It’s essentially just a
collection of commands that you can wield to control the browser. Like
HTML tags, JavaScript commands are inserted directly into the web
page file. When the browser does its line-by-line reading of the file and
it comes across a JavaScript command, it executes that command, just
like that.

However, the key here is that the amount of control JavaScript gives you
over the page-reading machine is much greater than what you get with
HTML tags. The reason is that JavaScript is a full-fledged programming
language. Although the L in HTML stands for language, there isn’t even
the tiniest hint of a programming language associated with HTML.
JavaScript, though, is the real programming deal.

What Is a Programming Language?

So what does it mean to call something a “programming language”? To
understand this term, you need look no further than the language you use
to speak and write. At its most fundamental level, human language is
composed of two things — words and rules:

» The words are collections of letters that have a common meaning
among all the people who speak the same language. For example, the
word book denotes a type of object, the word heavy denotes a
quality, and the word read denotes an action.

» The rules are the ways in which words can be combined to create
coherent and understandable concepts. If you want to be understood
by other speakers of the language, you have only a limited number of
ways to throw two or more words together. I read a heavy book is an

instantly comprehensible sentence, but book a I read heavy is
gibberish.

The key goal of human language is being understood by someone else
who is listening to you or reading something you wrote. If you use the

proper words to refer to things and actions, and if you combine words
according to the rules, the other person will understand you.

A programming language works in more or less the same way. That is,
it, too, has words and rules:

» The words are a set of terms that refer to the specific things that your
program works with (such as the browser window) or the specific
ways in which those things can be manipulated (such as sending the
browser to a specified address). They’re known as reserved words or
keywords.

» The rules are the ways in which the words can be combined to
produce the desired effect. In the programming world, these rules are
known as the language’s syntax.

In JavaScript, many of the words you work with are straightforward.
Some refer to aspects of the browser, some refer to parts of the web
page, and some are used internally by JavaScript. For example, in
JavaScript, the word document refers to a specific object (the web page
as a whole), and the word write () refers to a specific action (writing
data to the page).

The crucial concept here is that just as the fundamental purpose of
human language is to be understood by another person, the fundamental
purpose of a programming language is to be understood by whatever
machine is processing the language. With JavaScript, that machine is the
page-reading machine: the web browser.

You can make yourself understood by the page-reading machine by
using the proper JavaScript words and by combining them using the
proper JavaScript syntax. For example, JavaScript's syntax rules tell you
that you can combine the words document and write () like so:
document.write (). If youuse write () .document Or document write ()
or any other combination, the page-reading machine won't understand
you.

The key, however, is that being “understood” by the page-reading
machine really means being able to control the machine. That is, your

JavaScript “sentences” are commands that you want the machine to
carry out. For example, if you want to add the text “Hello World!” to a
web page using JavaScript, you include the following statement in your
code:

document ..write ("Hello World!") ;

When the page-reading machine trudges through the HTML file and
comes upon this statement, it will go right ahead and insert the text
between the quotation marks into the page.

Is JavaScript Hard to Learn?

I think there’s a second reason why many folks get jazzed about creating
web pages: It’s not that hard. HTML sounds like it’s a hard thing, and
certainly if you look at the source code of a typical web page without
knowing anything about HTML, the code appears about as intimidating
as anything you can imagine.

However, I’ve found that anyone can learn HTML as long as they start
with the basic tags, examine lots of examples of how they work, and
slowly work their way up to more complex pages. It’s just a matter of
creating a solid foundation and then building on it.

I’m convinced that JavaScript can be approached in much the same way.
I’m certainly not going to tell you that JavaScript is as easy to learn as
HTML. That would be a bald-faced lie. However, I will tell you that
there is nothing inherently difficult about JavaScript. Using our language
analogy, it just has a few more words to know and a few more rules to
learn. But I believe that if you begin with the basic words and rules,
study tons of examples to learn how they work, and then slowly build up
to more complex scripts, you can learn JavaScript programming. I
predict here and now that by the time you finish this book, you’ll even
be a little bit amazed at yourself and at what you can do.

What You Can Do with JavaScript

The people I’ve taught to create web pages are a friendly bunch who
enjoy writing to me to tell me how their pages are coming along. In
many cases, they tell me they’ve hit the web page equivalent of a
roadblock. That is, there’s a certain thing they want to do, but they don’t
know how to do it in HTML. So, I end up getting lots of questions like
these:

» How do I display one of those pop-up boxes?

» How do I add content to the page on-the-fly?

» How can I make something happen when a user clicks a button?
» How can I make an image change when the mouse hovers over it?

» How can I calculate the total for my order form?

For each question, the start of the answer is always this: “Sorry, but you
can’t do that using HTML; you have to use JavaScript instead.” I then
supply them with a bit of code that they can cut and paste into their web
pages and then get on with their lives.

If you’re just getting started with JavaScript, my goal in this book is to
help you to move from cut-and-paste to code-and-load. That is, you’ll
end up being able to create your own scripts to solve your own unique
HTML and web page problems. I hope to show you that learning
JavaScript is worthwhile because you can do many other things with it:

» Ask a web server for data and then display that data on your page.

» Add, modify, or remove page text, HTML tags, and even CSS
properties.

» Display messages to the user and ask the user for info.

» “Listen” for and then perform actions based on events such as a
visitor clicking their mouse or pressing a key.

» Send the user’s browser to another page.

» Validate the values in a form before submitting it to the server. For
example, you can make sure that certain fields are filled in.

» Collect, save, and retrieve data for each of your users, such as site
customizations.

In this book, you learn how to do all these things and many more.

What You Can’t Do with JavaScript

JavaScript is good, but it’s not that good. JavaScript can do many things,
but there’s a long list of things that it simply can’t do. Here’s a sampling
of what falls outside the scope of browser-based JavaScript:

» Write data permanently to an existing file. For example, you can’t
take the data from a guest book and add it to a file that stores the
messages.

» Access files on the server.

» Glean any information about the user, including email or IP
addresses.

» Submit credit-card—based purchases for authorization and payment.
» Create multiplayer games.
» Get data directly from a server database.

» Handle file uploads.

JavaScript can’t do most of these things because it’s what is known in
the trade as a client-side programming language, which means that it
runs on the user’s browser (which programming types like to call a
client).

Server-side JavaScript tools can do some of these things, but they’re
super-sophisticated and therefore beyond the scope here. The good news
is that many of the items in the preceding list are doable using PHP and
MySQL, which I discuss later on (starting in Book 4). For now, though,
just know that there are so many things that client-side JavaScript can do
that you’ll have no trouble being as busy as you want to be.

What You Need to Get Started

One of the nicest things about HTML and CSS is that the hurdles you
have to leap to get started are not only low, but few in number. In fact,
you really need only two things, both of which are free: a text editor to
enter the text, tags, and properties; and a browser to view the results.
(You’ll also need a web server to host the finished pages, but the server
isn’t necessary when you’re creating the pages.) Yes, there are high-end
HTML editors and fancy graphics programs, but these fall into the bells
and whistles category; you can create perfectly respectable web pages
without them.

The basic requirements for JavaScript programming are the same as for
HTML: a text editor and a browser. Again, programs are available to
help you write and test your scripts, but you don’t need them.

To learn more about text editors and using web browsers to test your
code, check out Book 1, Chapter 2.

Basic Script Construction

Okay, that’s more than enough theory. It’s time to roll up your sleeves,
crack your knuckles, and start coding. This section describes the
standard procedure for constructing and testing a script. You’ll see a
working example that you can try out, and later you’ll move on to other
examples that illustrate some JavaScript techniques that you’ll use
throughout this book.

The <script> tag
The basic container for a script is, naturally enough, the HTML
<script> tag and its associated </script> end tag:

<script>

JavaScript statements go here

</script>

5
TECHMICAL . .
sture In HTMLS, you can use <script> without any attributes. Before

HTMLYS, the tag would look like this:

<script type="text/javascript">

The type attribute told the browser the programming language being
used in the script, but JavaScript is the default now, so you no longer
need it. You still come across the <script> tag with the type attribute
used on a ton of pages, so I thought I’d better let you know what it
means.

Where do you put the <script> tag?

With certain exceptions, it doesn't matter a great deal where you put your
<script> tag. Some people place the tag between the page’s </head>
and <body> tags. The HTML standard recommends placing the

<script> tag within the page header (that is, between <head> and
</head>), so that's the style I use in this book:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Where do you put the script tag?</title>
<script>
JavaScript statements go here
</script>
</head>
<body>
</body>
</html>

Here are the exceptions to the put-your-script-anywhere technique:

» If your script is designed to write data to the page, the <script> tag
must be positioned within the page body (that is, between the <body>
and </body> tags) in the exact position where you want the text to
appear.

» If your script refers to an item on the page (such as a form object),
the script must be placed after that item. In most cases where the
script refers to one or more page objects, coders plop the <script>

tag at the bottom of the page body (that is, just above the </body>
tag).

» With many HTML tags, you can add one or more JavaScript
statements as attributes directly within the tag.

rememeer [t's perfectly acceptable to insert multiple <script> tags within a
single page, as long as each one has a corresponding </script> end
tag, and as long as you don't put one <script> block within another
one.

Example #1: Displaying a message to the user

You’re now ready to construct and try out your first script. This example
shows you the simplest of all JavaScript actions: displaying a simple
message to the user. The following code shows the script within an
HTML file (check out bk03ch01/example01.html in this book’s example
files):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Displaying a Message to the User</title>
<script>
alert ("Hello Web Coding World!");
</script>
</head>
<body>
</body>
</html>

As shown here, place the script within the header of a page, save the file,
and then open the HTML file within your browser.

This script consists of just a single line:

alert ("Hello Web Coding World!");

This is called a statement, and each statement is designed to perform a
single JavaScript task. You might be wondering about the semicolon (;)
that appears at the end of the statement. Good eye. You use the
semicolon to mark the end of each of your JavaScript statements.

Your scripts will range from simple programs with just a few statements
to huge projects consisting of hundreds of statements. In the example,
the statement runs the JavaScript alert () method, which displays to the
user whatever message is enclosed by quotation marks within the
parentheses (which could be a welcome message, an announcement of
new features on your site, an advertisement for a promotion, and so on).
Figure 1-1 shows the message that appears when you open the file.

L o) Displaying a Messagetothe L X =+
“ X A Mot Secure | 192.168.0.104/webcoding/bk03ch01fexampladi him
192.168.0.104 says
Hello Web Coding Warld!
FIGURE 1-1: This alert message appears when you open the HTML file containing the
example script.

Tsture - A method is a special kind of JavaScript feature. I discuss

methods in detail in Book 3, Chapter 6. For now, however, think of
a method as a kind of action you want your code to perform.

How did the browser know to run the JavaScript statement? When a
browser processes (parses, in the vernacular) a page, it basically starts at
the beginning of the HTML file and works its way down, one line at a
time, as [mention earlier. If it trips over a <script> tag, it knows one or
more JavaScript statements are coming, and it automatically executes
those statements, in order, as soon as it reads them. The exception is

when JavaScript statements are enclosed within a function, which I
explain in Book 3, Chapter 5.

warnine One of the cardinal rules of JavaScript programming is “one
statement, one line.” That is, each statement must appear on only a
single line, and there should be no more than one statement on each
line. I said “should” in the second part of the preceding sentence
because it's possible to put multiple statements on a single line, as
long as you separate each statement with a semicolon (;). There are
rare times when it’s necessary to have two or more statements on
one line, but you should avoid it for the bulk of your programming
because multiple-statement lines are difficult to read and to
troubleshoot.

Example #2: Writing text to the page

One of JavaScript’s most powerful features is the capability to write text
and even HTML tags and CSS properties to the web page on-the-fly.
That is, the text (or whatever) gets inserted into the page when a web
browser loads the page. What good is that? For one thing, it’s ideal for
time-sensitive data. For example, you might want to display the date and
time that a web page was last modified so that visitors know how old (or
new) the page is. Here’s some code that shows just such a script (check
out bk03ch01/example02.html):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Writing Data to the Page</title>

</head>
<body>
This is a regular line of text.

<script>
document .write ("Last modified: " + document.lastModified);
</script>

This is another line of regular text.
</body>
</html>

Note how the script appears within the body of the HTML document,
which is necessary whenever you want to write data to the page. Figure
1-2 shows the result.

O L] & Writing Data to the Page ® +
L C A Not Secure | 192.168.0.104/webcoding/bk03ch01fexample02.htmil

This is a regular line of text.
Last modified: 07/12/2023 17:06:07
This is another line of regular text.

FIGURE 1-2: When you open the file, the text displays the date and time the file was last
modified.

This script makes use of the document object, which is a built-in
JavaScript construct that refers to whatever HTML file (document) the
script resides in (refer to Book 3, Chapter 6 for more about the document
object). The document.write () statement tells the browser to insert into
the web page whatever text is between the quotation marks within the
parentheses. The document . lastModified portion returns the date and
time the web page file was last changed and saved.

A Quick Introduction to the Console

Every major web browser comes with an extensive suit of developer
tools that enable you to monitor, edit, and troubleshoot your HTML,
CSS, and JavaScript code. These tools are so important that [devote an
entire book to them: Check out Book 5.

Arguably the most important of these developer tools is the console,
which is an interactive window that enables you to display messages, run
JavaScript code on the fly, and look for script error messages. You learn
all about the console in Book 5, Chapter 2. However, over the rest of the
chapters here in Book 3, I use the console in many of the examples, so
here I present a brief introduction to this vital tool.

The first thing you need to know is that your JavaScript code can use the
console.log () method to output a message to the console. As you learn
in Book 5, Chapter 2, displaying messages to the console is one of the
most common techniques that developers use when writing and
troubleshooting their code. The simplest method for sending a message
to the console is to invoke console.log with some text:

console.log ("message™)

Replace message with the text you want to appear in the console. The

following example (bk03chO1/example03.html) sends the message
Hello Web Coding World! to the console:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Sending a Message to the Console</title>
<script>
console.log("Hello Web Coding World!");
</script>
</head>
<body>
</body>
</html>

To display the console in most web browsers, right-click the web page,
click Inspect (or press Ctrl+Shift+I in Windows or Option+d£ +1 in

macOS), and then click the Console tab. Figure 1-3 shows Chrome's
Console tab with the Hel10 Web Coding World! message displayed.

B () top ¥ (& Filts sfau® levels * P Isymaes:

461 lo Web Coding wWorld

L] 5 Sending a Message fo the C] + W

A Mot Secure | 192.168.0.104/ webeoding/bk03chiexampled 3. htm h 1 R N | Q H

Conscle Sources Madwork Farformancy Mamory Application iy] i

FIGURE 1-3: A message displayed in the Chrome web browser’s console.

Dealing with a Couple of
Exceptional Cases

In this book, I make a couple of JavaScript assumptions related to the
people who’ll be visiting the pages you post to the web:

» They have JavaScript enabled in their web browser.

» They are using a relatively up-to-date version of a modern web
browser, such as Chrome, Edge, Safari, or Firefox.

These are pretty safe assumptions, but it pays to be a bit paranoid and
wonder how you may handle the teensy percentage of people who don’t
pass one or both tests.

Handling browsers with JavaScript turned off

You don’t have to worry about web browsers not being able to handle
JavaScript because all modern browsers have supported JavaScript for a
very long time. You may, however, want to worry about people who
have turned off their browser’s JavaScript functionality. Why would
someone do such a thing? Many people disable JavaScript because
they’re concerned about security, they don’t want cookies written to their
hard drives, and so on.

To handle these iconoclasts, place the <noscript> tag within the body of
the page:

<noscript>
<p>
Hey, your browser has JavaScript turned off!
</p>
<p>
Okay, cool, but remember that some site features
require JavaScript, so a few things may not work
properly or at all.
</p>
</noscript>

If the browser has JavaScript enabled, the browser doesn't display any of
the text within the <noscript> tag. However, if JavaScript is disabled,
the browser displays the text and tags in the <noscript> tag to the user.

To test your site with JavaScript turned off, here are the techniques to
use in some popular browsers:

» Chrome (desktop): Open Settings, click Privacy and Security, click
Site Settings, click JavaScript, and then select the Don't Allow Sites
to Use JavaScript option, as shown in Figure 1-4.

L L 3 Settings - JavaScript w +

€ & @ Cheome | chrome:sattings T _—

& Settings

W Privacy and security
% Performance

& Appearance

0O, Search engine

@ b Dot allow stes 10 e Javascript
BN Defsult browser Y

FIGURE 1-4: JavaScript turned off in Google Chrome.

» Chrome (Android): Open Settings, tap Site Settings, tap JavaScript,
and then tap the JavaScript switch off.

» Edge: Open Settings, click the Settings menu, click Cookies and Site
Permissions, click JavaScript, and then click the Allowed switch off.

» Safari (macOS): Open Settings, click the Advanced tab, select the
Show Develop Menu in Menu Bar, and then close Settings. Choose
Develop = Disable JavaScript.

» Safari (i0S or iPadOS): Open Settings, tap Safari, tap Advanced,
and then tap the JavaScript switch off.

» Firefox (desktop): In the address bar, type about:config and press
Enter or Return. If Firefox displays a warning page, click Accept the
Risk and Continue to display the Advanced Preferences page. In the

Search Preference Name box, type javascript. In the search results,
look for the javascript.enabled preference. On the far right of that
preference, click the Toggle button to turn the value of the preference
from true to false, as shown in Figure 1-5.

=]

L] &) Advanced Prederences # t o

@ Firefox aboul-config i

javascript Show only modified preferences

browser.opagqueResponseBlocking javascriptvalidator false
brewser.urlibar. filber. javascript Lruse

javascript.enabled false

1+ 1 1 1

javascript.options.asmjs true

FIGURE 1-5: JavaScript turned off in Firefox.

Handling very old browsers

In this book, you learn the version of JavaScript called ECMAScript
2015, also known as ECMAScript 6, or just ES6. Why this version, in
particular, and not any of the later versions? Two reasons:

» ES6 has excellent browser support, with more than 98 percent of all
current browsers supporting the features released in ES 6. Later
versions of JavaScript have less support.

» ES6 has everything you need to add all kinds of useful and fun
dynamic features to your pages. Unless you're a professional
programmer, the features released in subsequent versions of
JavaScript are way beyond what you need.

Okay, so what about that few percent of browsers that don’t support
ES6?

First, know that the number of browsers that choke on ES6 features is
getting smaller every day. Sure, it’s 2 percent now (about 1.7 percent,
actually), but it will be 1 percent in six months, a .5 percent in a year,
and so on until the numbers just get too small to measure.

Second, the percentage of browsers that don’t support ES6 varies by
region (it’s higher in many countries in Africa, for example) and by
environment. Most of the people running browsers that don’t fully
support ES6 are using Internet Explorer 11, and most of those people are
in situations in which they can’t upgrade (some corporate environments,
for example).

If luck has it that your web pages draw an inordinate share of these older
browsers, you may need to eschew the awesomeness of ES6 in favor of
the tried-and-true features of ECMAScript 5. To that end, as I introduce
each new JavaScript feature, I point out those that arrived with ES6 and
let you know if there’s a simple fallback or workaround (known as a
polyfill in the JavaScript trade) if you need to use ESS5.

Adding Comments to Your Code

A script that consists of just a few lines is usually easy to read and
understand. However, your scripts won't stay that simple for long, and
these longer and more complex creations will be correspondingly more
difficult to read. (This difficulty will be particularly acute if you’re
looking at the code a few weeks or months after you first wrote it.) To
help you decipher your code, it’s good programming practice to make
liberal use of comments throughout the script. A comment is text that
describes or explains a statement or group of statements. Comments are
ignored by the browser, so you can add as many as you deem necessary.

For short, single-line comments, use the double-slash (//). Put the // at

the beginning of the line, and then type in your comment after it. Here's
an example:

// Display the date and time the page was last modified
document.write ("Last modified: " + document.lastModified) ;

You can also use // comments for two or three lines of text. If you have

more than that, however, you’re better off using multiple-line comments
that begin with the /* symbol and end with the »/ symbol. Here's an

example:

/*

This script demonstrates JavaScript's ability

to write text to the web page by using the
document.write () method to display the date and time
the web page file was last modified.

This script is Copyright 2024 Paul McFedries.

*/

warning Although it’s fine to add quite a few comments when you’re just
starting out, you don’t have to add a comment to everything. If a
statement 1s trivial or its purpose 1s glaringly obvious, forget the
comment and move on. If you’re not sure whether to comment
some code, go ahead and add the comment, particularly while
you’re building a script. Adding copious comments to your new
code is a great way to organize your thoughts and keep your code
readable. Later, you can always go back and delete comments that
you no longer need.

Creating External JavaScript Files

Putting a script inside the page header or body isn’t a problem if the
script is relatively short. However, if your script (or scripts) take up
dozens or hundreds of lines, your HTML code can look cluttered.
Another problem you might run into is needing to use the same code on
multiple pages. Sure, you can just copy the code into each page that
requires it, but if you make changes down the road, you need to update
every page that uses the code.

The solution to both problems is to move the code out of the HTML file
and into an external JavaScript file. Moving the code reduces the
JavaScript presence in the HTML file to a single line (as you’ll learn
shortly) and means that you can update the code by editing only the
external file.

Here are some things to note about using an external JavaScript file:

» The file must use a plain text format.

» Use the . js extension when you name the file.

» Don’t use the <script> tag within the file. Just enter your statements
exactly as you would in an HTML file.

» The rules for when the browser executes statements within an
external file are identical to those used for statements in an HTML
file. That is, statements outside functions are executed automatically
when the browser comes across your file reference, and statements
within a function aren't executed until the function is called.

To let the browser know that an external JavaScript file exists, add the
src attribute to the <script> tag. For example, if the external file is

named myscripts.js, your <script> tag is set up as follows:
<script src="myscripts.js">

This example assumes that the myscripts.js file 1s in the same

directory as the HTML file. If the file resides in a different directory,
adjust the src value accordingly. For example, if the myscripts.js file

is in a subdirectory named scripts, you use this:
<script src="scripts/myscripts.js">

You can even specify a file from another site (presumably your own!) by
specifying a full URL as the src value:

<script src="http://www.host.com/myscripts.js">

As an example, the following code shows a one-line external JavaScript
file named footer. Js:

document .write ("Copyright " + new Date () .getFullYear());

This statement writes the text Copyright followed by the current year. (I
know: This code looks like gobbledygook right now. Don't sweat it,
because you learn exactly what’s going on here when I discuss the
JavaScript pate object in Book 3, Chapter 9.)

The following code shows an HTML file that includes a reference for
the external JavaScript file (bk03chO1/example03.html):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Using an External JS File</title>
</head>
<body>
<hr>
<footer>
<script src="footer.js">
</script>
</footer>
</body>
</html>

When you load the page, the browser runs through the HTML line by
line. When it gets to the <footer> tag, it notices the external JavaScript

file referenced by the <script> tag. The browser loads that file and then

runs the code in the file, which writes the Copyright message to the
page, as shown in Figure 1-6.

@ o &+ Using an External JS File ¥ +

i - A Not Secure | 192.168.0.104/webcoding/bk03ch01/example0d. htm M

Copyright 2023

FIGURE 1-6: This page uses an external JavaScript file to display a footer message.

Chapter 2
Understanding Variables

0000000000000 00

IN THIS CHAPTER

» Getting your head around variables

» Assigning names to variables
» Introducing JavaScript data types
» Figuring out numbers

» Stringing strings together

You should imagine variables as tentacles, rather than boxes. They do
not contain values, they grasp them.

—MARIIN HAVERBEKE

You may have heard about — or perhaps even know — someone who,
through mishap or misfortune, has lost the ability to retain short-term
memories. If you introduce yourself to one of these folks, they’ll be
asking you your name again five minutes later. They live in a perpetual
present, seeing the world anew every minute of every day.

What, I’'m sure you’re asking yourself by now, can any of this possibly
have to do with coding? Just that, by default, your JavaScript programs
also live a life without short-term memory. The web browser executes
your code one statement at a time, until no more statements are left to
process. It all happens in the perpetual present. Ah, but notice that I refer
to this lack of short-term memory as the default state of your scripts. You
have the power to give your scripts the gift of short-term memory, by
using handy little chunks of code called variables. In this chapter, you
delve into variables, which is a fundamental and crucial programming
topic. You investigate what variables are, what you can do with them,
and how to wield them in your JavaScript code.

Understanding Variables

Why would a script need short-term memory? Because one of the most
common concepts that crops up when coding is the need to store a
temporary value for use later on. In most cases, you want to use that
value a bit later in the same script. However, you may also need to use it
in some other script, to populate an HTML form, or as part of a larger or
more complex calculation.

For example, your page may have a button that toggles the page text
between a larger font size and the regular font size, so you need some
way to remember that choice. Similarly, if your script performs
calculations, you may need to set aside one or more calculated values to
use later. For example, if you’re constructing a shopping cart script, you
may need to calculate taxes on the order. To do that, you must first
calculate the total value of the order, store that value, and then later take
a percentage of it to work out the tax.

In programming, the way you save a value for later use is by storing it in
a variable. A variable 1s a small chunk of computer memory set aside for
holding program data. The good news is that the specifics of how the
data 1s stored and retrieved from memory happen well behind the scenes,
so it isn’t something you ever have to worry about. As a coder, working
with variables involves just three things:

» Creating (or declaring) variables
» Assigning values to those variables

» Including the variables in other statements in your code
The next three sections fill in the details.

Declaring a variable with let

The process of creating a variable is called declaring in programming
terms. All declaring really means is that you’re supplying the variable
with a name and telling the browser to set aside a bit of room in memory
to hold whatever value you end up storing in the variable. To declare a

variable in JavaScript, you use the 1et keyword, followed by a space,
the name of the variable, and the usual line-ending semicolon. For
example, to declare a variable named interestRate, you'd use the
following statement:

let interestRate;

rememeer Here are a few things to bear in mind when you’re declaring
variables in your scripts:

» Declare a variable only once. Although you’re free to use a variable
as many times as you need to in a script, you declare the variable
only once. Trying to declare a variable more than once will cause an
error.

» Use a comment to describe each variable. Variables tend to
proliferate to the point where it often becomes hard to remember
what each variable represents. You can make the purpose of each
variable clear by adding a comment right after the variable
declaration, like so:

let interestRate; // Annual interest rate for the loan calculation

» Declare each variable before you use it. If you use a variable
before you declare it, you’ll get an error.

rememeer When I say that you’ll “get an error,” I don’t mean that an
error message will pop up on the screen. The only thing you’ll notice
is that your script doesn’t run. To read the error message, you need to
access your browser’s console, as I describe in Book 3, Chapter 1.
For details on JavaScript errors and how to troubleshoot them, refer
to Book 5, Chapter 2.

» Declare each variable right before you first use it. You’ll make
your programming and debugging (refer to Book 5, Chapter 2) life

much easier if you follow this one simple rule: Declare each variable
just before (or as close as possible to) the first use of the variable.

e
%7
TECHMNICAL

sture The let keyword was introduced in ECMAScript 2015 (ES6). If

you need to support really old browsers — I’m looking at you
Internet Explorer 11 and earlier —use the var keyword, instead.

Storing a value in a variable

After your variable is declared, your next task is to give it a value. You
use the assignment operator — the equals (=) sign — to store a value in a
variable, as in this general statement:

variableName = value;

Here's an example that assigns the value 0.06 to a variable named

interestRate:
interestRate = 0.06;

Note, too, that if you know the initial value of the variable in advance,
you can combine the declaration and initial assignment into a single
statement, like this:

let interestRate = 0.06;
interestRate = 0.06 / 12;

As a final note about using variable assignment, check out a variation
that often causes some confusion among new programmers. Specifically,
you can set up a statement that assigns a new value to a variable by
changing its existing value. Here's an example:

interestRate = interestRate / 12;

If you’ve never come across this kind of statement before, it probably
looks a bit illogical. How can something equal itself divided by 12? The
secret to understanding such a statement is to remember that the browser
always evaluates the right side of the statement — that is, the expression
to the right of the equals sign (=) — first. In other words, it takes the

current value of interestRate, which is 0.06, and divides it by 12. The
resulting value is what's stored in interestrRate when all is said and

done. For a more in-depth discussion of operators and expressions, head
over to Book 3, Chapter 3.

rememeer Because of this evaluate-the-expression-and-then-store-the-
result behavior, JavaScript assignment statements shouldn’t be read
as “variable equals expression” or “variable is the same as
expression.” Instead, it makes more sense to read them as ‘“variable
is set to expression” or “variable assumes the value given by
expression.” Reading assignment statements this way helps to
reinforce the important concept that the expression result is being
stored in the variable.

Declaring a variable another way: const

The word variable implies that the value assigned to a variable is
allowed to vary, which is the case for most variables you declare. Most,
but not all. Sometimes your scripts will need to use a value that remains
constant. For example, suppose you’re building a calculator that
converts miles to kilometers. The conversion factor 1s 1.60934, and that
value will remain constant throughout your script.

It’s good programming practice to store such values in a variable for
easier reading. However, if you use 1et for this declaration, you run the

risk of accidentally changing the value somewhere in your code because
variables declared with 1et can change.

To avoid accidentally changing a value that you want to remain constant,
you can declare the variable using the const (short for constant)

keyword instead. Here's the general syntax:
const variableName = value;

Note that, unlike with 1et, you must assign a value to the variable when
you declare it with const. Here's an example that declares a variable
named milesToKilometers and assigns it the value 1.60934:

const milesToKilometers = 1.60934;

rememser MoOst JavaScript programmers refer to any variable declared
with const as a constant, despite the oxymoronic undertow of the

phrase constant variable.

rememeer Are there any real benefits to using const over let in cases

where a variable's value must never change? Yep, there are two
pretty good ones:

» Using the const keyword is a reminder that you're dealing with a
non-changing value, which helps you to remember not to assign the
variable a new value.

» If you do try to change the value of a variable declared with const,

you’ll generate an error, which is another way to remind you that the
variable’s value is not to be messed with.

ne Given these advantages, many JavaScript programmers use
const by default and use 1et only for variables that they know will
change. As your code progresses, if you find that a const variable
needs to change, you can go back and change const to let.

Using variables in statements

With your variable declared and assigned a value, you can then use that
variable in other statements. When the browser comes across the
variable, it goes to the computer's memory, retrieves the current value of
the variable, and then substitutes that value into the statement. The
following code presents an example (check out
bk03ch02/example01.html in this book’s example files):

let interestRate = 0.06;
interestRate = interestRate / 12;

console.log(interestRate) ;

This code declares a variable named interestrate with the value 0.06;
it then divides that value by 12 and stores the result in the variable. The
console.log () statement then displays the current value of the variable,

as shown in Figure 2-1.

= C O & 192.168.0.104/webcoding/bk03ch02/example0l.htr B, ® £ N
@ © inspecter [E) Consale O Debugger T4 Metwork {J Style Editor (2) Performance {F Memory 3 ﬂ LU 4
D Errors Warnngs Logs Wnfo Dwbug C55 XHR Reguesis 1‘;

exanpledl.htal:9:21

B, es
2 | _W in)

Current value of the interestRate variable

FIGURE 2-1: When you use a variable in a statement, the browser substitutes the current
value of that variable.

ne To display the console in most web browsers, right-click the web
page, click Inspect (or press Ctrl+Shift+I in Windows or Option+d®
+1 in macOS), and then click the Console tab.

Naming Variables: Rules and Best
Practices

If you want to write clear, easy-to-follow, and easy-to-debug scripts (and
who doesn't?), you can go a long way toward that goal by giving careful
thought to the names you use for your variables. This section helps by
running through the rules you need to follow and by giving you some
tips and guidelines for creating good variable names.

Rules for naming variables
JavaScript has only a few rules for variable names:

»

»

»

»

»

The first character must be a letter or an underscore (). You can’t
use a number as the first character.

The rest of the variable name can include any letter, any number, or
the underscore. You can’t use any other characters, including spaces,
symbols, and punctuation marks.

As with the rest of JavaScript, variable names are case sensitive.
That 1s, a variable named InterestRate is treated as a different
variable than one named interestRate.

There's no limit to the length of the variable name.

You can’t use one of JavaScript’s reserved words as a variable name
(such as 1et, const, or var). All programming languages have a
supply of words that are used internally by the language and that
can't be used for variable names, because doing so would cause
confusion (or worse). Check out “JavaScript Reserved Words,” later
in this chapter, for a complete list.

Ideas for good variable names

The process of declaring a variable doesn’t take much thought, but that
doesn’t mean you should just type any old variable name that comes to
mind. Take a few extra seconds to come up with a good name by
following these guidelines:

»

Make your names descriptive. Sure, using names that are just a few
characters long makes them easier to type, but I guarantee that you
won’t remember what the variables represent when you look at the
script down the road. For example, if you want a variable to
represent an account number, use accountNumber Or accountNum
instead of, say, acnm or accnum.

»

»

»

»

»

rememser Mostly avoid single-letter names. Although it's best to
avoid single-letter variable names, such short names are accepted in
some places, such as when constructing loops, as described in Book
3, Chapter 4.

Use multiple words with no spaces. The best way to create a
descriptive variable name is to use multiple words. However,
because JavaScript doesn’t take kindly to spaces in names, you need
some way of separating the words to keep the name readable. The
two standard conventions for using multi-word variable names are
camelCase, where you cram the words together and capitalize all but
the first word (for example, 1astName), or separating each word with
an underscore (for example, 1ast name). | prefer the former style, so
I use it throughout this book.

Use separate naming conventions. Use one naming convention for
JavaScript variables and a different one for HTML identifiers and
CSS classes. For example, if you use camelCase for JavaScript
variables, use dashes for id values and class names.

Differentiate your variable names from JavaScript keywords.
Try to make your variable names look as different from JavaScript's
keywords and other built-in terms (such as alert) as possible.
Differentiating variable names helps avoid the confusion that can
arise when you look at a term and can’t remember if it’s a variable or
a JavaScript word.

Don’t make your names too long. Although short, cryptic variable
names are to be shunned in favor of longer, descriptive names, that
doesn’t mean you should be using entire sentences. Extremely long
names are inefficient because they take so long to type, and they’re
dangerous because the longer the name, the more likely you are to
make a typo. Names of 2 to 4 words and 8 to 20 characters should be
all you need.

Understanding Literal Data Types

In programming, a variable’s data type specifies what kind of data is
stored in the variable. The data type is a crucial idea because it
determines not only how two or more variables are combined (for
example, mathematically) but also whether they can be combined at all.
Literals are a special class of data type, and they cover those values that
are fixed (even if only temporarily). For example, consider the following
variable assignment statement:

let todaysQuestion = "What color is your parachute?";

Here, the text what color is your parachute? is a literal string value.
JavaScript supports three kinds of literal data types: numeric, string, and
Boolean. The next three sections discuss each type.

Working with numeric literals

Unlike many other programming languages, JavaScript treats all
numbers the same, so you don't have to do anything special when
working with the two basic numeric literals, which are integers and
floating-point numbers:

» Integers: These are numbers that don’t have a fractional or decimal
part. So, you represent an integer using a sequence of one or more
digits, as in these examples:

0

42
2001
-20

» Floating-point numbers: These are numbers that do have a
fractional or decimal part. Therefore, you represent a floating-point
number by first writing the integer part, followed by a decimal point,
followed by the fractional or decimal part, as in these examples:

0.07

3.14159
-16.6666667

7.6543e+21
1.234567E-89

Exponential notation

The last two floating-point examples require a bit more explanation.
These two use exponential notation, which is an efficient way to
represent really large or really small floating-point numbers. Exponential
notation uses an e (or £) followed by the exponent, which is a number
preceded by a plus sign (+) or a minus sign (-).

You multiply the first part of the number (that is, the part before the e or
£) by 10 to the power of the exponent. Here's an example:

9.87654e+5;

The exponent is 5, and 10 to the power of 5 is 100,000. So multiplying
9.87654 by 100,000 results in the value 987,654.

Here’s another example:
3.4567e-4;

The exponent is —4, and 10 to the power of —4 is 0.0001. So, multiplying
3.4567 by 0.0001 results in the value .00034567.

JavaScript has a ton of built-in features for performing mathematical
calculations. To get the details on these, head for Book 3, Chapter 9.

'&5&1‘

"stuee - Earlier, [mention that J avaScript treats all numeric literals the
same. But what I really meant was that JavaScript treats the
numeric literals as floating-point values. This is fine (after all,
there’s no practical difference between 2 and 2.0), but it does put a
limit on the maximum and minimum integer values that you can
work with safely. The maximum is 9007199254740992 and the
minimum is -9007199254740992. If you use numbers outside this
range (unlikely, but you never know), JavaScript won’t be able to
maintain accuracy. One solution is to use BigInt values, either by
appending n to the end of a large integer value or by using

BigInt (value), Where value is a variable containing a large
integer value.

Hexadecimal integer values

You'll likely deal with the usual decimal (base-10) number system
throughout most of your JavaScript career. However, just in case you
have cause to work with hexadecimal (base-16) numbers, this section
shows you how JavaScript deals with them.

The hexadecimal number system uses the digits 0 through 9 and the
letters 4 through F (or a through f), where these letters represent the
decimal numbers 10 through 15. So, what in the decimal system would
be 16 is actually 10 in hexadecimal. To specify a hexadecimal number in
JavaScript, begin the number with a 0x (or 0x), as shown in the
following examples:

0x23;

Oxff;
0X10ce;

Working with string literals

A string literal 1s a sequence of one or more letters, numbers, or
punctuation marks, enclosed either in double quotation marks () or
single quotation marks (). Here are some examples:

"Web Coding and Development";
'August 23, 2024';

"What's the good word?";

rememeer 1 he string " (or ' ' — two consecutive single quotation marks)

is called a null string or an empty string. It represents a string that
doesn't contain any characters.

Using quotation marks within strings
The final example in the preceding section shows that it’s okay to insert
one or more instances of one of the quotation marks (such as ') inside a

string that’s enclosed by the other quotation mark (such as "). Being able
to nest quotation marks comes in handy when you need to embed one
string inside another, which is common (particularly when using bits of
JavaScript in HTML tags). Here's an example:

onsubmit="processForm('testing')";

However, it’s illegal to insert in a string one or more instances of the
same quotation mark that encloses the string, as in this example:

"This is "illegal" in JavaScript.";

Understanding escape sequences

What if you must include, say, a double quotation mark within a string
that’s enclosed by double quotation marks? Having to nest the same type
of quotation mark is rare, but it is possible if you precede the double
quotation mark with a backslash (\), like this:

"The double quotation mark (\") encloses this string.";

The \" combination is called an escape sequence. You can combine the
backslash with a number of other characters to form other escape
sequences, and each one enables the browser to represent a character
that, by itself, would be illegal or not representable otherwise. Table 2-1
lists the most commonly used escape sequences.

TABLE 2-1 Common JavaScript Escape Sequences

Escape Sequence Character It Represents

\! Single quotation mark
\" Double quotation mark
\b Backspace

\£f Form feed

\n New line

\r Carriage return

\t Tab

\\ Backslash

The following code shows an example script that uses the \n escape
sequence to display text on multiple lines with an alert box.

console.log("This is line 1.\nSo what. This is line 2.");

Figure 2-2 shows the result.

- o 0 £ 192.168.0.104/we Jbk03ch02 fexample02.htm or B & 6
[© inspecter [Console [Debugger T4 Metwork {} Style Editor () Performance {JF Memory 3D 4] === %
D Erroig Wamnings Logs Iafo Debug CE55 XHR Reguesis 'ﬂ'

This iz lime 1. exanpled?, hial: 7: 21
S50 what. This is lime 2.

o

FIGURE 2-2: Using the \n escape sequence enables you to format text so that it displays
on different lines.

To learn how to combine two or more string literals, check out Book 3,
Chapter 3. Also, JavaScript has a nice collection of string manipulation
features, which I discuss in Book 3, Chapter 9.

Working with Boolean literals

Booleans are the simplest of all the literal data types because they can
assume only one of two values: true or false. That simplicity may

make it seem as though Booleans aren't particularly useful, but the
capability to test whether a particular variable or condition is true or
false 1s invaluable in JavaScript programming.

You can assign Boolean literals directly to a variable, like this:
taskCompleted = true;

Alternatively, you can work with Boolean values implicitly using
expressions:

currentMonth === "August"

The comparison expression currentMonth === "August" asks the
following: Does the value of the currentMonth variable equal the string

"august"? If it does, the expression evaluates to the Boolean value true;
if it doesn't, the expression evaluates to false. I discuss much more
about comparison expressions in Book 3, Chapter 3.

JavaScript Reserved Words

As I mention earlier, JavaScript has a bunch of reserved words that you
need to avoid when naming your variables. Table 2-2 presents a list of
the JavaScript reserved words. It’s illegal to use any of these words as
variable or function names.

TABLE 2-2 JavaScript’s Reserved Words

abstract arguments await boolean
break byte case catch
char class const continue
debugger default delete do

double else enum eval
export extends false final
finally float for function
goto if implements import

in instanceof int interface
let long native new

null package private protected
public return short static
super switch synchronized this
throw throws transient true

try typeof var void
volatile while with yield

JavaScript Keywords

Table 2-3 presents the complete list of keywords used in JavaScript and
HTML that you should avoid using for variable and function names. It's
not illegal to use these words, but using them outside their natural

habitat could cause confusion.

TABLE 2-3 JavaScript and HTML Keywords

alert all anchor anchors
area Array assign blur
button checkbox clearInterval clearTimeout
clientInformation close closed confirm
constructor crypto Date decodeURI
decodeURIComponent defaultStatus document element
elements embed embeds encodeURI
encodeURIComponent escape eval event
fileUpload focus form forms
frame frameRate frames function
hasOwnProperty hidden history image
images Infinity innerHeight innerWidth
isFinite isNaN isPrototypeOf layer
layers length link location
Math mimeTypes name NaN
navigate navigator Number Object
offscreenBuffering onblur onclick onerror
onfocus onkeydown onkeypress onkeyup
onload onmousedown onmouseover onmouseup
onsubmit open opener option
outerHeight outerWidth packages pageXOffset

pageYOffset parent parseFloat parselnt
password pkcsll plugin prompt
propertyIsEnum prototype radio reset
screenX screenY scroll secure
select self setInterval setTimeout
status String submit taint

text textarea top toString
undefined unescape untaint valueOf

window

Chapter 3
Building Expressions

0000000000000 00

IN THIS CHAPTER

» Understanding what expressions are

» Figuring out numeric expressions
» Tying up string expressions
» Getting the hang of comparison expressions

» Learning about logical expressions

1t s not at all important to get it right the first time. It s vitally important
to get it right the last time.

—DAVID THOMAS

The JavaScript variables described in the preceding chapter can’t do all
that much by themselves. They don’t become useful members of your
web code community until you give them something productive to do.
For example, you can assign values to them, use them to assign values to
other variables, use them in calculations, and so on.

This productive side of variables in particular, and JavaScript-based web
code in general, is brought to you by a JavaScript feature known as the
expression. When coding in JavaScript, you use expressions constantly,
so it’s vital to understand what they are and to get comfortable with the
types of expressions available to you. Every JavaScript coder is
different, but I can say without fear of contradiction that every good
JavaScript coder is fluent in expressions.

This chapter takes you through everything you need to know about
expressions. You discover some expression basics and then you explore
a number of techniques for building powerful expressions using
numbers, strings, and Boolean values.

Understanding Expression Structure

To be as vague as I can be, an expression is a collection of symbols,
words, and numbers that performs a calculation and produces a result.
That’s a nebulous definition, I know, so I'll make it more concrete.

When your check arrives after a restaurant meal, one of the first things
you probably do is take out your smartphone and use the calculator to
figure out the tip amount. The service and food were good, so you’re
thinking 20 percent is appropriate. With phone in hand, you tap in the
bill total, tap the multiplication button, tap 20%, and then tap Equals.
Voila! The tip amount appears on the screen and you’re good to go.

A JavaScript expression is something like this kind of procedure because
it takes one or more inputs, such as a bill total and a tip percentage, and
combines them in some way — for example, by using multiplication. In
expression lingo, the inputs are called operands, and they’re combined
by using special symbols called operators:

» operand: An input value for an expression. It is, in other words, the
raw data that the expression manipulates to produce its result. It
could be a number, a string, a variable, a function result (refer to
Book 3, Chapter 5), or an object property (refer to Book 3, Chapter

6).

» operator: A symbol that represents a particular action performed on
one or more operands. For example, the * operator represents
multiplication, and the + operator represents addition. I discuss the
various JavaScript operators throughout this chapter.

Here's an expression that calculates a tip amount and assigns the result to
a variable:

tipAmount = billTotal * tipPercentage;

The expression is everything to the right of the equals sign (=). Here,
billTotal and tipPercentage are the operands, and the multiplication
sign (*) 1s the operator.

5
TSTURE Expression results always have a particular data type —
numeric, string, or Boolean. So, when you're working with
expressions, always keep in mind what type of result you need and

then choose the appropriate operands and operators accordingly.

rememser Another analogy I like to use for operands and operators is a
grammatical one — that is, if you consider an expression to be a
sentence, the operands are the nouns (the things) of the sentence,
and the operators are the verbs (the actions) of the sentence.

Building Numeric Expressions

Calculating a tip amount on a restaurant bill is a mathematical
calculation, so you may be thinking that JavaScript expressions are
going to be mostly mathematical. If I were standing in front of you and
happened to have a box of gold stars on me, I’d certainly give you one
because, yes, math-based expressions are probably the most common
type you’ll come across.

In JavaScript, a mathematical calculation is called a numeric expression,
and it combines numeric operands and arithmetic operators to produce a
numeric result. This section discusses all the JavaScript arithmetic
operators and shows you how best to use them to build useful and handy
numeric expressions.

A quick look at the arithmetic operators

JavaScript’s basic arithmetic operators are more or less the same as those
found in your smartphone’s calculator app or on the numeric keypad of
your computer’s keyboard, plus a couple of extra operators for more
advanced work. Table 3-1 lists the basic arithmetic operators you can use

in your JavaScript expressions. (In subsequent sections I discuss each
one in more detail.)

TABLE 3-1 JavaScript Arithmetic Operators

Operator Name Example Result
+ Addition 10 + 4 14
++ Increment 10++ 11

- Subtraction 10 - 4 6

- Negation -10 -10
-- Decrement 10-- 9
* Multiplication 10 * 4 40
/ Division 10 / 4 2.5
% Modulus 10 % 4 2

JavaScript also comes with a few extra operators that combine some of
the arithmetic operators and the assignment operator, which is the
humble equals sign (=) that assigns a value to a variable. Table 3-2 lists

these arithmetic assignment operators.

TABLE 3-2 JavaScript Arithmetic Assignment
Operators

Operator Example Equivalent

+= X +=y X =x+ty
-= X -=y X =X -y
* = X*_y X=X*y
/= x /=y x=x/y
N= X "=y Xx =x "y

Using the addition (+) operator
You use the addition operator (+) to calculate the sum of two operands.

The operands are usually of the numeric data type, which means they
can be numeric literals, variables that store numeric values, or methods
or functions that return numeric values. Here's an example (check out
bk03ch03/example01.html in this book’s example files):

widthMax = widthContent + widthSidebar + 100;

You could use such an expression in a web app when you need to know
the maximum width to assign to the app’s container. In this case, you
take the width of the app’s content (represented by the widthcontent

variable), add the width of the app’s sidebar (the widthsidebar
variable), and then add the literal value 100 (which may be a value in
pixels).

Using the increment (++) operator

One of the most common programming operations involves adding 1 to
an existing value, such as a variable. This operation is called
incrementing the value, and the standard way to write such a statement is
as follows:

someVariable = someVariable + 1;

However, JavaScript offers a much more compact alternative that uses
the increment operator (++), which you place immediately after the

variable name (check out bk03ch03/example02.html):

let someVariable = 0;

someVariable++;

After these two statements are executed, the value of somevariable will
be 1.

warning [t 1s now considered bad programming practice to use the
increment operator. Why? Most of the reasons are fairly technical,
but the main reason is that this operator is a tad cryptic and makes

code hard to read. Almost all modern code gurus recommend using
the addition assignment operator (+=), instead of the increment
operator (refer to “Using the arithmetic assignment operators,” later
in this chapter).

That 1s, instead of this:

someVariable++;
use this:

someVariable += 1;

W

Egl
" THE PRE- AND POST-INCREMENT
OPERATORS

JavaScript coders often use the ++ operator as part of an expression that assigns a
value to another variable. Again, | don't recommend using this method, but | thought
you should know about it just in case you come across it in someone else’s code.

The first alternative use of ++ is to increment a variable and then assign this new value
to another variable, using the following form:

someVariable = ++anotherVariable;

This gives the same result as the following two statements:

anotherVariable = anotherVariable + 1;

someVariable = anotherVariable;

Because the ++ appears before the variable, it is often called the pre-increment
operator.

The second alternative use of ++ is called the post-increment operator:

someVariable = anotherVariable++;

In this case, the ++ operator appears after the variable. Big whoop, right? Actually, there

is a subtle but crucial difference. The following two statements do the same thing as the
post-increment operator:

someVariable = anotherVariable;

anotherVariable = anotherVariable + 1;

As you can see, the first variable is set equal to the second variable and then the
second variable is incremented.

Using the subtraction and negation (-) operators

The subtraction operator (-) subtracts the numeric value to the right of

the operator from the numeric value to the left of the operator. For

example, consider the following statements (bk03ch03/example03.html):
const targetYear = 2025;

const birthYear = 1985;

const yearsDifference = targetYear - birthYear;

The third statement subtracts 1985 from 2025 and the result — 40 — 1s
stored in the yearsDifference variable.

The negation operator (-) is the same symbol, but it works in a totally
different way. You use it as a kind of prefix by appending it to the front
of an operand. The result is a new value that has the opposite sign of the
original value. In other words, applying the negation operator to an
operand is the same as multiplying the operand by -1. This means that
the following two statements are identical:

negatedvValue = -originalValue;

negatedValue = originalValue * -1;

Using the decrement (--) operator

Another common programming operation is subtracting 1 from an
existing variable or other operand. This operation is called decrementing
the value, and the usual way to go about this is with a statement like this
one:

thisVariable = thisVariable - 1;

However (you just knew there was going to be a however), JavaScript
offers a much more svelte alternative that takes advantage of the
decrement operator (--), which you place immediately after the variable
name (bk03ch03/example04.html):

let thisVariable = 1;

thisVariable--;

A

warnine As with the increment operator, using the decrement operator is
frowned upon these days. Instead, your code will read better if you
use the subtraction assignment operator (-=) instead of the
decrement operator (refer to “Using the arithmetic assignment
operators,” later in this chapter).

That 1s, instead of this:

thisVariable--;
use this:

thisVariable -= 1;

W —

Il&ﬂ'
" THE PRE- AND POST-DECREMENT
OPERATORS

JavaScript programmers often use the -- operator as part of an expression that assigns

a value to another variable. | don't recommend using this method, but you should know
about it just in case you trip over it in someone else’s code.

The first alternative use of -- is to decrement a variable and then assign this new value
to another variable, which is called the pre-decrement form:

thisVariable = --thatVariable;

This has the same effect as the following two statements:

thatVariable = thatVariable - 1;
thisVariable = thatVariable;

The second alternative use of -- is to assign the value of a variable to another variable
and then decrement the first variable, which is called the post-decrement form:

thisVariable = thatVariable--;

Again, the following two statements do the same thing:

thisVariable = thatVariable;
thatVariable = thatVariable - 1;

As you can see, the first variable is set equal to the second variable and then the
second variable is decremented.

Using the multiplication (*) operator
The multiplication operator (*) multiplies two operands. Here's an
example (bk03ch03/example05.html):

const columns = 8;
const columnWidth = 100;
const totalWidth = columns * columnWidth;

You might use this code when you want to calculate the width taken up
by a web page layout that uses multiple columns. This code assigns
literal numeric values to the variables columns and columnwidth. It then

uses a numeric expression to multiply these two values and assign the
result to the totalwidth variable.

Using the division (/) operator

The division operator (/) divides one numeric value by another. You can
show off at parties by remembering that the number to the left of the
slash (/) 1s called the dividend, and the number to the right of the / is
called the divisor:

dividend / divisor

Here's an example (bk03ch03/example06.html):

const contentWidth = 600;
const windowWidth = 1200;

const contentRatio = contentWidth / windowWidth;
You can use this code to calculate the portion of the browser’s window
width that the page content is currently using. In this code, the
contentWidth and windowWidth variables are assigned literal numeric

values, and then a numeric expression divides the first of the values by
the second, the result of which is stored in the contentRatio variable.

warnine Whenever you use the division operator, you must guard against
cases where the divisor is 0. If that happens, your script will
produce an Infinity result, which is almost certain to wreak havoc
on your calculations. Before performing any division, your script
should use an if () statement (refer to see Book 3, Chapter 4) to
check whether the divisor is 0 and, if it is, to cancel the division or
perform some kind of workaround.

Using the modulus (%) operator
The modulus operator (%) divides one number by another and then
returns the remainder as the result:

dividend % divisor

For example, the following code stores the value 1 in the myRemainder
variable because 5 (the mypivisor value; also known as the modulus)
divides into 16 (the myDpividend value) three times and leaves a
remainder of 1 (bk03ch03/example07.html):

const myDividend = 16;

const myDivisor = 5;

const myRemainder = myDividend % myDivisor;
On a more practical level, suppose that you are trying to come up with a
web-page color scheme and want to use two colors that are complements
of each other. Complementary means that the two hues are on the
opposite side of the color wheel, so one way to calculate the second
color is by adding 180 to the first color's hue value. That approach works
when the hue of the first color is between 0 and 179, which gives second
color hue values between 180 and 359. However, an initial hue of 180,
181, and so on produces a second hue of 360, 361, and so on, which are
illegal values. You can work around that issue by using a modulus
expression like this (bk03ch03/example07.html):

complementaryColor = (originalColor + 180) % 360;

This statement adds 180 to the original color, but then uses ¢ 360 to
return the remainder when divided by 360 to avoid illegal values.

Using the arithmetic assignment operators

Your web coding scripts will often update the value of a variable by
adding to it the value of some other operand. Here’s an example:

totalInterestPaid = totallInterestPaid + monthlyInterestPaid

Coders are an efficiency-loving bunch, so the fact that the
totalInterestPaid variable appears twice in that statement is like
chewing tin foil to your average programmer. The JavaScript brain trust
hates that kind of thing, too, so they came up with the addition
assignment operator (+=), which you use like so
(bk03ch03/example08.html):

totalInterestPaid += monthlyInterestPaid

Yep, this statement does exactly the same thing as the first one, but it
does it with 19 fewer characters. Sweet!

If you need to subtract one operand from another, again you can do it the
old-fashioned way:

principalOwing = principalOwing - monthlyPrincipalPaid

To avoid other coders laughing behind your back at your inefficiency,
use the subtraction assignment operator (-=), which works like this

(bk03ch03/example08.html):

principalOwing -= monthlyPrincipalPaid

rememeer Like the increment and decrement operators, the arithmetic
assignment operators are designed to save wear and tear on your
typing fingers and to reduce the size of your scripts, particularly if
you use long variable names.

Building String Expressions

A string expression is one where at least one of the operands is a string,
and the result of the expression is another string. String expressions are
straightforward in the sense that there is only one operator to deal with:
concatenation (+). You use this operator to combine (or concatenate)
strings within an expression. For example, the expression "Java" +
"Script" returns the string "Javascript". Note, however, that you can
also use strings with the comparison operators discussed in the next
section.

It's unfortunate that the concatenation operator is identical to the addition
operator because this similarity can lead to some confusion. For
example, the expression 2 + 2 returns the numeric value 4 because the
operands are numeric. However, the expression "2" + "2" returns the
string value 22 because the two operands are strings.

To further complicate matters, JavaScript will often convert numbers
into strings depending on the context:

» If the first operand in an expression is a string, JavaScript converts
any number in the expression to a string. For example, the following
expression returns the string 222:

"2+ 2 4 2

Q

 BREAKING UP LONG
STATEMENTS

Each of your JavaScript statements should appear on a single line (refer to
Book 4, Chapter 1). An exception to this rule is any statement that contains a
long expression, which you can break into multiple lines as long as the break
occurs immediately before or after an operator. For example, you can write a
string expression in multiple lines as long as the break occurs immediately
before or after the + operator, as in the following examples:

const messagel = "How did the fool and his money " +

"get together in the first place?";

const message2 = "Never put off until tomorrow that which you "

+ "can put off until the day after tomorrow.";

» If the first two or more operands in an expression are numbers and
the rest of the expression contains a string, JavaScript handles the
numeric part of the expression first and then converts the result into a
string. For example, the following expression returns the string 42
because the result of 2 + 2 is 4, which 1s then concatenated as a
string to "2":

2 + 2+ "2m

As an example of how this conversion can be a problem, consider the
script in the following code (bk03ch03/example09.html):

const preTipTotal = 10.00;

const tipAmount = preTipTotal * 0.15;

const messagel = "Your tip is ";

const message?2 = "
Your total bill is ";

document.write (messagel + tipAmount + message?2 + preTipTotal + tipAmount) ;

The preTipTotal variable stores a total for a restaurant bill, and the
tipAmount variable stores 15 percent of the total. The variables
messagel and message? are initialized with strings, and then the results
are written to the page. In particular, the expression preTipTotal +
tipAmount 18 included in the document .write () method to display the
total bill. However, as shown in Figure 3-1, the “total” displayed is
101.5 instead of 11.5 (10 plus 1.5 for the tip).

<« @ O & 192.168.0.104/webcoding/bk03ch03/example09.htn S,

Your tipis 1.5
Your total bill 1s 101.5

FIGURE 3-1: Concatenating instead of adding the preTipTotal and tipamount values.

Because the first part of the expression in the document .write () method
was a string, JavaScript converted the preTipTotal and tipaAmount
values to strings and concatenated them instead of adding them.

To fix this problem, you could perform the addition in a separate
statement and then use only this sum in the document .write ()

expression. The following code demonstrates this approach
(bk03ch03/example10.html):

const preTipTotal = 10.00;

const tipAmount = preTipTotal * 0.15;
const totalBill = preTipTotal + tipAmount;
const messagel = "Your tip is "

const message2 = "
Your total bill is "

document.write (messagel + tipAmount + message2 + totalBill);

A new variable named totalBil1 is declared and is used to store the
preTipTotal + tipAmount sum. totalBill is then used to display the
sum in the document.write () expression, which, as shown in Figure 3-
2, now displays the correct answer.

i O O ﬂ 192.168.0.104/webcoding/bk03ch03/example10.html g

Your tip is 1.5
Your total bill is 11.5

FIGURE 3-2: Calculating preTipTotal and tipamount Separately fixes the problem.

Building Comparison Expressions

You use comparison expressions to compare the value of two or more
numbers, strings, variables, properties, or function results. If the
expression is true, the expression result is set to the Boolean value true;

if the expression is false, the expression result is set to the Boolean value
false. You'll use comparisons with alarming frequency in your

JavaScript code, so it’s important to understand what they are and how
you use them.

The comparison operators
Table 3-3 summarizes JavaScript’s comparison operators.

TABLE 3-3 JavaScript Comparison Operators

Operator Name Example Result

== Equality 10 == 4 false
= Inequality 10 != 4 true
> Greater than 10 > 4 true
< Less than 10 < 4 false
>= Greater than or equal 10 >= 4 true
<= Less than or equal 10 <= 4 false
=== Strict equality "10" === 10 false
== Strict inequality "10" !== 10 true

Using the equality (==) operator
You use the equality operator (==) (often also called the equals operator)

to compare the values of two operands. If both have the same value, the
comparison returns true; if the operands have different values, the

comparison returns false.

For example, in the following statements the variables booksrRead and
weeksPassed contain the same value, so the expression booksRead ==
weeksPassed returns true (check out Figure 3-3 and
bk03ch03/examplel1.html):

const booksRead = 48;

const weeksPassed = 48;

const bookAWeek = booksRead == weeksPassed;

document.write ("Me: I'm averaging a book a week, amirite?
");

document.write ("JavaScript: " + bookAWeek) ;

— C O ﬂ 192.168.0.104/webcoding/bk03ch03fexamplel1.htm o7

Me: I'm averaging a book a week, amirite?
JavaScript: true

FIGURE 3-3: The expression booksRead == weeksPassed returns true.

warnine One of the most common mistakes made by beginning and
experienced JavaScript programmers alike is to use = instead of ==
in a comparison expression. If your script isn't working properly or
1s generating errors, one of the first things you should check is that
your equality operator has two equal signs.

rememeer [t's important to understand here that the equality operator
returns true when the two operands have the same value even if the
two operands have different data types. (For an explanation of why
this happens, check out “The comparison operators and data
conversion,” later in this chapter.) For example, in the following
code, the bookaweek variable still winds up with the value true:

const booksRead = 48;
const weeksPassed = "48";

const bookAWeek = booksRead == weeksPassed;

This might be what you want, but you're more likely to want the
comparison to return false. For that you need to use the strict equality

operator (===), discussed later in this section.

Using the inequality (!=) operator
You use the inequality operator (!=) to compare the values of two

operands, but in the opposite sense of the equality operator. That is, if
the operands have different values, the comparison returns true; if both

operands have the same value, the comparison returns false.

In the following statements, for example, the variables currentFontsize
and defaultFontsize contain different values, so the expression
currentFontSize!= defaultFontSize returns true

(bk03ch03/examplel2.html):

const currentFontSize = 19;
16;

const defaultFontSize

const usingCustomFontSize = currentFontSize != defaultFontSize;

rememeer | he 1nequality operator returns false (meaning the two

operands have the same value) even if the two operands have
different data types. This might be what you want, but you're more
likely to want the comparison to return true. For that you need to

use the strict inequality operator (!==), discussed later in this
section.

Using the greater than (>) operator

You use the greater than operator (>) to compare two operands to
determine whether the operand to the left of > has a greater value than
the operand to the right of >. If it does, the expression returns true;
otherwise, it returns false.

In the following statements, the value of the contentwidth variable is
more than that of the windowwidth variable, so the expression
contentWidth > windowWidth returns true

(bk03ch03/examplel3.html):

const contentWidth = 1000;
const windowWidth = 800;
const tooBig = contentWidth > windowWidth;

Using the less than (<) operator

You use the less than operator (<) to compare two operands to determine
whether the operand to the left of < has a lesser value than the operand to
the right of <. If it does, the expression returns t rue; otherwise, it returns

false.

For example, in the statements that follow, the values of the
kumquatsInStock and kumquatsSold variables are the same, so the

expression kumquatsInStock < kumquatsSold returns false (check out
Figure 3-4 and bk03ch03/example14.html):

const kumquatsInStock = 3;

const kumquatsSold = 3;

const backordered = kumgquatsInStock < kumquatsSold;
document.write ("Are kumquats on back order? " + backordered) ;

— O O 8 192.168.0.104/webcoding/bk03ch03/example14.htm s

Are kumquats on back order? false

FIGURE 3-4: The expression kumquatsInStock < kumquatsSold returns false.

Using the greater than or equal (>=) operator

You use the greater than or equal operator (>=) to compare two operands
to determine whether the operand to the left of >= has a greater value
than or an equal value to the operand to the right of >=. If either or both
of those comparisons get a thumbs up, the expression returns true;
otherwise, it returns false.

In the following statements, for example, the value of the score variable
is more than that of the prizeiMinimum variable and is equal to that of
the prize2Minimum variable. Therefore, both the expressions score >=

prizelMinimum and score >= prize2Minimum return true

(bk03ch03/examplel5.html):

const score = 90;

const prizelMinimum = 80;

const prize2Minimum = 90;
const getsPrizel = score >= prizelMinimum;
const getsPrize2 = score >= prize2Minimum;

Using the less than or equal (<=) operator

You use the less than or equal operator (<=) to compare two operands to
determine whether the operand to the left of <= has a lesser value than or
an equal value to the operand to the right of <=. If either or both of those
comparisons get a nod of approval, the expression returns true;
otherwise, it returns false.

For example, in the following statements, the value of the defects
variable is less than that of the defectsMaximuma variable and is equal to
that of the defectsMaximumB variable. Therefore, both the expressions

defects <= defectsMaximumA and defects <= defectsMaximumB

return true (bk03ch03/examplel6.html):

const defects = 5

const defectsMaximumA = 10

const defectsMaximumB = 5

const getsBonus = defects <= defectsMaximumA

const getsRaise = defects <= defectsMaximumB

The comparison operators and data conversion

In the examples in the previous sections, I use only numbers to
demonstrate the various comparison operators. However, you can also
use strings and Boolean values. These comparisons are straightforward if
your expressions include only operands of the same data type; that is, if
you compare two strings or two Booleans. (However, refer to my
discussion in the section “Using strings in comparison expressions,” a
bit later in this chapter.)

TESTURF Things become less straightforward if you mix data types in a

single comparison expression. In this case, you need to remember
that JavaScript always attempts to convert each operand into a
number before running the comparison. Here's how it works:

» If one operand is a string and the other is a number, JavaScript
attempts to convert the string into a number. For example, in the
following statements the string "5 gets converted to the number 5,

so the comparison valuel == value2 returns true:
const valuel = "5";
const value?2 = 5;

const result = valuel == value2;

If the string can't be converted to a number (for example, the string
"rutabaga"), the comparison always returns false.

rememeer | e null string (") gets converted to 0.

» If one operand is a Boolean and the other is a number, JavaScript
converts the Boolean to a number as follows:

e true — This value is converted to 1.

e false — This value is converted to o.

For example, in the following statements, the Boolean true gets
converted to the number 1, so the comparison valuel == value2
returns true:

const valuel = true;
const value?2 = 1;
const result = valuel == value2;

» If one operand is a Boolean and the other is a string, JavaScript
converts the Boolean to a number as in the preceding item, and
attempts to convert the string into a number. For example, in the
following statements, the Boolean false is converted to the number

0 and the string "o is converted to the number 0, so the comparison

valuel == value?2 returns true:
const valuel = false;
const value2 = "0";
const result = valuel == value2;

If the string can't be converted to a number, the comparison always
returns false.

Using the strict equality (=) operator

The strict equality operator (===) checks whether two operands are
identical, which means that it checks not only that the operands' values
are equal but also that the operands are of the same data type. (This is

why the strict equality operator is sometimes called the identity
operator.)

For example, in the following statements, the albumName variable

contains a string and the a1bumrReleasebate variable contains a number.

These values are of different data types, so the expression albumName

=== albumReleaseDate returns false (bk03ch03/examplel7.html):
const albumName = "1984";

const albumReleaseDate = 1984;

const result = albumName === albumReleaseDate;

By comparison, if instead you used the equality operator (==), which
doesn't check the operand data types, the expression albumName ==
albumReleaseDate would return true.

rememeer S0, When should you use equality (==) and when should you use
strict equality (===)? Many pro JavaScript coders ignore this
question and just use the strict equality operator all the time. You
should, too.

Using the strict inequality (I==) operator

The strict inequality operator (! ==) performs (sort of) the opposite
function of the strict equality operator. That is, it checks to see not only
whether the values of two operands are different but also whether the
operands are of different data types. (This is why the strict inequality
operator is sometimes called the non-identity operator.)

In the following statements, the hasBugs variable contains the Boolean
value true and the totalBugs variable contains a number. These values
are of different data types, so the expression hasBugs !== totalBugs
returns true (bk03ch03/examplel8.html):

const hasBugs = true;
const totalBugs = 1;
const result = hasBugs !== totalBugs;

Using strings in comparison expressions

Comparison expressions involving only numbers hold few surprises, but
comparisons involving only strings can sometimes raise an eyebrow or
two. The comparison is based on alphabetical order, as you may expect,
so A comes before B and a comes before b. Ah, but this isn't your
father’s alphabetical order. In JavaScript’s world, all the uppercase
letters come before all the lowercase letters, which means that, for
example, B comes before a, so the following expression would return

false:
" a " < "B "

Another thing to keep in mind is that most string comparisons involve
multiple-letter operands. In these situations, JavaScript compares each
string letter-by-letter. For example, consider the following expression:

"Smith" < "Smyth"
The first two letters in each string are the same, but the third letters are
different. The internal value of the i in smith is less than the internal

value of the y in smyth, so the preceding comparison would return true.

(Note, too, that after a point of difference is found, JavaScript ignores
the rest of the letters in each string.)

'&5'3

" UNICODE STRING VALUES (OR, WHY
a ISN’T LESS THAN B)

In the "a" < 8" returning fa1se example, what does it mean to say that all the

uppercase letters “come before” all the lowercase letters? The story here is that a
technology called Unicode keeps track of (give or take) every possible character, nearly
150,000 of them as | write this. Each of those characters is given a unique numeric
value. For example, the asterisk (*) has the value 42, whereas the digit 5 has the value
53.

For some reason, Unicode lists the uppercase Latin letters before the lowercase letters.
The letter A is given the value 65, B is 66, and so on to Z, which has the value 90. The

lowercase Latin letters start with a, which is given the value 97, b has 98, and so on up
to z, which has the value 122.

When you use a comparison operator to compare two letters, what JavaScript is
comparing are the letters' Unicode values. That's why the string "a" (value 97) is

greater than the string "s" (value 66).

Also, a space is a legitimate character for comparison purposes, and its
internal value comes before all other letters and printable symbols. (If
you read the “Unicode string values (or, why a isn't less than B)”

sidebar, you'll understand what I mean when I say that the Unicode value
for the space character is 32.) Consider, then, the following comparison:

"Marge Simpson" > "Margerine"

The expression returns false because the sixth “letter” of the left
operand is a space, whereas the sixth letter of "Margerine" is r.

Using the ternary (?:) operator

e
TECHMNICAL . .
sturr - Knowing the comparison operators also enables you to use one

of my favorite expression tools, a complex but oh-so-handy item
called the ternary operator (2 :). Here's the basic syntax for using
the ternary operator in an expression:

expression ? result if true : result if false

The expressionis a comparison expression that results in a true or
false value. You can use any variable, function result, or property that
has a true or false Boolean value. The result if trueis the value
that the expression returns if the expression evaluates to true; the
result if false 1S the value that the expression returns if the
expression evaluates to false.

ne In JavaScript, by definition, the following values are the
equivalent of false:

» 0 (the number zero)
» " (the empty string)
» null

» undefined (which is, say, the “value” of an uninitialized variable)

Everything else is the equivalent of true.

Here's an example (bk03ch03/example19.html):

const screenWidth = 768;
const maxTabletWidth = 1024;
const screenType = screenWidth > maxTabletWidth ? "Desktop!" : "Tablet!";

The screenwidth variable 1s initialized to 768, the maxTabletwidth
variable 1s initialized to 1024, and the screenType variable stores the
value returned by the conditional expression. For the latter, screenwidth
> maxTabletWidth 1S the comparison expression, "Desktop! " is the
string returned with a true result, and "Tablet ! " is the string returned
with a false result. Because screenwidth is less than maxTabletWidth,
the comparison will be false, so "Tablet!" will be the result.

Building Logical Expressions

You use logical expressions to combine or manipulate Boolean values,
particularly comparison expressions. For example, if your code needs to
test whether two different comparison expressions are both true before

proceeding, you can do that with a logical expression.

The logical operators
Table 3-4 lists JavaScript's logical operators.

TABLE 3-4 JavaScript Logical Operators

General
Operator Name Returned Value
Syntax
exprl && . .
&& AND true if both exprl and expr2 are true; false otherwise
expr2
¥ OR exprl || true if one or both of exprl and expr2 are true; false
expr2 otherwise
! NOT lexpr trueifexpriS false;falseifexpris true

Using the AND (& &) operator

You use the AND operator (s&) when you want to test two Boolean
operands to determine whether they're both true. For example, consider
the following statements (bk03ch03/example20.html):

const finishedDinner = true;
const clearedTable = true;

const getsDessert = finishedDinner && clearedTable;

Because both finishedbinner and clearedTable are true, the logical
expression finishedDinner && clearedTable evaluates to true.

On the other hand, consider these statements:

const haveWallet = true;
const haveKeys = false;

const canGoOut = haveWallet && haveKeys;

In this example, because havekeys is false, the logical expression
haveWallet && haveKeys evaluates to false. The logical expression
would also return false if just havewallet were false or if both
haveWallet and haveKeys WEIe€ false.

Table 3-5 lists the various operands you can enter and the results they
generate (this is called a truth table).

TABLE 3-5 Truth Table for the AND (&&) Operator

left_operand right_operand left_operand ss right_operand

left_operand right_operand left_operand ss right_operand

true true true

true false false
false true false
false false false

Using the OR (||) operator

You use the OR (| |) operator when you want to test two Boolean
operands to determine whether at least one of them is true. For
example, consider the following statements (bk03ch03/example21.html):

const hasFever = true;
const hasCough = false;

const missSchool = hasFever || hasCough;

Because hasFever 1S true, the logical expression hasFever | |
hasCough evaluates to true because only one of the operands needs to
be true. You get the same result if only hasCough is true or if both
operands are true.

On the other hand, consider these statements:

const salesOverBudget = false;
const expensesUnderBudget = false;

const getsBonus = salesOverBudget || expensesUnderBudget;

In this example, because both salesoverBudget and
expensesUnderBudget are false, the logical expression
salesOverBudget || expensesUnderBudget evaluates to false.

Table 3-6 displays the truth table for the various operands you can enter.

TABLE 3-6 Truth Table for the OR (]|) Operator

left_operand right_operand left_operand || right_operand

true true true

true false true

left_operand right_operand left_operand || right_operand

false true true

false false false

Using the NOT (!) Operator
The NOT () operator is the logical equivalent of the negation operator
(-) I cover earlier in the chapter. In this case, NOT returns the opposite

Boolean value of an operand. For example, consider the following
statements (bk03ch03/example22.html):

const dataloaded = false;

const waitingForData = !dataloaded;

datalLoaded 1S false, SO !dataloaded evaluates to true.

Table 3-7 displays the truth table for the various operands you can enter.

TABLE 3-7 Truth Table for the NOT (!) Operator

Operand 'Operand

true false

false true

Advanced notes on the & & and || operators

&

TECHNICAL
sture | mention earlier that JavaScript defines various values that are
the equivalent of fa1se — including 0 and " — and that all other

values are the equivalent of true. These equivalences mean that
you can use both the AND operator and the OR operator with non-
Boolean values. However, if you plan on using non-Booleans, you
need to be aware of exactly how JavaScript evaluates these
expressions.

I'll begin with an AND expression:

1. Evaluate the operand to the left of the AND operator.

2. If the left operand’s value is false or is equivalent to false, return
that value and stop; otherwise, continue with Step 3.

3. If the left operand's value is true or is equivalent to true, evaluate
the operand to the right of the AND operator.

4. Return the value of the right operand.

This behavior is quirky, indeed, and there are two crucial concepts you
need to bear in mind:

» If the left operand evaluates to false or its equivalent, the right
operand is never evaluated.

» The logical expression returns the result of either the left or right
operand, which means the expression might nof return true or
false; Instead, it might return a value equivalent to true or false.

To try out these concepts out, use the following code
(bk03ch03/example23.html):

const vl = true;
const v2 = 10;

const v3 = "testing";
const v4 = false;
const v5 = 0;

const v6 = ""

const leftOperand =

eval (prompt ("Enter the left operand (a value or expression):", true));
const rightOperand =

eval (prompt ("Enter the right operand (a value or expression):", true));
const result = leftOperand && rightOperand;

document .write (result) ;

The script begins by declaring and initializing six variables. The first
three (v1, v2, and v3) are given values equivalent to true and the last
three (v4, v5, and v6) are given values equivalent to false. The script
then prompts for a left operand and a right operand, which are entered
into an AND expression. The key here is that you can enter any value for
each operand, or you can use the v1 through veé variables to enter a

comparison expression, such as v2 > v5. The use of eval () on the

prompt () result ensures that JavaScript uses the expressions as they're

entered.

The following table lists some sample inputs and the results they

generate:

left operand right operand left operand && right operand

true true true
true false false

5 10 10
false "Yo" false
v2 v5 0

true v3 testing
v5 v4 0

v2 > v5 v == v4 true

Like the AND operator, the logic of how JavaScript evaluates an OR
expression is strange and needs to be understood, particularly if you'll be
using operands that are true or false equivalents:

1. Evaluate the operand to the left of the OR operator.

2. If the left operand's value is true or is equivalent to true, return that
value and stop; otherwise, continue with Step 3.

3. If the left operand's value is false or is equivalent to false, evaluate
the operand to the right of the OR operator.

4. Return the value of the right operand.

Understanding Operator Precedence

Your JavaScript code will often use expressions that are blissfully
simple: just one or two operands and a single operator. Alas, often here

doesn't mean mostly, because many expressions you use will have a
number of values and operators. In these more complex expressions, the
order in which the calculations are performed becomes crucial. For
example, consider the expression 3+5*2. If you calculate from left to
right, the answer you get is 16 (3+5 equals 8, and 8*2 equals 16).
However, if you perform the multiplication first and then the addition,
the result is 13 (5*2 equals 10, and 3+10 equals 13). In other words, a
single expression can produce multiple answers depending on the order
in which you perform the calculations.

To control this ordering problem, JavaScript evaluates an expression
according to a predefined order of precedence. This order of precedence
lets JavaScript calculate an expression unambiguously by determining
which part of the expression it calculates first, which part second, and so
on.

The order of precedence

The order of precedence that JavaScript uses 1s determined by the
various expression operators that I've covered so far in this chapter.
Table 3-8 summarizes the complete order of precedence used by
JavaScript.

For example, Table 3-8 tells you that JavaScript performs multiplication
before addition. Therefore, the correct answer for the expression 3+5+*2

(just discussed) 1s 13.

TABLE 3-8 JavaScript Order of Precedence for
Operators

Operator Operation Order of Order of
Precedence Evaluation

++ Increment First R->L

-- Decrement First R->L

- Negation First R->L

! NOT First R->L

Operator Operation Order of Order of

Precedence Evaluation
* /% Multiplication, division, modulus Second L->R
+, — Addition, subtraction Third L->R
+ Concatenation Third L->R
<, <= Less than, less than, or equal Fourth L->R
. Sc;i:[er than, greater than, or Fourth L >R
== Equality Fifth L->R
1= Inequality Fifth L->R
=== Strict equality Fifth L->R
== Strict inequality Fifth L->R
&6 AND Sixth L->R
I OR Sixth L->R
2: Ternary Seventh R->L
= Assignment Eighth R->L
;(’;._:’ Arithmetic assignment Eighth R->L

Note, as well, that some operators in Table 3-8 have the same order of
precedence (for example, multiplication and division). Having the same
precedence means that the order in which JavaScript evaluates these
operators doesn't matter. For example, consider the expression 5x10/2. If
you perform the multiplication first, the answer you get is 25 (5*10
equals 50, and 50/2 equals 25). If you perform the division first, you also
get an answer of 25 (10/2 equals 5, and 5+5 equals 25).

However, JavaScript does have a predefined order for these kinds of
expressions, which is what the Order of Evaluation column tells you. A
value of L -> R means that operations with the same order of precedence
are evaluated from left-to-right; R -> L means the operations are
evaluated from right-to-left.

Controlling the order of precedence

Sometimes you want to take control of the situation and override the
order of precedence. This might seem like a decidedly odd thing to do,
so perhaps an example will help. As you probably know, you calculate
the total cost of a retail item by multiplying the retail price by the tax
rate, and then adding that result to the retail price:

Total Price = Retail Price + Retail Price * Tax Rate

However, what if you want to reverse this calculation? That is, suppose
you know the final price of an item and, given the tax rate, you want to
know the original (that is, pre-tax) price. Applying a bit of algebra to the
preceding equation, it turns out that you can calculate the original price
by dividing the total price by 1 plus the tax rate. So, if the total price is
$11.00 and the tax rate is 10 percent, you divide 11 by 1.1 and get an
answer of $10.00.

Okay, now I'll convert this calculation to JavaScript code. A first pass at
the new equation might look something like this:

retailPrice = totalPrice / 1 + taxRate;

The following code implements this formula and Figure 3-5 shows the
result (bk03ch03/example24.html):

const totalPrice = 11.00;
const taxRate = .1;
const retailPrice = totalPrice / 1 + taxRate;

document.write ("The pre-tax price is " + retailPrice);

i C O & 192.168.0.104/webcoding/bk03ch03/example24.htmil o7

The pre-tax price is 11.1

FIGURE 3-5: The result of our first stab at calculating the pre-tax cost of an item.

As you can see, the result is incorrect. What happened? Well, according
to the rules of precedence, JavaScript performs division before addition,
so the totalPrice value first is divided by 1 and then is added to the

taxRate value, which 1sn't the correct order.

To get the correct answer, you have to override the order of precedence
so that the addition 1 + taxrate is performed first. You override
precedence by surrounding that part of the expression with parentheses,
as shown in the following code. Using this revised script, you get the
correct answer, as shown in Figure 3-6 (bk03ch03/example25.html):

const totalPrice = 11.00;

const taxRate = .1;
const retailPrice = totalPrice / (1 + taxRate);
document.write ("The pre-tax price is " + retailPrice);
o« o O # 192.168.0.104/webcoding/bk03ch03/example25.htm 7

The pre-tax price is 10

FIGURE 3-6: The revised script calculates the pre-tax cost correctly.

warnine One of the most common mistakes when using parentheses in
expressions is to forget to close a parenthetical term with a right
parenthesis. Most modern code editors will automatically add a
right parenthesis as soon as you type a left one. If your editor
doesn’t do this, you need to make sure you’ve closed each
parenthetical term. One method you can use it to count all the left
parentheses and count all the right parentheses. If these totals don’t
match, you know you’ve left out a parenthesis.

Terms inside parentheses are always calculated first, and terms outside
parentheses are calculated sequentially (according to the order of
precedence). To gain even more control over your expressions, you can
place parentheses inside one another; this is called nesting parentheses,
and JavaScript always evaluates the innermost set of parentheses first.

Using parentheses to determine the order of calculations allows you to
gain full control over JavaScript expressions. This way, you can make
sure that the answer given by an expression is the one you want.

Chapter 4

Controlling the Flow of
JavaScript

0000000000000 00

IN THIS CHAPTER

» Understanding how you control the flow of JavaScript

» Setting up your code to make decisions
» Understanding code looping
» Setting up code loops

» Avoiding the dreaded infinite loop

A good programmer is someone who always looks both ways before
crossing a one-way street.

— DOUG LINDER

When the web browser comes across a <script> tag, it puts on its
JavaScript hat and starts processing the statements. Not surprisingly, the
browser doesn't just leap randomly around the script, parsing the
statements willy-nilly. That would be silly. No, the browser puts its head
down and starts processing the statements one at a time: the first
statement, the second statement, and so on until there’s no more
JavaScript left to parse.

That linear statement-by-statement progression through the code makes
sense, but it doesn’t fit every situation. Sometimes you want your code
to test some condition and then run different chunks of code depending
on the result of that test. Sometimes you want your code to repeat a
collection of statements over and over again, with some subtle or
significant change occurring with each repetition. Code that runs tests
and code that repeats itself all fall under the rubric of controlling the

flow of JavaScript. In this chapter, you dive into this fascinating and
powerful subject.

Making True/False Decisions with if
Statements

A smart script performs tests on its environment and then decides what
to do next based on the results of each test. For example, suppose you’ve
declared a variable that you later use as a divisor in an expression. You
should test the variable before using it in the expression to make sure
that the variable’s value isn’t o.

The most basic test is the simple true/false decision (which could also be
thought of as a yes/no or an on/off decision). In this case, your program
looks at a certain condition, determines whether it’s currently true or
false, and acts accordingly. Comparison and logical expressions (covered
in Book 3, Chapter 3) play a big part here because they always return a
true Or false result.

In JavaScript, simple true/false decisions are handle